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Addressing complex materials science problems through machine learning (ML) is challenging. A primary reason
for the challenge is that the underlying mechanisms may vary within the considered problem space. To quantify
this, we divide alloy data into subgroups and construct ML models to predict metallic glass formation. We
discover that subgrouping guided by physical insights into the problem leads to significantly higher prediction
accuracy. Specifically, when applying Inoue’s subgrouping, models specific to subgroups outperform those
trained on the entire dataset. Moreover, our analysis uncovers distinct mechanisms and contributing factors that
control the glass-forming ability in different subgroups, shedding light on the diverse nature of this phenomenon.
Statistical methods for subgrouping prove less effective and constrained when compared to physics-informed
subgrouping. Our results underscore the importance of leveraging physical insights for effective subgrouping
or precise feature representation, to guide ML strategies when tackling complex materials science problems. Such
an integrated approach has the potential to unlock new insights into material composition-property relationships

and accelerate materials discovery in a wide range of applications beyond metallic glass formation.

1. Introduction

Complex materials science problems and phenomena often involve a
large number of atoms, which are usually many orders of magnitude too
large to be addressed by ab initio calculations. Examples of such complex
materials science problems include the prediction of liquidus tempera-
ture of an alloy [1-3], the viscosity of a liquid [4,5], the plastic region of
the stress-strain curve [6], microstructure and microstructure evolution
and the resulting properties [7-11], and the glass forming ability (GFA)
[12-15] of an alloy.

Particularly, bulk metallic glass (BMG) formation has raised signifi-
cant scientific and technological interest [12,13,16,17]. The techno-
logical interest originates from their superb properties and property
combinations [18-26] and from their unique-for-metals processability
[27]. Scientifically, BMGs give rise to a convenient spatial and temporal
window to study the structure of glass and liquids [28,29] and their
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structure-property relationships [30-32]. Generally, as BMG formation
is a complex process, it has been difficult to predict GFA of alloys.

For such complex problems, empirical rules, model descriptions, and
guiding principles have been developed to help understand and predict
material behavior and properties and also to guide materials discovery.
Examples include the Hume-Rothery rules for solid solution formation
[33,34], the Hall-Petch relationship for grain boundary strengthening
[35,36], Turnbull’s reduced glass transition temperature criteria for
bulk glass formation [37], correlation between elastic constants and
plasticity in metallic glasses [18,22,38], and Inoue’s rules for designing
BMGs [13]. Obviously, to apply broadly across the wide range of a
complex problem, such rules must be generalized. Thereby, they can
describe general trends [12,16,38,39], but at the cost of accounting for
material-specific behavior. This has led to refinement and further
specification of rules [40-44]. For example, Inoue suggested that more
accurate design criteria for BMGs are possible when subgrouping alloys
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based on their chemical characteristics which are reflected in the loca-
tion of the alloy constituents in the periodic table [45]. However, thus
far, validating such empirical rules or subgrouping has remained chal-
lenging as it requires large amounts of consistent and high-quality data.
It is obvious that the availability of effective rules guiding metallurgy is
of paramount importance when considering the vast composition and
processing space available for alloys [46].

In this study, we employ machine learning (ML) strategies to quan-
tify the effectiveness of such rules. Specifically, we apply ML to a
comprehensive database of alloys to validate Inoue’s empirical rules and
subgrouping for metallic glasses [45]. For this, we divide the database
into seven subgroups according to Inoue’s subgrouping criteria. Subse-
quently, we build individual random forest ML models for each sub-
group of data, using physics-informed features that have been previously
confirmed as effective [14]. When predicting into held-out test datasets,
we find that the models trained on the same subgroup of data perform
better than the models trained on all available data, suggesting that
physics-informed subgrouping is more effective at enhancing prediction
accuracy than increasing data quantity.

A powerful test of the subgrouping approach is to use models trained
on each subgroup to predict into other subgroups, and compare these
predictions with predictions where training and testing is performed
within the same subgroup. Our results show that predictions within the
same subgroup are significantly more accurate than predictions into
other subgroups. To calibrate this result, we compare the above results
with the predictions generated by models trained on randomly grouped
data, assuming no domain-specific knowledge regarding subgrouping.
Specifically, we conduct a parallel experiment where we randomly
divide all data into seven “subgroups”, each equivalent in size to Inoue’s
seven subgroups and repeat the same process of ML training and pre-
diction. From this benchmark experiment, we observe no significant
difference between within-group predictions and out-of-group pre-
dictions, while the accuracy of within-group predictions is lower than
that using Inoue’s subgrouping, revealing the effectiveness of Inoue’s
subgrouping strategies that are physics informed.

To understand the underlying origin of Inoue’s subgrouping, we
identify and compare the feature importance across ML models trained
on different subgroups. We find that feature importance varies signifi-
cantly across groups, indicating that motifs for glass formation vary
among these Inoue’s subgroups.

Overall, our findings suggest that more specific physical insights are
needed to develop effective ML models for complex materials science
problems. Effective subgrouping solely through data science strategies is
generally not feasible due to the astronomical vastness of the parameter
space of complex materials science problems and the non-physical ap-
proximations that all such data science strategies employ. More accurate
ML models can be achieved either by constructing physics-informed
features based on human insights [14] or dividing the data into sub-
groups that follow the same underlying physics, as proposed in this
study. Such approaches can be applied to other complex materials sci-
ence problems beyond metallic glass formation. Additionally, our find-
ings suggest that the effectiveness of empirical rules as guiding
principles can be tested, and mechanistic insights can be revealed using
ML strategies, potentially leading to the development of more accurate
and generalizable rules. Further investigation into the underlying
mechanisms of subgrouping could also reveal new insights into the
relationship between material composition and properties.

2. Methods
2.1. Data collection and subgrouping

We utilize a database complied by Liu et al. [14] composed of
essentially all experimentally reported data from the Landolt-Bornstein

Handbook on “Nonequilibrium Phase Diagrams of Ternary Amorphous
Alloys” [47], and peer-reviewed literature on GFA of alloys. We labeled
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alloys as either BMG formers (critical cooling rate R, < 10% K/s) or
non-glass formers (R, > 10°K/s), resulting in a database of 2740 unique
alloy compositions, with 1027 BMG and 1713 non-glass formers. The
database contains 55 distinct elements and considers alloys ranging
from binary to octonary alloys, with ternary alloys forming the majority
of the alloys.

We used the classification system proposed by Inoue [45] to group
alloys into seven distinct subgroups based on their constituent elements
(Fig. 1). This classification system groups alloys using the atomic size
difference, heat of mixing, and period of the constituent elements in the
periodic table. The seven subgroups from Group 1 (G1) to Group 7 (G7)
are as follows:

. ETM/Ln-LTM/BM-Al/Ga

. ETM/Ln-LTM/BM-Metalloid
. Al/Ga-LTM/BM-Metalloid

. HA-ETM/Ln-LTM/BM

. LTM/BM-Metalloid

. ETM/Ln-LTM/BM

. I[IA-LTM/BM

NO U~ WNH-

where ETM, Ln, LTM, BM and IIA refer to early transition, lanthanide,
late transition, group IIIB-IVB, and group IIA-group metals,
respectively.

2.2. Feature construction: physics-informed features

The identification and construction of features that represent the
property of interest of an alloy is critical for building effective and
interpretable ML models. Here, the property of interest is the GFA of the
alloy. Features, summarized in feature vectors, can be defined as a set of
quantitative and qualitative attributes that describe the alloy for the
property of interest and are the building blocks of ML models. Each alloy
composition and label, i.e., BMG or non-glass, corresponds to a feature
vector. Physical insights into the problem can be utilized to choose or to
construct features more effectively [14]. In our study, we select and
build features based on their ability to represent the underlying atomic
interactions in the alloy governing GFA. The characteristics of an alloy
to be a BMG former are [13]: a) a composition close to a deep eutectic, b)
atomic size difference of larger than 12 %, c) a large negative heat of
mixing among at least two constituent elements. These empirical rules
reflect the established understanding of an alloy’s characteristics to form
a BMG, which have been also suggested by Inoue [13]. To represent
these rules by properties that are a priori known, we construct the
following features:

1. Liquidus temperature of the alloy, Tayoy. To determine Tapoy for a
general multicomponent alloy, we first break down the alloy into all
possible binary combinations. The liquidus temperature for each
binary system is readily available, such as in the ASM Alloy Phase
Diagram Database. The liquidus temperature of the alloy, Tayey, is
constructed using the ratio of these binary combinations. We
extrapolate Tajoy by calculating it from the liquidus temperatures of
constituent binary pairs, denoted as Tap for the composition A«.B e

For example, in the case of a ternary alloy A;ByCc, Talloy is calculated
as follows:

(@a+b) x Tag + (@ +c¢) X Tac + (b +¢) X Tac

2x(a+b+c) M

Talloy =

Note that for the ternary alloy A-B-C system, a, b, and c are the
compositions of elements A, B, and C, respectively.
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Fig. 1. Inoue’s subgrouping of BMGs. The seven subgroups are: (G1) ETM/Ln-LTM/BM-Al/Ga, (G2) ETM/Ln-LTM/BM-Metalloid, (G3) Al/Ga-LTM/BM-Metalloid,
(G4) IIA-ETM/Ln-LTM/BM, (G5) LTM/BM-Metalloid, (G6) ETM/Ln-LTM/BM, and (G7) IIA-LTM/BM, where ETM, Ln, LTM, BM and IIA refer to early transition,
lanthanide, late transition, group IIIB-IVB, and group IIA-group metals, respectively.

2. Liquidus temperature reduction, T;: To determine the reduction in
liquidus temperature, we normalize Taoy by the mean liquidus
temperature among the constituent elements, denoted as Tpean. T+ iS
a dimensionless ratio, ranging from 1 (indicating no reduction) to
0 (indicating total reduction). For the ternary alloy A;ByC¢, Trmean iS
calculated as Ty x a + Tg x b + T¢ x c. T; is then expressed as:

Talloy
T, = . 2
Tmean ( )
3. Atomic size difference, &:
8 =100% * 1/2,_)(,-(1 — r,~/7)277 = inri7 3

where r; is the atomic radius of the constituent element, and Xx; is the
atomic fraction of the element. Here, 7 is the mean atomic radius among
the constituent elements.

4. Atomic size ratio ¢:

€]

¢:rmax / Finin

where ryay represents the largest atomic radius among the constituent
elements, while rp;, is the smallest atomic radius among the constituent
elements.

5. Atomic size range Ar:

Ar = Fiax — Tmin,

)

where rax is the largest atomic radius among the constituent elements,
and iy is the smallest atomic radius among the constituent elements.

6. Maximum heat of mixing AHp.x: We first identify the maximum
absolute binary mixing enthalpy, denoted as |AH|, among constitu-
ent binary pairs within the alloy. For this particular pair, we use AH
multiplied by a factor as our feature. For example, for an alloy
AgBpC,, if |AHap| is the maximum absolute binary mixing enthalpy,
AHp,,y is calculated as follows:

2xaxb

AHmax = a+b

X AHap. (6)

Here, AHpp is obtained from the modified Miedema model [48].
The factor 221;” accounts for the fractional number of A-B bonds in
the alloy. The choice of “2” in 222 js a normalizing factor.
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7. Mean heat of mixing AHmean: AHmean Of the alloy represents the
weighted average binary mixing enthalpy of all constituent binary
pairs within the alloy. For a ternary alloy A ByC;, AHmean is calcu-
lated as follows:

(a4 b) x AHap + (a + ¢) X AHxc + (b + ¢) X AHpc

AH pean =
o 2x(a+b+c)

)

2.3. Machine learning model

2.3.1. Random forest classification

In this study, we employ the random forest ML model to create
classification models that map features (as described in Section 2.2) to
the GFA of alloys. Random forest is robust to outliers, versatile, able to
handle non-linear data and high dimensional data [49]. A random forest
classification model builds numerous decision trees during training, and
the model’s prediction is determined by the label chosen by the majority
of these decision trees. We use the open-source python package
Scikit-learn to construct the random forest ML model. Grid search has
been employed throughout the training process to optimize hyper-
parameters for the model, such as the number of decision trees, the
number of features to choose from at each tree node, and the maximum
depth of each tree, to obtain the highest classification accuracy. The
trained model can assess the relative probability of an unknown alloy
belonging to each GFA category, thus can categorize any new alloy into
these predefined categories. Therefore, we can utilize the ML model to
make predictions in the unknown composition space.

2.3.2. Within-group and out-of-group tests

To assess the effectiveness of Inoue’s empirical rules and subgroup-
ing for metallic glasses, we perform two sets of tests. In the first set of
tests, we train the models on each subgroup and evaluate their perfor-
mance on held-out test datasets within the same subgroup. We compare
the prediction accuracy of the models trained on each subgroup with the
models trained on the entire dataset. Such comparison allows us to
quantify performance differences between the models and specifically
determine whether physics-informed subgrouping enhances the pre-
diction accuracy. To evaluate model performance, we use the classifi-
cation accuracy as the metric, which measures the percentage of
correctly classified observations by a given model.

In another complementary test of the effectiveness of subgrouping,
we utilize the models trained on each subgroup to predict into other
subgroups and compare these predictions with predictions made within
the same subgroup (Fig. 2). To calibrate these results, we conduct a
parallel experiment in which we randomly divide all data into seven
subgroups, each of the same size as Inoue’s seven subgroups. We then
repeat the same process of ML training and prediction. Subsequently, we
compare the results of this benchmark experiment using random sub-
grouping with those derived from Inoue’s subgrouping.

3. Results and discussion
3.1. No subgrouping versus effective subgrouping: quantity versus quality

We found that the models trained on specific subgroups of data
outperform the models trained on the entire dataset. Such out-
performance suggests that physics-informed subgrouping enhances
prediction accuracy. The average test accuracies are 96 + 2 % for
models trained on subgroups of data, 81 + 7 % for models trained on all
data, and 61 + 7 % for models trained on all data excluding data from
the same subgroup (Fig. 3).
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Fig. 2. Schematic of out-of-group testing. In the second set of tests proposed in
this study to evaluate Inoue’s subgrouping, the ML model is trained using data
exclusively from one subgroup, e.g., G1. The trained model is then used to
predict into other subgroups (G2, G3, etc.) allowing for a comparison of out-of-
group prediction accuracies with those obtained from predictions within the
same subgroup. Additionally, the testing procedure is repeated for a benchmark
experiment where the data is randomly grouped into seven subgroups,
following the same methodology described above.

3.2. Within-group tests versus out-of-group tests

The previous results on the outperformance of the models based on
subgroup predictions compared to the model trained on all data reveal
the effectiveness of subgrouping. Further and complimentary evidence
for the effectiveness of such subgrouping can be seen when comparing
within-group tests and out-of-group tests. Specifically, high within-
group prediction and low out-of-group prediction would be indicative
of an effective subgrouping. As shown in Fig. 4, within subgroups, the
average prediction accuracy is 97 + 1 % (diagonal), which is signifi-
cantly higher than the average accuracy of predictions into other groups,
55 + 3 % (off diagonal). The ratio of out-of-group accuracy to within-
group accuracy is 0.57.

In the benchmark experiment (Fig. 4b), where we randomly group all
data into seven “subgroups” of the same size as Inoue’s seven subgroups,
we found no significant differences between within-group predictions
and out-of-group predictions, with an average accuracy of 88 + 3 % and
86 + 1 %, respectively. The average accuracy of within-group pre-
dictions using random subgrouping is lower than that using Inoue’s
grouping, i.e., 88 % versus 96 %. The ratio of out-of-group accuracy to
within-group accuracy is close to unity, 0.98. This ratio, which we define
as Subgroup Similarity Score (SSS) indicates the specificity and mean-
ingfulness of the grouping strategy. A lower SSS suggests that the pre-
dictions within a subgroup are significantly more accurate than
predictions into other subgroups. This indicates that the subgrouping
strategy effectively separates distinct subgroups, making it more
meaningful for modeling the specific mechanisms within each subgroup.
On the other hand, a higher SSS implies that there is higher similarity
between the subgroups, making it challenging to distinguish between
them. In such cases, the subgrouping strategy may not effectively cap-
ture the variations of underlying physics in material behavior, poten-
tially limiting its usefulness in ML modeling. Values of SSS can range
from O to 1 (approximately), with O representing the highest level of
meaningfulness and distinction whereas 1 indicates the absence of any
meaningful subgroups. Our results imply that Inoue’s grouping strategy
has significant physical meaning.

3.3. Feature importance: different gfa mechanisms in different subgroups

To further investigate the origin of effective subgrouping, we identify
and analyze feature importance in our random forest ML models trained
on different subgroups. Feature importance is a measure of the relative
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Fig. 3. Comparison of ML model performance between models trained on all data and models trained on Inoue’s subgroups. (a) Visualization of different data
partitions. (b) The average test accuracies are 96 + 2 % for models trained on subgroups of data, 81 + 7 % for models trained on all data, and 61 + 7 % for models
trained on all data excluding data from the same subgroup. The error originates from the variance of prediction accuracies across seven subgroups.
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Fig. 4. Comparison of ML prediction accuracies between within-group predictions and out-of-group predictions using Inoue’s subgrouping and random subgrouping.
(a) For Inoue’s subgrouping the average prediction accuracy of within-group tests is 97 & 1 % (diagonal), while the average accuracy of out-of-group tests is 55 + 3
% (off diagonal). The Subgroup Similarity Score (SSS), defined as the ratio of out-of-group accuracy to within-group accuracy, is 0.57. (b) For random subgrouping,
the average prediction accuracy of within-group tests and out-of-group tests are 88 + 3 % and 86 + 1 %, respectively, with a SSS of 0.98.

importance of each feature in making accurate predictions. We found
that feature importance varies across groups, indicating distinct and
subgroup-specific motifs for glass formation (Fig. 5). Notably, each
subgroup exhibited a different most important feature: T, for G1, Ar for
G2, ¢ for G4 and G5, § for G6, and AH e, for G7.

For example, when examining alloys in G6 (ETM/Ln-LTM/BM), it is
difficult to find sufficiently large atomic size difference, especially
among the predominant transition metals. Consequently, atomic size
difference (5) should be expected to be a dominating factor in deter-
mining the GFA within this group and this is indeed the feature with the
highest feature importance in our analysis. Other features, such as heat
of mixing (AHmax and AHpean) and liquidus temperature reduction (T7)
are widely available to lead to high GFA, hence do not play such a
dominant role.

On the other hand, for alloys in G7 (IIA-LTM/BM), atomic size range
and ratio are typically large, while the heat of mixing among elements is
relatively small and similar. Hence, heat of mixing (AHmean) is the
dominating feature, whereas atomic size range (Ar) and ratio (¢) are
much less important. Again, this has also been found in our feature
importance analysis.

In summary, the feature importance analysis supports the

effectiveness of Inoue’s subgrouping. Further the analysis aligns well
with the fact that a variety of different attributes of an alloy can
contribute to glass formation, supporting the diverse and rich nature of
this phenomenon.

4. Discussion

The results depicted in Fig. 3 clearly demonstrate that the models
trained on individual subgroups consistently outperform the model
trained on the entire dataset. The observed improvement in prediction
accuracy reflects their large range of constitutive elements and their
associated attributes in absolute and relative-to-each-other terms, which
suppresses crystallization in different ways [41,45,46,50-59]. By parti-
tioning the dataset into subgroups based on Inoue’s subgrouping stra-
tegies, we effectively capture the distinct characteristics and underlying
physics associated with each subgroup. This allows the individual
models, despite using fewer data for training, to better learn and
leverage the specific patterns and behaviors exhibited within each alloy
subgroup. Consequently, when presented with new observations from
the same subgroup during testing, the models can make more accurate
predictions. By isolating into subgroups, specific strategies to form
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Fig. 5. Variation in feature importance of ML models suggests different GFA mechanisms are at play in different subgroups. The features are: Tayoy, liquidus
temperature of the alloy; T, liquidus temperature reduction; 5, atomic size difference; ¢, atomic size ratio; Ar, atomic size range; AHp,ay, maximum heat of mixing;
AHean, mean heat of mixing. G3 exists solely of non-glass formers, hence does not have a feature importance plot.

glasses can be revealed that would otherwise be smeared out when
considering the entire group of metallic glasses. Such subgrouping-based
models specializing in modeling the specific mechanisms of each sub-
group can be expected to yield higher prediction accuracy.

To explore why predictions into other subgroups are limited, we
calculate the confusion matrix for out-of-group predictions (Table 1).
The confusion matrix goes beyond simple average accuracies and re-
veals specific alloys that result in false positive or false negative classi-
fications. Thus, we can gain insights into how well models perform
within specific subgroups and identify any patterns of misclassification.

We first analyzed the characteristics of Inoue’s seven subgroups: G1,
G5, and G7 BMGs exhibit a tendency where the main alloying element
possesses the largest atomic radius among all alloying elements and
forms an atomic pair with the largest negative value of heat of mixing.
BMGs belonging to G2 and G4 have a main element with an intermediate
atomic radius, independent of the atomic pair with the largest negative
heat of mixing. For multicomponent BMGs in G3, the main element can
either be the larger-sized element in the atomic pair with the largest
negative heat of mixing or an element within the same group in the
periodic table. BMGs in G6 are characterized by the main alloying
element with the smallest atomic radius among the other alloying ele-
ments, while still being an element in the atomic pair with the largest
negative heat of mixing.

Using the confusion matrix results allow us to conclude for example
that the presence of metalloid elements gives rise to different mecha-
nisms for glass formation. When we use the ML model trained on G1
(ETM/Ln-LTM/BM-Al/Ga) to predict into G2 (ETM/Ln-LTM/BM-
Metalloid), we observe a high false positive rate (FPR) of 73 % (false
positives refer to non-glass formers wrongly classified as BMGs) and a
false negative rate (FNR) of 4 %, indicating an overestimation of GFA for
alloys containing metalloids in G2. This can be explained by the fact that
metalloid elements have a significantly smaller atomic size compared to
other elements, resulting in larger differences in atomic size difference,
ratio, and range within the alloy. The model trained on G1 has primarily
encountered a limited range (on the smaller end of the spectrum) of
atomic size difference, ratio, and range during training, on which the

decision rules for GFA were based on. Consequently, the model over-
estimates GFA in G2, as the values of these features in G2 are likely to
exceed the thresholds established in the G1 model.

A similar case arises when using the G4 (IIA-ETM/Ln-LTM/BM)
model to predict into G2 (ETM/Ln-LTM/BM-Metalloid) where atomic
size differences are larger due to the existence of metalloid elements in
G2. The confusion matrix reveals an FPR of 76 % and an FNR of 0 %,
suggesting an overestimation of GFA. Analogous results and analysis can
be found when applying the ML model trained on G7 (IIA-LTM/BM) to
predict into G2 (ETM/Ln-LTM/BM-Metalloid).

The pairs of groups, G5 (LTM/BM-Metalloid) and G7 (IIA-LTM/BM),
exhibit intriguing similarities in their characteristics. Both groups share
the common trait of having the main alloying element with the greatest
atomic radius among the other alloying elements. Additionally, this
main element is part of the atomic pair with the largest negative heat of
mixing. Training on G7 and testing on G5 resulted in an FPR of 80 % and
an FNR of 0 %. Conversely, training on G5 and testing on G7 yielded an
FPR of 0 % and an FNR of 89 %. These findings indicate a consistent
overestimation in one direction (from G7 to G5) and a contrasting un-
derestimation in the reverse direction. Notably, the main element in G7
is Ca, which possesses one of the largest atomic radii of 0.197 nm. The
presence of Ca in all of G7 alloys diminishes the significance of the
"atomic size ratio ¢" feature, while emphasizing other features related to
heat of mixing, as depicted in Fig. 5. In contrast, G5 comprises metalloid
elements such as B, C, P, and Si, which have smaller atomic radii ranging
from 0.077 to 0.117 nm. Additionally, G5 alloys exhibit relatively higher
heat of mixing values ranging from —55 to —34.5 kJ/mol for combi-
nations between the major elements (Fe, Ni, Co, and Pd) and the met-
alloids (B, C, P, and Si) in the LTM/BM. These distinct characteristics
and the inherent large negative mixing in most G5 alloys reduce the
influence of heat of mixing-related features when estimating other
groups. Consequently, the high importance of the ‘atomic size ratio ¢’
feature leads to an overestimation of GFA for G5 when the model is
trained using G7, while underestimating the GFA of G7 when trained on
G5. Similar patterns of reversed FPR/FNR ratios, such as G4-G5, and G2-
G6, can be explained by employing a similar logic to the G5-G7 pair.
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Table 1

Confusion matrix for out-of-group predictions using Inoue’s subgrouping. The
table illustrates a confusion matrix summarizing the results of GFA prediction in
out-of-group tests. The matrix provides a breakdown of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN), presented in per-
centages, where "positive" indicates BMG, and "negative" denotes non-glass
formers. Additionally, it provides key metrics such as the false positive rate
(FPR), false negative rate (FNR), and overall accuracy (ACC).

Train Test Total TP TN FP FN FPR FNR ACC

# % % % % % % %
Gl G2 394 30 19 50 1 73 4 49
Gl G3 33 0 70 30 0 30 n/a 70
Gl G4 264 52 14 28 6 67 10 66
Gl G5 355 9 44 37 10 45 54 53
Gl G6 191 28 39 12 21 23 43 67
Gl G7 119 87 1 10 3 92 3 87
G2 Gl 724 38 20 32 10 62 20 58
G2 G3 33 0 42 58 0 58 n/a 42
G2 G4 264 26 16 26 32 62 55 42
G2 G5 355 10 50 32 9 39 49 59
G2 G6 191 43 11 40 5 79 11 54
G2 G7 119 76 7 4 13 38 14 83
G4 Gl 724 39 28 24 8 46 17 67
G4 G2 394 31 16 52 0 76 0 48
G4 G3 33 0 85 15 0 15 n/a 85
G4 G5 355 18 41 40 1 49 3 60
G4 G6 191 16 41 10 32 19 67 58
G4 G7 119 32 10 1 57 8 64 42
G5 Gl 724 24 47 6 23 11 49 71
G5 G2 394 1 61 8 30 11 96 62
G5 G3 33 0 85 15 0 15 n/a 85
G5 G4 264 26 39 3 32 8 55 65
G5 G6 191 29 41 10 19 19 40 71
G5 G7 119 18 11 0 71 0 80 29
G6 Gl 724 19 50 2 28 4 59 70
G6 G2 394 1 69 0 31 0 98 69
G6 G3 33 0 85 15 0 15 n/a 85
G6 G4 264 10 32 10 47 24 82 42
G6 G5 355 2 74 7 17 8 88 77
G6 G7 119 38 6 5 51 46 58 44
G7 Gl 724 47 1 52 0 98 0 48
G7 G2 394 31 0 69 0 100 0 31
G7 G3 33 0 0 100 0 100 n/a 0
G7 G4 264 55 13 30 2 71 4 68
G7 G5 355 19 9 72 0 89 0 28
G7 G6 191 47 3 49 2 95 4 49

The insights gained from the pairs found in the confusion matrix,
which demonstrate a consistent overestimation in one direction and
underestimation in the other direction, highlight the critical importance
of subgrouping based on the underlying physics. This approach proves
crucial, not only for accurately predicting the GFA of specific alloy
groups but also for understanding the role of each individual feature. By
incorporating the relevant physical characteristics and properties of the
alloys into the subgrouping and analyzing them using machine learning
techniques, we can achieve more robust predictions and gain a deeper
understanding of the underlying mechanisms governing the scientific
problem at hand. This integration of physics-based subgrouping and
machine learning methods offers a powerful framework for advancing
our knowledge in materials science and facilitating the design and
development of novel materials with tailored properties.

The above discussion revealed the need and power of physical in-
sights (physics-informed subgrouping and features). Obviously, the
question arises whether there are ML or data science strategies that
reveal such subgrouping or features without using physical insights. In
other words, are physical insights necessary for building accurate ML
models? To test whether subgrouping (and hence ML models based upon
such groups) without physical insights is at least as useful as physical
insights, we employ clustering or subgroup discovery strategies that are
based solely upon the characteristics of the features of the data. Note
that while these features (described in Section 2.2) are derived from
physical principles, we will use only these features to group the alloys
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and will not consider whether such features result in the formation of
glass or not.

One widely used strategy to group data into subgroups is k-means
clustering in which k, the number of averages, is specified and then data
points are grouped into k clusters or subgroups according to the dis-
tances of their features from these average values. In the next compu-
tational experiment, we show that simply using the features alone
(without additional physical insights) with the k-means clustering al-
gorithm is not as effective in building predictive ML models as the
physically derived groups, although such clustering is better than
random grouping.

We run k-means clustering for k = 7 on the data (Section 2.1) and
generate seven subgroups. We perform the same within-group and out-of-
group prediction experiments (as described in Section 2.3.2) using the k-
means clusters. Fig. 6 shows the within-group predictions and the out-of-
group predictions. We find that the within-group predictions are worse for
the k-means cluster than for Inoue’s groups (especially on G2, G3, and
Gb5), albeit a bit better on G1, G4, and G6. Interestingly, the out-of-group
predictions are considerably higher for the k-means clusters than for
Inoue’s groups, suggesting that this subgrouping does not separate or
distinguish amongst the subgroups nearly as well. Specifically, the
average prediction accuracy of within-group tests is 96 + 1 % and that of
out-of-group tests is 63 + 3 %, resulting in a SSS of 0.66, higher than
Inoue’ grouping with a SSS of 0.57. The k-means subgrouping is reason-
ably effective at prediction but not effective at revealing underlying
structure nor as useful for revealing physical mechanisms that might drive
glass formation for different types of alloys.

The k-means algorithm clusters data based on their features alone,
without taking into account any labels. Obviously, when labels are not
considered, no conclusions can be drawn about the feature importance
and, thus, k-means clusters do not reflect the contribution of features. In
cases where there are different underlying mechanisms and physics
defining the GFA, clustering analysis alone cannot be efficient in iden-
tifying subgroups that would be statistically correlated with different
labels. Therefore, the effectiveness of clustering analysis that does not
make use of any other information depends on whether the data has the
same feature importance and underlying mechanisms for the specific
problem being studied.

We argue that to generate a physically meaningful clustering of al-
loys into subgroups, the labels (e.g., if a certain feature vector is

k-means Subgrouping

;3 LI 39% 69% 90%
- 100%
;c; 49%63%
80%
5(3 61% 60% L5
'!éb 60%
.g g 51% 49% 39%
= . 40%
3
20%
gg 69% 4/ 69% 96% 94%
0
g 50% 53% 43% 96%

G1* G2* G3* G4 Gb* Ge6* G7*
Test

Fig. 6. ML prediction accuracies between within-group predictions and out-of-
group predictions using k-means clustering subgrouping strategy. The average
prediction accuracy of within-group tests is 96 + 1 % and the average predic-
tion accuracy of out-of-group tests is 63 + 3 %, resulting in a SSS of 0.66.
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associated with a glass or not) must be considered. In theory, the best
subgrouping could be determined through an optimization process. This
optimization process would find the m disjoint, non-empty groupings for
the n data points by maximizing the within-group accuracy and mini-
mizing the out-of-group accuracy. The search space of all possible
groupings is exponentially large (it is of size roughly n™/(m!) for each
possible value of m [60]) . For 1000 alloys, the number of groupings of
size 7 is approximately 2 x 10'7, already far too large for us to optimize
over. Indeed, all subgroup discovery algorithms define some form of
objective function (i.e., quantity that one wishes to optimize) and then
restricts in some ad hoc fashion the size of the search space (from
exponential to hopefully a polynomial-sized space in n and m to generate
an algorithm which runs in a reasonable amount of time). This is the idea
behind all subgroup algorithms [61-64]. We emphasize that all such
approximations or restrictions are ad hoc and data-driven, rather than
physically motivated.

As a result of the k-means experiment and the discussion above, we
seek a middle ground or a compromise between the solely data-driven
clustering (or more generally, the ad hoc restriction of the subgroup-
ings) and the ‘hand crafted’ groupings of Inoue. We advocate using both
algorithmic heuristics plus physical principles or insights to guide the
development of effective ML models in material science.

5. Conclusion

In conclusion, this study underscores the pivotal role of effective
subgrouping in enhancing ML predictions for complex materials science
phenomena, particularly in the context of metallic glass formation. By
applying Inoue’s subgrouping approach, which are based on physical
insights, we have demonstrated that such subgrouping significantly
improves prediction accuracy. Moreover, our results highlight the po-
tential of ML and data science strategies to quantitatively assess guiding
principles utilized in materials science, allowing for a rigorous evalua-
tion of empirical rules like Inoue’s. Additionally, our investigation un-
veils the existence of diverse mechanisms and contributions controlling
GFA within these subgroups. These subgroup-specific behaviors
emphasize the importance of subgrouping based on underlying physics
and chemical attributes, as it allows for a more accurate modeling of the
specific mechanisms governing BMG formation in each subgroup.

This study advocates a synergistic approach that combines algo-
rithmic heuristics with physical insights to advance our understanding
of complex materials science and improve the predictive capabilities of
ML models. Such an integrated framework has the potential to unlock
new insights into material composition-property relationships and
accelerate materials discovery in a wide range of applications beyond
metallic glass formation.
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