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Chiapas, 29050, Tuxtla Gutiérrez, Mexico
3Instituto de F́ısica, Universidad Autónoma de San Luis Potośı, 78290, San Luis
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Abstract

Colloidal dispersions exhibit rich equilibrium and non-equilibrium ther-

modynamic properties, self-assemble (spontaneously or driven exter-

nally) to form a large diversity of structures at different length scales,

and display interesting and complex transport behavior under bulk con-

ditions. In confinement or under geometrical restrictions, new and in-

teresting phenomena emerge that have no counterpart when the colloids

are embedded in an open and non-curved space. In this review, we fo-

cus on the effects of confinement and geometry on the self-assembly

and transport of colloids and fluidized granular systems, which serve

as model systems. Our main goal is to provide a balanced discussion

of the various contributions, including experiments, theoretical approx-

imations and molecular simulations, that provide physical insight on

the role played by the geometry at the mesoscopic scale. We also draw

attention to some particular problems and challenges, and show pre-

liminary results based on the covariant Smoluchowski equation, that

represent promising perspectives to further study colloidal dynamics in

a non-Euclidean geometry.
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1. INTRODUCTION: COLLOIDS, CONFINEMENT AND GEOMETRY

Colloidal suspensions are many-body systems composed of nanometer- to micrometer-sized

particles, typically named colloids, dispersed in a continuum liquid medium (the solvent).

Colloids are widely used in industrial and technological applications, such as paints, foods,

and medicines (1), and as feedstocks for additive manufacturing of advanced materials

(2, 3). Scientifically, colloids serve as model systems to understand, for example, both

the equilibrium phase behavior and non-equilibrium states of matter, effective interactions

among macromolecules, the mechanical response of materials, and how the self-assembly and

transport processes are affected by either confinement or geometrical restrictions (1, 4, 5).

Additionally, colloids can be classified as passive or active matter depending on whether

the particles are self-propelled (6).

Colloids are widely used as model systems for several reasons. First, colloids and other

macromolecules share similar length scales (10 nm – 1 µm), which renders them ‘visible.’

As a consequence, they are relatively slow (typical time scales 1 µs - 1 s), which allows

colloidal dynamics and transport processes to be followed in real time. Second, the inter-

actions between colloidal particles, of the order of the thermal energy kBT , also describe

the interaction between macromolecules immersed in an aqueous environment and can be

tuned over a broad range. Third, since colloidal interactions are relatively weak, colloids

are highly susceptible to external forces that are able to spatially confine them. Thus,

their properties can be controlled through the application of external modulation. Finally,

colloidal suspensions can be studied at the single-particle level by means of complementary

techniques, i.e., experiments, computer simulations and theoretical approximations (1, 4, 5).
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“Passive colloidal matter” exhibits rich equilibrium and non-equilibrium thermodynamic

behaviors when it is either spatially unconfined or geometrically constricted (5, 7). These

systems can also sustain non-equilibrium dissipative structures (8). “Active colloidal disper-

sions,” by contrast, contain particles that constantly consume energy from the environment

and turn it, most of the time through complex mechanisms, into locomotion (9). Active

Brownian particles, microswimmers, and layers of vibrating grains fall in this category

because they all extract energy from their surroundings and transform it into mechani-

cal work using different phoretic mechanisms (6, 10). Studying the individual behavior of

self-propelled particles and the collective behavior that emerges in systems of interacting

active colloidal particles, including those cases where the particles are spatially constricted,

enhances understanding of the non-equilibrium nature of this kind of active matter. This

knowledge thus enables fundamental first-principle frameworks for investigating the statis-

tical physics of out-of-equilibrium systems under confinement to be built (6). More impor-

tantly, it is possible to adapt established theoretical formalisms to the case of active matter

under confinement to account for the most elemental properties of dissipative matter and the

non-equilibrium transport and self-assembly of materials composed of active colloidal parti-

cles that experience any type of spatial restriction, see, e.g., Refs. (6, 11, 12, 13, 14, 15, 16).

1.1. How to confine colloidal particles? Types of confinement

Confining a colloidal dispersion to a small volume or area affects its phase behavior, self-

assembly, and transport properties (17, 18, 19, 20). Confinement is present in natural and

artificial colloidal systems of great scientific and technological relevance (21). The degree

of confinement dictates many of the phenomena observed in such colloidal systems. Other

effects, however, can be attributed solely to the intrinsic confinement characteristics: to-

pographical (hard or rigid) or energetic (soft) (22). Soft confinement refers to the lack

of a well-defined width of the confining region, i.e., there is not a prescribed (rigid-like)

boundary that defines the available space to the particles. This kind of confinement in-

duces different structural transitions and dynamical scenarios than those already observed

with rigid confinement (21, 22, 23, 24). Confinements imposed on colloids in experiments,

however, may fall between the hard and soft limits: for example, colloids confined to a

liquid-liquid interface (a prescribed but deformable, fluctuating boundary), or colloids sedi-

mented to a 2-D layer near a rigid wall (whose out-of-plane motion is suppressed by gravity

but not entirely eliminated).

Most studies of confinement effects examine scenarios with rigid confining walls, i.e.,

where the region that constrains the motion of the colloidal particles has a well-defined

volume or area. For example, several studies examined crystallization of hard and soft

colloids under rigid confinement, e.g., Refs. (18, 19, 20, 21, 22), and references therein.

Recent works have highlighted the importance of the role played by the softness of the

confining mechanism (21, 22, 23, 24, 25, 26), including, for example, the appearance of

multiple relaxation regimes in glassy colloidal liquids induced by soft confinement (25).

Soft confinement can be produced by a soft repulsion between the confining walls and

the particles (22, 26) or when a harmonic well confines or restricts the area or volume

available to the particles (21, 25). These soft potentials can be systematically tuned to lead

to either a weak or strong degree of confinement. Therefore, by playing with the softness

of the potential, it is possible to suppress or enhance certain kinds of structural ordering

with significant implications for the colloid dynamics (25, 27).
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When one is able to manipulate the confining boundaries of the colloidal system, it is

also possible to modify the energy landscape that the colloids experience. This opens up new

possibilities for the self-assembly and rational design of mesoscopic clusters with a diversity

of mechanical and optical properties (28). Optical traps coupled to colloidal systems are

clean and excellent model systems to experimentally explore new exciting possibilities where

the degree of confinement can be modified to observe new self-assembly and transport

phenomena (29).

External soft potentials lead to changes in colloid structure, as shown in recent studies.

For example, the effect on the structure of a hard-sphere fluid near a soft wall (26); the role

played by the softness of a harmonic potential on the layering, freezing, and melting of hard

colloidal particles (21); and crystallization of soft colloids in soft confinement (22). However,

these contributions largely examined quasi-two-dimensional, Q2D, or three-dimensional 3D

colloidal systems. Much less explored is the situation of two-dimensional, 2D, or quasi-one-

dimensional, Q1D, colloidal dispersions under soft confining potentials (23, 24) or when the

colloids are explicitly embedded in a curved space or in a non-Euclidean geometry.

Generally speaking, confinement is a geometric concept that refers to limiting the parti-

cles to occupy a specific region in the space. As discussed above, it is possible to introduce

a classification of the types of confinement, namely, hard, soft or a combination of them.

These types of confinement depend on the geometric properties, such as dimension, length,

area or volume associated to the confining geometric locus. However, there exists another

type of confinement, limited to lines or surfaces, that is characterized by the local geo-

metric properties such as the curvature(s) of the line or the surface. In fact, as discussed

further below (§1.2,§5), colloidal dynamics will depend on the geometric nature of the type

of confinement. Even more, the confinement may be dynamic itself, which can lead to many

phenomena that still have to be studied in detail.

1.2. Non-Euclidean Geometry and Colloidal Soft Matter

One hallmark of colloids immersed in a host medium is their ability to diffuse (30). Diffu-

sion is strongly affected by the geometry and symmetries of the space where the diffusive

entities move (31). While differentiable manifolds have been the natural mathematical ob-

jects for describing the dynamics of space-time, in the last few decades, there has been a

growing interest in this mathematical concept in problems arising in colloidal soft matter

and biophysics (32, 33, 34).

From a theoretical point view, the description of diffusion in a curved space is still a

challenging problem. Certain diffusion processes, however, can be modeled as transport

phenomena on a curved differentiable manifold. For example, the diffusion of proteins on

the cell membrane or the dynamics of biological motors along filaments can be considered as

transport phenomena on a curved surface and on a curved line, respectively (35), although

a continuous space is not always the best approach (36). Under certain approximations,

curved differentiable manifolds arise as the emergent result of collective interactions be-

tween molecules that make up the material. For instance, interactions between amphiphilic

molecules in an aqueous solution give rise to the formation of vesicles (37). Interfaces of

soap, polymers, thin channels, and even 2D atomic materials, such as graphene, germanene,

and silicene, can also spontaneously form curved surfaces. In fact, curved manifolds can

also emerge by the disposition of the matter with the surroundings, such as the interface

formed between immiscible liquids (38).
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The inclusion of the geometry of the continuous medium on the diffusion of colloidal-like

particles is a non-trivial task. Indeed, it represents a formidable physical and mathematical

challenge (39, 40). A simple manner of approaching the stochastic motion of colloidal-like

particles on a curve or a non-flat surface is through either a Langevin-type equation (41)

or a Smoluchowski representation (42). As discussed further in §5, both schemes allow

non-Euclidean geometry representation to be brought into the colloidal soft matter field,

leading the possibility to explicitly study the effects of the geometry on the self-assembly

and transport phenomena of colloids.

2. SELF-ASSEMBLY AND COLLOIDAL INTERACTIONS: CONFINEMENT IN
EUCLIDEAN AND NON-EUCLIDEAN GEOMETRIES

2.1. Direct and indirect forces between colloids: the role of confinement

Colloids interact with each other via direct forces, such as excluded volume, electrostatic,

and van der Waals (43, 44). The strength of the inter-particle interaction is of the order

of kBT and usually depends on the solution conditions, for instance, salt concentration,

polymer concentration, pH, etc. (1). The direct forces depend on both the relative distance

between colloids and the orientational degrees of freedom (if the potential is orientational

dependent). Typically, the direct colloidal interactions are expressed as a function of the

Euclidean distance and one assumes that they are not affected by confinement. However,

there exist direct and effective wall-particle interactions that are a function of the geomet-

rical features of the confining mechanisms (shape, topography, topology, and curvature),

leading, for example, to the onset of structural transitions, see, e.g., Ref. (45) and references

therein.

Due to the presence of the solvent, colloids exhibit special interactions that distinguish

them from atoms: the hydrodynamic interactions (HI) (30). Contrary to (direct) particle-

particle interactions, HI can be tuned, but never completely screened or switched off. In a

simple physical picture, HI can be understood as follows. The motion of a given colloidal

particle induces a flow field in the solvent, which is felt by the surrounding colloids, i.e., when

a colloid moves, it displaces the fluid in its immediate vicinity (30). Thus, the motion of one

colloidal particle causes a solvent-mediated force on the neighboring colloidal particles. HI

lead to non-trivial hydrodynamic coupling among colloids that extends over many mean-

interparticle distances (46). HI are hence mediated by the solvent and affected by the

confinement of the colloids (47). Therefore, HI are a particular kind of indirect interactions.

Although the effects of HI on the dynamical coupling between two colloids or a colloid

near a wall have been the subjects of intense research during the last few decades (48),

HI contributions to colloidal dynamics are far from being completely understood. The

reason is partially related to the fact that colloidal dynamics extends over a wide range

of temporal scales due to the enormous difference in size and mass between the colloids

and the solvent molecules, and that under confinement, hydrodynamic interactions remain

long-ranged, decaying algebraically with the inter-particle Euclidean distance, except for the

case of confinement in a rigid linear channel, see, e.g., Ref. (47) and references therein. The

understanding of the effects of HI under bulk and confinement conditions on the colloidal

transport is also of relevance in other branches of science, such as biology, since phenomena

like hydrodynamic synchronization in biological systems (sperm, cilia, flagella) (49, 50) and

the dynamics of microswimmers (50, 51) can only be explained in terms of hydrodynamic

coupling.
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2.2. Colloidal phase behavior and free energy landscape of colloids under
confinement

The equilibrium phase behavior of colloidal suspensions is determined by the delicate inter-

play between the (internal) energy, U , and entropy, S. In experiments, that interplay can be

controlled by means of model colloidal systems (52). Both quantities define the free energy

(F = U − TS (53)) landscape accessible to the colloidal dispersion; this quantity describes

the thermodynamic stability of the dispersion and is also the basis for the description of

non-equilibrium processes (53).

Colloids can be arranged in multiple structural scenarios (§2.1) leading to a large di-

versity of colloidal phases even in bulk dispersions. Of course, richer and unexpected ther-

modynamic phases are seen when the colloids are geometrically or spatially confined. In

this scenario, the free energy landscape accessible to colloids also becomes a function of the

confinement, see, e.g., Ref. (54) and references therein. Then, the free energy landscape can

be manipulated by confinement to control the colloidal self-assembly. For example, com-

puter simulations and experiments of colloids interacting through short- and long-ranged

repulsive potentials and confined on the surface of a sphere (54, 55), or along a circle

(56) or an ellipse (57), have shown that the resulting self-assembly leads to very particular

colloidal ordering, including aggregation and formation of colloidal clusters with specific

orientational symmetries (54) and the transition between liquid-like states and crystal-like

states (55) that correspond to local structures composed of “magic numbers”. The term

“magic number” is typically used in analogy with the formation of a stable atomic nucleus

characterized by a certain number of nucleons necessary to form closed shells. In confined

colloidal systems, the most stable clusters are those with a “magic number” of particles

that allow the formation of closed shells that minimize the free energy (54).

Thus, controlling the self-assembly of colloidal particles into different microstructures,

morphologies, and phases by manipulating the free energy landscape through the imposi-

tion of geometrical restrictions could provide the basis to fabricate hierarchically structured

materials with nontrivial emergent properties (e.g., optical, electrical, magnetic, mechan-

ical, thermal, and acoustic) of relevance for the design and development of new technologies.

3. COLLOIDS UNDER CONFINEMENT: HISTORICAL REVIEW

3.1. Equilibrium and non-equilibrium states

Hard-sphere or repulsive colloids of uniform size confined to a 2D plane, whether through

sedimentation or walls to a thin layer (e.g., (74) or through trapping at the interface between

two fluids (e.g., (58) Fig. 1(a)), form ordered crystals with hexatic symmetry. These crystals

are not thermodynamically stable, however, because long-wavelength fluctuations (LWFs)

representing acoustic phonons eventually disrupt the crystalline order (75).

Confining colloids on a 2D curved interface introduces geometric frustration that alters

the particle organization. Generally, colloids can no longer pack in the simple triangular

lattice found in 2D. On a sphere with positive Gaussian curvature, the lattice includes

defects to accommodate the spatial curvature (Fig. 1(b)). Additional defects form with

increasing surface curvature; these are topologically charged disclinations arranged into

high-angle grain boundaries that terminate within the crystal. On 2D surfaces with negative

Gaussian curvature, the lattice accommodates the curvature by forming lines of dislocations

www.annualreviews.org • Colloids in confinement 7
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Figure 1

Images of confined colloidal suspensions with hard-sphere or isotropic attractive interactions
across dimension and state behavior. (a – e) Crystals. (a) Reprinted figure with permission from

Ref. (58). Copyright 2010 by the American Physical Society. (b) From Ref. (59). Reprinted with

permission from AAAS. (c) Reproduced with permission from Ref. (60). (d) Reprinted figure with
permission from Ref. (61). Copyright 1983 by the American Physical Society. (e) Reprinted from

Ref. (62)). (f – h) Cluster phases. (f) Reproduced with permission from Ref. (63). (g) Reproduced
from Ref. (64) with permission from the Royal Society of Chemistry. (h) From Ref. (65)).

Reprinted with permission from AAAS. (i – k) Gels. (i) Reprinted from Ref. (66) under a CC-BY

license (https://creativecommons.org/licenses/by/4.0/). (j) Reprinted figure with permission from
Ref. (67). Copyright 2010 by the American Physical Society. (k) Reprinted figure with permission

from Ref. (68)). Copyright 2012 by the American Physical Society. (l – p) Dense liquids or

glasses. (l) Reproduced with permission from Ref. (69). (m) Reproduced from Ref. (70) under a
CC-BY license (https://creativecommons.org/licenses/by/4.0/). (n) Reproduced from Ref. (71)
with permission from the Royal Society of Chemistry. (o) Reprinted from Ref. (72), with the

permission of AIP Publishing. (p) Reprinted figure with permission from Ref. (73)). Copyright
2016 by the American Physical Society. Border colors indicate the confinement mechanism.

without topological charge (Fig. 1(c)).(60)

Colloids confined in films whose thickness is less than approximately ten particle di-

ameters can be considered quasi-two-dimensional. In equilibrium, confined hard-sphere or
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repulsive colloids again form ordered phases, but whose structure depends on the commen-

surability of the colloid size and spacing. In quasi-2D thin films, colloids pack in alternating

triangular (△) and square (□) planar lattices as the film thickness is increased (Fig. 1(d))

(61). Buckled phases can form in the △ → □ transition (76, 77) to maximize the local

packing fraction (78). Thus, the unique close-packed crystal structure of hard spheres is

lost when colloids are confined. Instead, many solids compete for the thermodynamically

stable state (79), and the equilibrium phase diagram contains regions of liquid-solid coexis-

tence (80). Finally, defective crystal-like states form when colloids are confined in 3D (Fig.

1(e)), with the most stable states corresponding to symmetries with closed shells.(54)

When an interparticle attraction is induced between the colloids (e.g., by adding a

depletant polymer, using binary solvent mixtures, or altering the particle wettability), a

variety of out-of-equilibrium phases can form. Colloids confined in 2D, quasi-2D, and 3D

can all form clusters (Figs. 1)(f–h)). In 2D and quasi-2D, the local order of the cluster

remains triangular (64). The structure of colloids confined in 3D within emulsion droplets

depends on the interaction of the particles with the walls (81). These interactions dictate

whether colloids form small clusters (Fig. 1(h)) or supraparticles (Fig. 1(e)).

Attractive colloids can form space-spanning colloidal gels when the attractions are suf-

ficiently strong and/or the volume fraction is sufficiently high. Attractive suspensions that

are fluid-like in bulk can form gels (Fig. 1(j)) when confined in quasi-2D (82, 68). Gelation

is thought to arise from confined-driven changes in the strength of interactions between

particles. Whereas neighboring walls are expected to enhance depletion through reduction

of free volume, the depletion interactions are stronger than predicted from the classical

Asakura-Oosawa model (83). These strengthened attractions have been attributed to sol-

vent effects (83) or reductions in the electrostatic repulsion between particles due to nearby

walls (84).

Finally, dense colloidal liquids can form out-of-equilibrium glasses when confined (Figs.

1(l – p). Confinement in quasi-2D wedges (85) or films (86) drives a transition from dense

supercooled liquid to glass as the strength of confinement is increased. The nearby walls

can induce layering (85, 87) or ordering (88) in dense suspensions, which in turn affects

transport properties (§3.2). Because confinement can enhance the coupling of structure

and dynamics, confining glasses in 2D (89) and 3D (73) provide a platform in which to

test theories for the glass transition. Finally, colloids confined in porous media exhibit

both localization and glass transitions, which are respectively determined by the medium

structure and collective caging (90, 91).

Rigid boundaries induce structuring, and thus size-disperse mixtures are generally used

in studies of dense confined suspensions to frustrate crystallization. Nonetheless, the com-

mensurability of the average particle size and slit width affects local bond order (92) and

leads to multiple re-entrant glass transitions (93) even in highly disperse mixtures.

3.2. Transport phenomena

The coupling between structure and confinement modifies the transport properties of con-

fined colloids. The mean-square displacement of colloids confined in a quasi-1D narrow

channel scales as t1/2 as predicted for single-file diffusion (SFD) (94, 95), to be further

discussed in (§5.3). This scaling arises because geometric confinement restricts the motion

of the particles and hinders large displacements (96). Hydrodynamic interactions in quasi-

1D strongly affect transport: whereas HI between diffusing particles are screened (97), HI
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between particles and walls leads to oscillations in the relative pair diffusion coefficient

(98). In binary suspensions, however, hydrodynamic flows from particles of different sizes

interfere to suppress these oscillations (99).

Interactions with nearby walls also introduce confinement effects on transport in 2D

and 3D. Near a wall, diffusion of isolated colloids is slowed due to the hydrodynamic drag

imposed by the walls (100, 101). HI with the walls also dictate slowing of particles diffusing

in disordered (102) and ordered (103) porous media. In concentrated fluid suspensions

confined in 2D, long-range, dipolar interactions induced by the flow field of a diffusing

particle lead to anomalous transport (104).

Confinement modifies transport properties in colloidal supercooled liquids and glasses,

where particles relax cooperatively. First, confinement leads to strong slowing of dynamics.

In quasi-2D-confinement, the dynamics of dense colloidal liquids confined in thin wedges

(85) or films (86) slow dramatically as the confining thickness is decreased. Motion perpen-

dicular to and near the walls is most hindered (85, 87), suggesting that interactions with

the walls contribute to slowing.

Confinement also induces changes in the shape and size of the cooperatively relaxing

regions (CRRs). In planar 2D confinement, local CRR domains become increasingly rigid as

the particle concentration is increased to induce caging (69). In quasi-2D confinement, the

size of CRRs scales similarly with the relaxation time scale, suggesting that the confinement

length scale sets the size of relaxations (105). On curved 2D surfaces, the shape of CRRs

changes from fractal to compact upon increasing particle density (70).

Finally, the dynamics of confined glassy suspensions may be affected by the LWFs

that destabilize colloidal crystals in 2D. In planar 2D (106, 107) and quasi-2D (108)

confinements, LWFs are present and provide an additional avenue for particle motion.

While LWFs persist across the crossover from 2D to quasi-2D, their magnitude depends

non-monotonically on the confinement thickness due to the competition between caging and

dimensionality (109). Intriguingly, LWFs are not present when colloids are confined on the

surface of a strongly curved sphere whose radius is of order four particle diameters (70).

4. NON-VIBRATING GRANULAR MATTER AS MODEL SYSTEM TO
STUDY COLLOIDS UNDER CONFINEMENT

The study of a colloidal dispersion at the particle level remains challenging at very short

times, i.e., in the ballistic regime, due to the spatial (angstrom scale) and temporal (nanosec-

ond scale) resolutions required to fully describe it (110); tracking of every particle in a

colloidal dispersion with multiple time and length scales is not trivial, even though novel

experimental techniques have recently been developed (110, 111, 112, 113). As an alter-

nate approach, macroscopic systems with experimentally accessible scales, i.e., grain-based

models, have been developed for direct observation to shed light on the behavior of colloidal

dispersions. Although the size of the grains differs from the colloidal dimension by several

orders of magnitude, and the interaction between grains is highly dissipative, which can lead

to very complex non-equilibrium phenomena, in this review, we simply focus on granular

systems as well controlled experimental models that allow us to capture the phenomenology

of colloids.

In particular, fluidized millimeter-sized particle systems have proven to be very useful

models of both colloidal and molecular fluids. Mathematically speaking, the description of

the particle motion is similar to that for colloids with the advantage that the temporal (∼
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milliseconds) and spatial (∼ millimeters) scales are experimentally accessible, for example,

to standard video microscopy techniques. Although these macroscopic systems are driven,

athermal, and clearly out of equilibrium, they have been successfully used under stationary

conditions to study certain aspects of supercooled liquids, bubbles, and colloidal dispersions

(114, 115, 116, 117).

4.1. Fluidization mechanism and effective temperature

Vibration, shaking, and shearing are the most common mechanisms to inject energy and

hence fluidize a granular system. Features such as the growth of viscosity, multiple step

relaxation times, fragility, dynamical heterogeneity, aging, crystallization, and amorphous

solidification have been studied with granular systems by varying the particle concentration

and mechanism of fluidization (116, 118). The self-organization of proteins and macro-

molecules within cells are found to behave as granular matter (119); the self-assembly and

dynamics of cells follow the same physical laws as shaken granular materials (120).

The study of crystallization in colloids and molecular systems has been addressed by us-

ing granular systems by fluidizing them through oscillating shear forces, electric or magnetic

fields (121, 122, 123). In granular systems, time-varying fields have been used to successfully

exploit self-assembly (124, 125, 126). Rotating magnetic fields have been manipulated to

assemble dissipative structures, such as magnetic ”spinners” (123, 127), non-magnetic parti-

cles immersed in a magnetic fluid, (128) and steel balls (126). In vibrated-sheared granular

spheres, competing disordering and crystallizing processes have been reported, which differ

from those found when vibrated or sheared was performed separately (129). During the

shearing cycles in granular spheres immersed in a liquid, nuclei emerge, grow, and shrink

(125), leading to a structural transition from a disordered loose packing to a symmetric

densely packed.

The methods of fluidization can be classified as vibrating and nonvibrating. In vibrating

systems, the experimental setups have moving parts. In contrast, nonvibrating granular

matter systems, i.e., air-driven, magnetic-driven, and levitating-driven (130, 126, 131), do

not require moving parts in the experimental setup.

Nonvibrating two-dimensional granular systems using an alternating magnetic field

to externally excite motion accurately mimic passive and active colloids (132, 133, 134);

the interaction between granular beads can be controlled via the magnitude of the mag-

netic field and the concentration of beads. The magnetic field has the general form

B = Bc + Bo sin 2πft, with Bc being a constant field (133) and Bo the amplitude of

the alternating contribution of the field. The effective temperature is proportional to Bo.

This system experiences a Brownian-like motion, and despite being highly dissipative, it

reaches a stationary state due to the continuous injection of energy from the alternating

magnetic field. Its behavior exhibits the characteristics that define an Ornstein-Uhlenbeck

process, allowing the use of tools developed for colloids in thermal equilibrium (132). Low-

ering the effective temperature results in different dynamics and, consequently, a plethora

of structural rearrangements.

Studies of solidification using the non-vibrating granular model (133, 134) reproduce

essential features of non-equilibrium transitions in colloids. At high temperatures, the

particles move quickly and randomly on the surface. The motion slows upon lowering the

effective temperature, causing repulsive interactions to become important, and defining an

average separation between particles. When a temperature quench is applied, the diffusion
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coefficient starts to decrease very quickly until the temperature reaches values lower than a

threshold value below which its rate of decrease becomes slower. The intersection of both

temperature regimes defines the so-called glass transition temperature Tg. Above Tg, the

particles diffuse as in a fluid as shown by the particle trajectories in the right image of Fig.

2(a), whereas below Tg the trajectories are confined as in a solid, as shown in the left image

of Fig. 2(a).

By determining the diffusion coefficient of the granular particles, it is possible to define

an effective viscosity and, therefore, to obtain Angell-like plots. The relation between the

fragility index m and the regularity factor α demonstrated that a strong glass former is

more ordered than a fragile one (134). This result made explicit the versatility of the

non-vibrating granular system to model glass transitions.

4.2. Soft confinement

In a nonvibrating granular system, soft confinement is imposed when the particles are

settled on a concave surface, which models a harmonic well that restricts the area available

to the beads. The soft potential can be tuned by varying the surface’s concaveness, i.e.,

the curvature magnitude, driving the system to different degrees of ordering. The results

shed light on crystallization in colloidal and molecular systems (135). Recent theoretical

and experimental studies confirmed that the nucleation process occurs in at least two steps:

an amorphous aggregate forms by overcoming a first free energy energy and, subsequently,

forms an ordered nucleus by overcoming a second barrier, in contrast to the classical theory

of nucleation (136). In this context, granular systems have allowed us to unravel the nature

of this process. However, recent experiments in colloidal systems have reported multi-step

nucleation processes (137, 138, 139). In particular, one-step nucleation in quasi-2D colloidal

systems with particles interacting with a competing potential (64) suggests that the type of

interaction may determine the resulting nucleation process. Then, further experiments and

theoretical models (using different interparticle potentials) would be necessary to better

understand the conditions at which colloids nucleate in one or several steps.

In Refs. 126, 140, the formation of glassy, crystalline, and mixed states using a nonvi-

brating granular system with soft confinement has been reported. The experiments started

at a high temperature, which dropped at various cooling rates until the system achieved an

arrested state (126). If the cooling is fast, the particles do not have enough time to find and

remain at their energy minimum, forming amorphous or glassy structures, Fig. 2(d). When

an intermediate cooling rate is used, mixed arrangements can be obtained between ordered

aggregates and amorphous zones, Fig. 2(d). If the cooling is slow enough, the probability

that the particles reach their minimum energy position is higher, and the particles can form

crystalline arrangements, Fig. 2(d).

When the system crystallizes, the initial formation of the nucleus was studied in detail

(126, 135). These studies on the birth of the crystal nucleus and subsequent crystal growth

support the non-classical theory of two steps, where initially a dense amorphous aggregate

of particles is formed. Then, in the second stage, this aggregate undergoes internal rear-

rangements to form the crystalline nucleus. As the aggregate grows, the crystal inside also

grows until it reaches a certain size, after which it continues its growth according to classical

crystal growth theory.

In a series of experiments at different concaveness, the two-step features of the crys-

tallization process were more evident as the depth of the parabolic potential increases; the
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Figure 2

(a) Trajectories of granular beads with diffusive motion when the effective temperature is above
(left) and below (right) the glass transition temperature. (b) State diagram of a nonvibrating

granular system in terms of the magnetic field B, which acts as an effective temperature, and the

curvature of the lens k, which acts as an effective pressure. (c) Trajectories of a single granular
bead for various field frequencies. The particle undergoes Brownian-like motion at low frequencies

that becomes persistent at higher frequencies. After a threshold frequency, each trajectory

becomes Brownian-like again until it becomes self-trapped around a point for even higher
frequencies. (d) Different final configurations of a granular system that cools at three different

speeds; the configuration on the left corresponds to the fastest cooling, and the one on the right

corresponds to the slowest. The configuration formed by an intermediate cooling rate presents
small regions where the particles form hexagonal closed-packed structures. (e) Growth of an

aggregate at different effective temperatures using two lenses of different curvature. The
comparison is carried out at the same temperature except for the aggregate corresponding to the

final structure. The time of the crystallization process depends on the curvature of the lenses. (f)

Structures formed by three different confinements. The configurations on the left correspond to
linear cooling, and the column on the right to stepwise cooling. (a), (c) and (f) are cases

associated with rigid confinement, and (b), (d) and (e) with soft confinement.

nucleus size is larger for deeper concaveness of the parabolic potential, Fig. 2(e). If the

depth of the parabolic potential exceeded a certain value, however, the reordering process

of the second step did not occur. Figure 2(b) (135) shows a phase diagram where fluid,

co-existing, and crystalline regions were observed for different values of concavities and

magnetic field magnitudes.
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4.3. Rigid confinement

Fig. 2(f) shows the strong effects of rigid confinement on crystallization in nonvibrating

granular systems in three different geometries: hexagonal, circular, and rectangular. Con-

finement reduces the crystallization time compared to the bulk case, i.e., there is no rigid

confinement. In a hexagonal cell the closed hexagonal arrangement is favored, the rectan-

gular cell imposes square order, and the circular cell favors the formation of necklace-like

structures piled one over the other. As the particles move away from the walls, the influence

of the container shape decreases, and the tendency to form an ordered hexagonal closed

arrangement increases.

The dynamics of a single granular magnetized particle (a model active particle) in rigid

confinement, i.e., a quasi-one-dimensional circular rail, was studied (141). A dynamical

transition between a diffusive and highly persistent magnetic motion was observed by vary-

ing the magnetic moment. The limiting motion behaviors correspond to Brownian motion

on the circle and a simple uniform circular motion, respectively. Furthermore, the smaller

the magnetization of a particle, the larger the persistence length. At a fixed magnetic

field, the motion transitions from diffusive to superdiffusive as the frequency increases, ap-

proaching a threshold where the persistence reaches its maximum. After this threshold, the

motion becomes subdiffusive, and subsequently, at higher frequencies, the particle remains

vibrating around a point (Fig. 2(c)).

5. COLLOIDAL PARTICLE DYNAMICS ON CURVED SPACES

5.1. Theoretical summary of a Brownian particle on curved spaces

In §3 and §4 we summarized several situations where colloids are constrained geometrically

to surfaces and where colloids form surfaces by different mechanisms, illustrated in Fig-

ures 1 and 2. These material shapes or geometrical constraints where colloids move can

be approximately represented by two classes of differentiable manifolds corresponding to

regular curves, i.e., 1D manifolds, and regular surfaces, i.e., 2D manifolds, embedded in a

3D Euclidean space. A curve is characterized by its length L, curvature κ(s), and torsion

τ(s) (142), where s is the arc-length. In the case of a surface, the metric tensor gab(x)

and the extrinsic curvature tensor Kab(x), for a = 1, 2, are key quantities associated to the

surface Σ; here {xa} are coordinates in each local patch (34). The curvatures (and torsion

in the case of curves) not only characterize the geometry of the material but also repre-

sent external fields defined at each point in the manifold M, which affect particle transport

processes, see, e.g., Ref. (143) and references therein. In the following, we summarize the

main results for the transport behavior of a single (passive or active) particle confined to a

planar curve and a curved surface.

For a single particle confined to a planar curve or a curved surface, one can formulate

proper Langevin-type equations (144). The overdamped limit, t ≫ M/ζ, where ζ and M

denote the solvent friction and the mass of the colloid, respectively, can be achieved by

ignoring the inertial terms in each Langevin equation (40). Using standard methods (145),

one can show that the corresponding Fokker-Planck equations of these stochastic equations,

in the Stratonovich sense, are given by the so-called Smoluchowski or diffusion equation on

the corresponding manifold, that is,

∂P

∂t
= D∆MP, 1.
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where D = kBT/ζ is the diffusion coefficient, kBT is the thermal energy, and P (x, t) is

the single particle probability density function. The operator ∆M is the Laplace-Beltrami

operator acting on scalars associated to the manifold M. In case of a curve, M = γ, the

Laplace-Beltrami operator is ∆γ = ∂2/∂s2, whereas for a surface, M = Σ, the operator

is ∆Σ = 1√
g
∂a

√
ggab∂b, where gab are the components of the inverse metric tensor and g

is the determinant of the metric tensor. It is clear how the diffusion processes of a single

Brownian particle on the manifold depend on the geometry of the manifold; essentially, the

Laplace-Beltrami operator has the geometrical content affecting the transport process of a

single Brownian particle on M.

The expectation values of certain observables can be used to study the quantitative

contribution resulting from the geometry of M. Commonly, the geodesic distance δs is used

as a displacement of the particle (32), but also the Euclidean displacement δR defined as

the Euclidean distance between two points on M can be a good observable to detect the

curvature effects (41). Both observables can be used to probe the geometry of the mani-

fold. For instance, for a compact 1D manifold without boundaries, it is remarkable that

the mean-square arc-length displacement (MSAD) can be written for any closed curved

of length L by
〈
[δs (t)]2

〉
= L2f(Dt/L2) for a certain function f(x) that can be given by

an exact series (144). This MSAD has asymptotic behaviors at different time scales. At

short times, t ≪ L2/D, it goes as
〈
[δs (t)]2

〉
∼ 2Dt, and at long times, t ≫ L2/D, it

behaves as
〈
[δs (t)]2

〉
∼ L2/12 (144). Both limits are consistent with the behavior ex-

amined by computer simulations and experiments of super-paramagnetic colloids confined

in a circle (146). In addition, for any curved surface Σ, the mean-square geodesic dis-

placement (MSGD) at the short-time regime can be given by the power series expansion〈
[δs (t)]2

〉
≈ 4Dt −

∑
n=2 Gn[KG(x0)](Dt)n, whose first coefficients Gn, with n = 2, 3, are

explicitly known in terms of the Gaussian curvature KG(x) evaluated at the initial point

x = x0 of the motion of the particle, accounting for the curvature effects on the transport

phenomena of the single colloid (32). Similarly, the mean-square Euclidean displacement〈
[δR(t)]2

〉
can measure curvature effects, but in this case, the measure depends exclusively

on the extrinsic tensor Kab(x) (41).

In the long-time regime, the expectation value of any observable O(x) has the gen-

eral behavior ⟨O(x(t))⟩M ≃ σ0 + δσ(
√
Dt/ℓ), where a characteristic length ℓ associated

to the size of the manifold, δσ(x) = e−x2

is an exponentially suppressed term, and

σ0 = Vol(M)−1 ∫ ddx
√
g O(x) is a constant, where Vol(M) is the volume of the manifold;

further details can be found in (41). Both short- and long-time behaviors of the mean-square

geodesic and Euclidean displacements have been verified using finite element methods in

particular surfaces (143). These findings illustrate the difference between the mean-square

geodesic and Euclidean displacement compared to their flat counterparts. This difference

shows the role played by the curvature on the diffusion process at short times, well captured

by local terms that do not change under general coordinate transformations. In contrast,

at the long-time regime, the behavior of the expectation value of any observable is a global

expression that depends exclusively on the metric tensor.

The covariant approach can also be implemented to study active colloid motion on

curved manifolds (141, 147, 148). The motion of a 1D run-and-tumble active particle in a

circle can be described by two parameters: the constant average particle velocity, v0, and

the uniform tumbling frequency rate, λ. The persistence time is defined as τc = λ−1, the

average time the particle takes to tumble. The persistence length is ℓc = v0τc, representing

the average distance traveled by the particle during the persistence time. In particular,
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it can be shown that the MSAD can be written for any closed curved of length L by〈
[δs (t)]2

〉
= L2fa(Defft/L

2, ℓc/L), where Deff := v20τc is an effective diffusion coefficient

and fa(x, y) is a certain function that can be given by an exact series (141). The “run-

and-tumble” model developed in (141) predicted that there are two states of motion on a

circle: an erratic motion (disordered phase for ℓc < L/4π) and a persistent motion (ordered

phase for ℓc > L/4π). In addition, when ℓc ≫ L/2π, the particle moves in a uniform circle,

whereas when ℓc ≪ L/2π, it follows the usual Brownian motion on the circle, while the

diffusion coefficient D is identified with Deff . In addition, (141) analyzed the transition

by examining the stochastic behavior of a magnetized granular particle. The particle was

confined to a quasi-1D circular channel and was activated by an alternating magnetic field

acting as a reservoir, as described in §4.1.
The stochastic motion of active Brownian particles on a curved surface (147) can also

be described by MSGD, which captures the relationship between the Gaussian curvature

and the activity of the colloid. Using this approach, the dynamics of an active Brownian

particle on a spherical surface was found to exhibit a dynamical phase transition between an

oscillatory behavior and a monotonic one within the random behavior of the active particle

(147, 148), which is a dynamical transition of the same class as the run-and-tumble particle

on the circle.

5.2. Theoretical summary for many-particles Brownian particles: the covariant
colloidal dynamics approach

A generalized Ermack-McCammon algorithm was developed to study a broader class of

transport phenomena in heterogeneous environments (144), for example, the trapping of

colloids in regions of greatest curvature (57, 149). From this approach, it was possible to

derive a covariant Smoluchowski equation of N diffusing particles in curved spaces (42),

including the intermolecular forces Fij defined in the Euclidean space where the manifold

M is embedded. In particular, Eq. (1) for a single Brownian particle can be generalized

to the situation where the Brownian particles interact not only due to the intermolecular

potentials (144), but also due to geometrical mechanisms originating from the curvature,

∂tp = D0

N∑
i=1

∆M,ip−
1

ζ

N∑
i=1

N∑
j ̸=i

∇α,i

(
Fα
ijp

)
, 2.

where p = p(x1, ..., xN , t) is the joint probability density of the colloidal particles, ζ and

D0 = kBT/ζ are the friction and collective diffusion coefficients, respectively, Fα
ij = eα(xi) ·

Fij(xi, xj) is the projection over the tangent space of M of the force experienced by the i−th

particle due to the j−th particle and ∆M,i and ∇α,i are the Laplace-Beltrami operator and

the covariant derivative, respectively, both acting on the coordinates of the i−th particle.

All the geometric information of the system is contained in the differential operators and the

interaction terms. From this approach, the MSGD for a tagged particle in the short-time

regime is given by,

〈
[δs (t)]2

〉
= 4Dt−

[
4

3N

N∑
i=1

KG(xi)

− 2

NkBT

N∑
i,j

(eα(xi) · ∂α,iFij(xi, xj)−K(xi)N(xi) · Fij(xi, xj))

]
(Dt)2 + · · · ,

3.
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where the geometrical information is associated with the value of the Gaussian curvature

KG(x), the mean curvature K(x), the tangent vector eα(x) and the normal vector N(x)

evaluated at the positions of the particles (42).

The intermolecular forces Fij are usually derived from a potential such that Fij =

−∇riV (|ri − rj |), where∇ri is the usual Euclidean gradient. Now, the condition ri = X(xi)

is imposed since particles are holonomically constrained to the manifold, where X(xi) is

the parameterization of the manifold. Since in Eq. 2 only tangent forces are involved,

one has Fα
ij = −∇α

i Φ(xi, xj) (see (42) for the details), where the symmetric potential

Φ(xi, xj) ≡ V (|X(xi)−X(xj)|) is identified.
Taking into account the marginal probability densities, one can integrate the Smolu-

chowski equation (Eq. 2) over the degrees of freedom corresponding to the N − 1 particles.

The same procedure in Euclidean space (30) can be straightforwardly implemented in the

curved case, except that one has to consider the Stokes theorem on the manifold and appro-

priate boundary conditions (150). The integrated Smoluchowski equation for the one-body

probability distribution ρ(x, t) in curved space is

∂tρ(x, t) =D0∆Mρ(x, t) +
(N − 1)

Nζ
∇α

[
ρ(x, t)

∫
∇αΦ(x, x′)ρ(x′, t)G(x, x′, t)

√
g(x′)ddx′

]
,

4.

where G(x, x′, t) is the van Hove function in curved space (150). The factor (N − 1)/N

indicates that in a closed manifold, one can have a certain number of particles, i.e., a

finite-size system; see, e.g., (Fig. 1(m)) (70). In the last expression, the first term in the

right-hand side is an entropic contribution due to the collective effect of the solvent. The

second term is an energetic contribution, depending on the interaction potential. If one sets

Φ = 0, one immediately recovers the Smoluchowski equation for a free particle in a manifold

(32). Furthermore, the geometrical effects are considered in the differential operators and

in the factors that involve the metric tensor and its determinant, which now are clearly

mixed with the interaction term. The above equation recovers the Euclidean approach

of the Smoluchowski equation (30) for particles in an Euclidean space. Notably, Eq. 4 is

a novel and original result that will be the starting point to analyze different dynamical

phenomena in colloidal systems constrained to move on a curved manifold, such as the ones

described in §3.2.
Furthermore, the covariant form of the Smoluchowski equation, either Eq. 2 or Eq. 4,

opens up the possibility of developing a theoretical framework to study phenomena that

cannot be understood with the standard Statistical Mechanics approximations based on

a Euclidean formulation. For example, the onset of spinodal decomposition in colloidal

dispersions where the particles interact with short-ranged attractive forces and constrained

to a curved space (e.g., the bijels in Fig. 1j). In addition, the covariant formalism can

be straightforwardly employed to highlight the role of the geometry on the equilibrium

equation of the state of colloidal dispersions embedded in a curved space, to elucidate the

geometrical contributions during the onset of non-equilibrium states, to study the particle

dynamics on manifolds and to investigate the curvature affects on the structural, kinetic

and phase transitions of passive and active colloids, among other examples.

Two aspects that need to be considered to extend the covariant description of the

Smoluchowski equation are the generalization of the fluctuation-dissipation theorem and

the inclusion of the hydrodynamic interactions in the manifold. Both aspects are crucial

to account for the dynamical properties on the manifold, since they are intimately related
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to the onset of non-equilibrium states. Furthermore, this theoretical framework can be

extended to include rotational motion on the manifold to consider anisotropic particles,

such as rods (151), or physical scenarios in which the anisotropy is associated with the

particle interaction, like in patchy colloids (152, 153, 154).

5.3. Time scales and transition times: the role of the geometry

The generalization of the Ermak-McCammon algorithm to carry out Brownian dynamics

simulations in non-Euclidean spaces (144) described in §5.2 was used to explore the dynam-

ics of interacting colloids moving on a circle, S1, and a sphere, S2. The resulting dynamics

made evident the rich scenario that emerges when particles move in curved spaces. In par-

ticular, different time scales and temporal regimes, which can be explained in terms of the

interparticle interaction, system size and geometry, were explicitly delineated (144).

To validate the preliminary simulation results for the case of N interacting colloids on

a circle of radius R, video microscopy experiments with paramagnetic colloids confined to

lithographic circular channels (whose radius is larger than the particle size) subjected to an

external magnetic field were performed and extensive Brownian dynamics simulations were

carried out (146). The colloid dynamics was characterized via the MSAD, ⟨[δs(t)]2⟩, where
the arc length δs is related to the angular displacement, δϕ(t), via δs(t) = Rδϕ(t). This

colloidal model system displayed four temporal regimes: 1) one-dimensional free diffusion

at short times, ⟨[δs(t)]2⟩ ∼ t; 2) SFD (discussed in §3.2), ⟨[δs(t)]2⟩ ∼
√
t; 3) free-cluster

rotational diffusion, ⟨[δs(t)]2⟩ ∼ t/N ; and 4) the expected saturation due to the confinement,

⟨[δs(t)]2⟩ = L2/12, where L is the perimeter of the circle (144, 146).

Analytical expressions for ⟨[δs(t)]2⟩ and the transition times, i.e., the time between two

consecutive temporal regimes, obtained from scaling arguments, accurately reproduced both

experiments and simulations (146). The first transition time, τd, described the transition

from normal diffusion to subdiffusion, basically when the mutual passage restriction starts

to be dominant; here the interplay between the confinement and the interparticle potential

played a major role, defining the subdiffusive behavior characteristic of SFD. The second

transition time, τc, represented the transition from SFD to again normal diffusion, i.e.,

MSAD ∼ t. In that temporal regime, however, the particles have acquired an effective

diffusion coefficient given by the free particle diffusion divided by the total number of

particles, N ; here the finite size effects control the particle dynamical behavior. Finally,

the third transition time, τG, signaled the transition from the free-cluster dynamics to the

so-called geometrical time regime, where the particles have fully explored their available

phase space and, therefore, the dynamics depends exclusively on the geometrical properties

of the manifold where the particles are embedded.

Thus, the characterization of the time scales and the transition times experienced by

the particles revealed that colloidal transport under confinement conditions depends non-

trivially on the interplay between the interparticle potential, the intrinsic geometrical fea-

tures of the space, and the finite size of the system.

6. SUMMARY AND PERSPECTIVES

In this review, we provide an overview of the effects of the geometry and confinement on self-

assembly and transport phenomena of colloids. We highlighted typical features of colloidal

suspensions and introduced a distinction between confinement and geometry to establish
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a clear difference between both mechanisms that can lead to novel colloidal phenomena.

Later, we briefly discussed how the geometrical properties of the space affect the free energy

landscape and, in consequence, the colloidal phase behavior. We also summarized historical

studies probing the effects of confinement on both the equilibrium and non-equilibrium

thermodynamic states and on colloidal transport. We reviewed how granular matter can

be used as an ideal model system to explore in detail the effects of confinement in colloidal

matter. As the persistence of the motion is readily controlled by the frequency and the

magnetic field, this system can be used to model the self-assembly and phase transition of

active and passive colloids under several confinement conditions in experiments. Finally,

we revisited the physical and mathematical bases to build a covariant description of the

colloid dynamics in curved spaces.

Last but not least, we emphasize that additional experiments with model active and

passive systems, such as the granular system here discussed, are needed to explore in more

detail the role of the geometry on both the self-assembly and transport of colloids and to

test the predictions of the covariant formulation. In fact, the limiting cases of equations 2

and 4 will also serve as a benchmark to computational, molecular simulation schemes and

even novel experimental setups adapted to study the behavior of colloids in non-Euclidean

spaces and under complex confinement conditions.
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39. Manca F, Déjardin PM, Giordano S. 2016. Ann. Phys. 528(5):381–393

40. Polettini M. 2013. J. Stat. Mech. 2013(07):P07005

41. Castro-Villarreal P. 2014. J. Stat. Mech. 2014(5):P05017

42. Castro-Villarreal P, Solano-Cabrera CO, Castañeda-Priego R. 2023. Front. Phys. 11
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143. Ledesma-Durán A, Juárez-Valencia LH. 2023. Eur. Phys. J. E 46(8):70

144. Castro-Villarreal P, Villada-Balbuena A, Méndez-Alcaraz JM, Castañeda-Priego R, Estrada-
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