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ABSTRACT
In this paper, we present m3MIMO a mmWave fully-digital
multi-user multi-input multi-output (MU-MIMO) testbed for
advanced wireless research. m3MIMO operates in the 57-64
GHz frequency range and supports up to 1 GHz of band-
width enabling large data multiplexing in the frequency do-
main through orthogonal frequency-division multiplexing
(OFDM). The testbed features three custom-designed Zynq
UltraScale+ RFSoC-based Software De!ned Radios (SDRs)
empowered with the Pi-Radio fully digital transceivers. Two
of these SDRs support eight transmit and receive streams
each (8 → 8 MIMO), while the third SDR supports up to
four channels. m3MIMO supports three di"erent communica-
tion modes: (i) point-to-point (P2P) transmissions; (ii) single-
user multi-input multi-output (SU-MIMO), where multiple
streams are transmitted to a single end-device; and (iii) MU-
MIMO, where two devices are simultaneously served by a
single transmitter. To showcase the m3MIMO’s versatility, we
present two research use cases: tracking-based beamform-
ing and mmWave-based sensing. We will open-source the
m
3
MIMO code along with the relevant use-case datasets,

facilitating further analysis1.
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•Networks↓Network experimentation;Networkmea-
surement; • Hardware↓ Networking hardware.
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1 INTRODUCTION
Emerging technologies based on augmented and virtual re-
ality (AR/VR), such as the Metaverse, will provide new en-
tertainment applications [1], providing ultra-realistic on-
line learning experiences [2], and transforming healthcare
through remote surgery opportunities [3]. A key issue cur-
rently stymieing the provisioning of such applications is
that commercial VR headsets do not deliver adequate per-
formance to the end user. Experts believe that video frames
should have at least 120 Hz frame rate with 8K resolution to
avoid pixelation and motion sickness [4–6]. However, send-
ing frames at 120 Hz with 8K resolution would require about
40 Gbps of data rate for each AR/VR device, which is cur-
rently unachievable through wireless networks. For example,
Wi-Fi supports a maximum of 1.2 Gbps network-wide [7, 8].
Laha et al. show that considering a system bandwidth of
100 MHz, !fth generation (5G) new radio can serve only a
single user per base station while guaranteeing the stringent
AR/VR requirements [9]. The limited available bandwidth
together with the small practically achievable multiple-input
multiple-output (MIMO) dimensionality is boundingwireless
network performance. This has led the research community
to further delve into MIMO research to improve the system
performance. Indeed, current MIMO implementations are
limited to four spatial streams even if higher order MIMO
is envisioned (e.g., up to eight streams in the IEEE 802.11ax
standard). As one of the research directions to improve net-
work performance, researchers are exploring the use of wider
bandwidths available in the higher bands of the radio spec-
trum (mmWave and Terahertz).WhileMIMO leverage spatial
diversity to multiplex multiple streams in the same spectrum
band, the availability of a wider bandwidth allows multi-
plexing in the frequency domain, through, e.g., orthogonal
frequency-division multiplexing (OFDM).

https://doi.org/10.1145/3636534.3697321
https://doi.org/10.1145/3636534.3697321
https://doi.org/10.1145/3636534.3697321
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Figure 1: m3MIMO overview.

These research e"orts highly depend on experimental anal-
ysis with appropriate testbeds for evaluating the systems in
real-world situations. To this end, in this paper, we present
m
3
MIMO, an 8 → 8 mmWave multi-user multi-input multi-

output (MU-MIMO) testbed for next-generation wireless re-
search. The testbed is depicted in Figure 1 and enables both
MIMO and mmWave research under the same umbrella mak-
ing it a #exible and versatile tool for research. The testbed
features three Zynq Ultra-Scale+ RFSoC Software De!ned Ra-
dios (SDRs) empowered with Pi-radio radio transceivers [10].
Two of the SDRs support up to 8 → 8MIMO having 8 inde-
pendent transmitter and receiver RF chains and antennas
whereas the third SDR is limited to 4→ 4. m3MIMO operates in
the mmWave band of the radio spectrum, speci!cally within
the 57-64 GHz frequency range, supporting up to 1 GHz of
bandwidth. Unlike existing mmWave testbeds, m3MIMO op-
erates in a fully digital fashion, enabling 8 → 8 MIMO and
supports OFDM transmissions. This facilitates research on
mmWave band and OFDM fully digital MIMO (both single-
user multi-input multi-output (SU-MIMO) and MU-MIMO)
to improve spectrum e$ciency for next-generation applica-
tions.

Summary of Contributions.
•We present m3MIMO, an 8→8 fully digital MU-MIMO testbed
operating in the mmWave spectrum, capable of OFDM trans-
missions with support for bandwidths up to 1 GHz.
• We detail the implementation of the channel sounding
and precoding procedure integrated in the m3MIMO testbed
to enable SU-MIMO and MU-MIMO transmission modes.
We demonstrate through experiments implemented with
m
3
MIMO that digital beamforming in SU-MIMO improves the

network performance in terms of bit error rate (BER) and
signal-to-noise ratio (SNR) by up to 13.3x and 2.05x times
respectively.
•We showcase two research use cases of the m3MIMO testbed
– tracking-based beamforming and mmWave-based gesture

recognition. The experimental evaluations show that tracking-
based beamforming improves the BER and SNR performances
by 4x and 2.8x times respectively when compared to un-
beamformed transmissions. Whereas the mmWave-based
gesture recognition achieves an accuracy of up to 99.52%
when trained and tested in the same environment and up
to 91.33% when trained in one environment and tested in
others.

2 EXISTING MMWAVE MIMO TESTBEDS
A few testbeds were developed by the research commu-
nity to carry out experimental evaluations of algorithms
for mmWave MIMO. Among them, Lacruz et al. propose MI-
MORPH [11], amulti-band platformworking on themmWave
and sub-6 GHz portions of the radio spectrum. The system
supports up to 4 → 4 MIMO when operating in the mmWave
spectrum while 8 → 8 can be enabled in the sub-6 GHz fre-
quencies. For the waveform generation in the mmWave and
sub-6 GHz bands, MIMORPH follows the IEEE 802.11ay and
802.11ac/ax standards respectively. However, this system
works only in single-carrier mode at mmWave. Moreover,
following the 802.11ay standard, MIMORPH currently im-
plements analog beamforming strategies, i.e., MIMO is used
for directionality gain while the multiplexing gain is not
exploited. Instead, m3MIMO also enables multiplexing up to 8
di"erent streams to single or multiple users through the SU-
MIMO and MU-MIMO procedures we developed. In [12], the
authors propose a single-carrier mmWave (60 GHz) MIMO
system featuring a 16-antenna transmitter and two 4-antenna
receivers. However, the use of only 2 digital-to-analog con-
verters (DACs) and 2 analog-to-digital converters (ADCs)
limits the system to 2 → 3 MIMO. Zhao et al. propose M-
cube [13], an OFDM MU-MIMO system that uses beamform-
ing to multiplex up to 4 streams working on the 60 GHz
band and following the IEEE 802.11ay standard. In addition
to the lower number of streams that can be multiplexed, the
fast fourier transform (FFT) size for OFDM transmission is
limited to 64 thus reaching a lower level of frequency multi-
plexing than our m3MIMO system – where the FFT size is up
to 1024. The recent work in [14] proposes Agora-UHD, an
OFDMMIMO system working on the 28 GHz band. However,
also for this testbed, the maximum MIMO dimensionality is
2→2. Finally, an OFDM-based 4→2MIMO systemworking on
the 24 GHz band is proposed by Ozkaptan et al. together with
a radar-assisted precoding mechanism for SU-MIMO [15].

3 M
3
MIMO DATA TRANSMISSION PIPELINE

In this section, we detail the m3MIMO transmission pipeline.
The system uses OFDM to multiplex data in the frequency
domain by dividing the available bandwidth into small or-
thogonal sub-channels. In addition to the frequency domain,
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multiplexing is also applied in the space domain. To achieve
this, we tailored the channel sounding and precoding proce-
dures from the IEEE 802.11 standard, customizing them to
!t the m3MIMO setup for optimal performance.

3.1 OFDM Operation
m
3
MIMO supports OFDM transmissions with up to 1 GHz of

bandwidth. However, to avoid inter-symbol interference, it
is recommended to con!ne the transmission to the central
800 MHz bandwidth. For the implementation of OFDM, this
800 MHz bandwidth is divided into 𝐿 = 800 sub-channels
with a sub-channel bandwidth of at least 1 MHz. Hence,
each OFDM symbol consists of up to 𝑀 = 800 modulated IQ
samples. Each OFDM symbol 𝑁 [𝑂] is then processed through
an inverse fast fourier transform (IFFT) block to generate the
corresponding time domain signal as

𝑁 [𝑂] = 1
𝐿

𝐿↔1∑
𝑀=0

𝑀𝑀𝑃
𝑁2𝑂𝑀𝑃/𝐿 , 𝑂 = 0, 1, . . . ,𝐿 ↔ 1. (1)

This transformation ensures that the data symbols are orthog-
onal in the frequency domain. At the receiver, the system
captures the incoming signal and converts it back to the
frequency domain using an FFT:

𝑀𝑀 =
𝐿↔1∑
𝑃=0

𝑁 [𝑂]𝑃↔ 𝑁2𝑂𝑀𝑃/𝐿 , 𝑄 = 0, 1, . . . ,𝐿 ↔ 1. (2)

3.2 MIMO for Directionality at the Receiver
The m3MIMO fully-digital MIMO system can be used to im-
plement analog-like receive beamforming to capture the
transmitted beams from speci!c directions, thus increasing
the SNR at the receiver antennas. This involves applying a
beamforming vector to the received signals, which includes
phase shifts designed to align the phases of the incoming
signals with each possible angle of arrivals (AoAs) with a
pre-de!ned granularity. Two parameters that allow evaluat-
ing the performance of the implemented analog-like receive
beamforming are the directional response pattern and the
received power spectrum. Directional response pattern il-
lustrates the variation of power received by the antennas as
a function of AoAs, whereas the received power spectrum,
refers to the distribution of received signal power over dif-
ferent frequencies. For example, in Figure 2 we present the
directional response patterns and the receive power spec-
trum for di"erent AoAs (emulated by rotating the receiver
at di"erent angles along its axis without any horizontal or
vertical displacement).

The directional response pattern exhibits moderate an-
gular sensitivity with distinct peaks and nulls, indicating
variations in reception quality across di"erent AoAs. The re-
ceive power spectrum shows consistent performance across
antennas, with slight roll-o"s as frequencies deviate from
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Figure 2: Directional response pattern (a and c) and
corresponding received power spectrum (b and d) for
di!erent AoAs at a transmission distance of 3 m.

the center frequency of 58 GHz, re#ecting e"ective antenna
calibration and system uniformity in the operational band.

3.3 MIMO for Multiplexing and Diversity
To enable proper decoding and equalization at the receiver de-
vice, we transmit two additional OFDM symbols containing
known samples before transmitting the actual data. The !rst
is used as a synchronization symbol to remove the time o"set.
The o"set is obtained by computing the cross-correlation be-
tween the received synchronization symbol and the known
transmitted one. The estimation obtained through this pro-
cedure is then used to compensate for the timing o"set of
all the subsequent transmitted symbols. The second control
symbol is used to estimate the impairments introduced by
the wireless channel, i.e., the channel frequency response
(CFR), and properly equalize the actual data. Note that, be-
fore using it for channel estimation, the second symbol is
also compensated for the timing o"set. The symbols con-
taining the actual user data follow the control symbols. The
data symbols are !rst synchronized and equalized using the
estimates performed on the !rst two known symbols. Hence,
they are demodulated following the adopted modulation
procedure and the transmitted bits are retrieved.

In our speci!c MIMO implementation, we are constrained
to the Zynq RFSoC’s default bu"er size for DACs/ADCs.
Speci!cally, the transmission is performed by repeatedly
sending the data stored in a circular bu"er that has a maxi-
mum capacity of 2048 samples. As we need to transmit two
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Figure 3: m3MIMO Beamforming.

mandatory symbols for synchronization and equalization,
we are currently constrained to three symbols in total (i.e.,
two control and one data symbol) with 512 OFDM samples
each.
SU-MIMO and MU-MIMO require the transmitter device

(beamformer) to combine the di"erent streams at the avail-
able antennas through the so-called precoding procedure.
This strategy allows to achieve multiplexing and diversity
gain. Indeed, the di"erent streams are combined at the di"er-
ent antennas using orthogonal weighting vectors that enable
simultaneous transmission while reducing the interference
among them. Such precoding weights are obtained by com-
bining the channel estimates performed by all the devices
(beamformees) connected to the beamformer. The channel
estimation procedure is usually referred to as channel sound-
ing. Once the precoded data is received, the beamformees
retrieve the streams directed to it by applying an interference
cancellation matrix. The complete m3MIMOMIMO transmis-
sion procedure is depicted in Figure 3 and detailed next.

3.3.1 Channel Sounding. At !rst, the beamformer transmits
a null data packet (NDP) packet consisting of only two sym-
bols, i.e., the synchronization symbol and the channel sound-
ing symbol (step 1 in Figure 3). The NDP does not contain
the data symbol as its only objective is to provide the beam-
formees with known samples to estimate the channel. For
this packet, the beamformer transmits the samples through
all eight di"erent antennas such that the channel between
each pair of the 𝑅 transmitter and𝑆 receiver antennas over
the entire operational bandwidth can be estimated. Speci!-
cally, each beamformee 𝑇 obtains an estimate of the CFR H𝑄,𝑅

on each OFDM sub-channel 𝐿 by comparing the received
samples with the known transmitted ones (step 2 in Fig-
ure 3). This corresponds to dividing the received signal in
the frequency domain Y𝑄,𝑅 by the transmitted one X𝑄,𝑅 , i.e.,
H𝑄,𝑅 = Y𝑄,𝑅/X𝑄,𝑅 . The CFR for each OFDM sub-channel H𝑄,𝑅 is
𝑅 →𝑆 dimensional. For example, Figure 4 presents the CFR
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Figure 4: CFR of received streams 1-4, for transmit an-
tenna 1 using beamformed transmission at a distance
of 6 m.

of the received streams 1-4 for the !rst transmit antenna ob-
tained from real-world experiments with m

3
MIMO. Next, the

CFR is compressed through singular value decomposition
(SVD) as done in the IEEE 802.11ac/ax standard procedure:
H𝑄,𝑅 = U𝑄,𝑅S𝑄,𝑅V𝑄,𝑅 and only the right singular matrix V𝑄,𝑅 is
transmitted to the beamformer (step 3 in Figure 3).

3.3.2 Precoding. Once the compressed CFR V𝑄,𝑅 from all
the beamformees is received, the beamformer obtains the
precoding weight matrix W𝑄 through zero-forcing (ZF) as
(step 4 in Figure 3)

W𝑄 = V𝑄

(
V†
𝑄V𝑄

)↔1
, (3)

where V𝑄 is obtained by combining the V𝑄,𝑅 for all the di"er-
ent beamformees in the second dimension. The beamformed
signal to be transmitted is hence obtained as W𝑄Xk main-
taining a shape of 𝐿 →𝑈 →𝑆 →𝑅 where S represents the total
number of symbols. Speci!cally, the packet is composed of
three symbols, i.e., the synchronization symbol, the channel
estimation symbol, and the data symbol. All of the symbols in
the packet are precoded (step 4 in Figure 3) and transmitted
to the beamformees (step 5).

3.3.3 Interference Cancellation. The beamformed signal re-
ceived by beamformee 𝑇 can be expressed as

Y𝑄,𝑅 = H𝑄,𝑅X𝑄+n𝑄,𝑅 . (4)

To e"ectively retrieve the streams directed to user 𝑇 and sep-
arate their contributions, an interference cancellation matrix
G𝑄,𝑅 is applied to the received signal Y𝑄,𝑅 (step 6 in Figure 3).
Speci!cally, G𝑄,𝑅 is obtained as

Gk = I𝑆𝐿𝐿,𝑀𝑇𝑆𝐿𝐿Wk
†Hk

†(WkHkWk
†Hk

† + Fk)↔1, (5)

where 𝑉𝑄 is the noise covariance matrix, and WkHk is the
estimate of the beamformed channel obtained from the beam-
formed channel estimation symbol.
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Figure 5: Experimental setup for beamforming test
with SU-MIMO.
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Figure 6: Received constellations with SU-MIMO at 6m
of transmission distance.

3.3.4 Performance of m
3
MIMO MIMO: A SU-MIMO Test. We

analyze the performance of SU-MIMO transmission in terms
of BER and SNR. We perform the test in a conference room
as presented in Figure 5, with both beamformed and unbeam-
formed transmissions at multiple distances ranging from 1
to 12 m. Figure 6 presents the comparison of the received
QPSK constellations of the unbeamformed and beamformed
data considering a transmission distance of 6m. This clearly
shows that the constellations of the beamformed signal are
better mapped in comparison to the unbeamformed one in-
dicating better signal quality with beamforming. To have a
clearer idea of the beamforming performance we also com-
pare the communication performance, i.e., BER and SNR of
the beamformed and unbeamformed signal. The results are
presented in Figure 7 and show that beamforming in SU-
MIMO implemented through m

3
MIMO improves the BER and

SNR performance by 13.3x and 2.05x times respectively.

4 M
3
MIMO RESEARCH USE CASES

To demonstrate the versatility and #exibility of the m3MIMO
we demonstrate two di"erent research use cases: (i) tracking-
based beamforming, which demonstrates the versatility of
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Figure 7: BER and SNR of beamforming test with SU-
MIMO at a transmission distance of 1-12 m.
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m
3
MIMO in di"erent beamforming research, and (ii) gesture

recognition, demonstrating the prospect of leveraging m3MIMO
in the emerging trend of integrated sensing and communica-
tion in mmWave band.
4.1 Tracking-based Beamforming
Since the last decade, tracking-based beamforming [16, 17]
has attracted the attention of the research community due
to its extensive and versatile applications, especially with
mmWave [18, 19] and THz [20] technologies. However, most
of these works are based on simulations and emulations due
to the unavailability of suitable testbeds. In the following,
we show how to use m3MIMO for such use cases.

4.1.1 System for Beam-tracking and Beamforming. We have
designed a tracking-based beamforming system based on
feedback from beamformees estimated through the received
directional response as presented in Figure 8.

The system operates by having the beamformer broadcast
the NDP (as shown in step 1 of Figure 8). The beamformees in
the vicinity receive the NDP and perform analog-like receive
beamforming at the receiver end to measure the directional
response pattern. Figure 9 illustrates the directional response
pattern estimated from the received NDP for di"erent re-
ceiver locations, i.e., di"erent AoAs. Each beamformee calcu-
lates the steering angle based on the peak of its directional
response and sends this information back to the beamformer
(step 2 of Figure 8). Subsequently, the beamformer uses the
number of beamformees and the received steering angles to
precode the data. The beamformer performs precoding by
applying the necessary phase shifts at each antenna element
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Figure 9: Computed steering angles for beam-tracking
at di!erent receiver locations.
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Figure 10: Experimental setup and scenario for beam-
tracking.

to focus the signal energy in the direction of the steering
angle. Finally, the beamformer transmits the beamformed
data to the connected beamformees (step 3 of Figure 8).

Tracking-based beamforming is an essential technique in
modernwireless communication systems, especially for high-
frequency bands like mmWave. By dynamically adjusting the
beam’s direction to follow the beamformees, this technique
ensures optimal communication performance.

4.1.2 Evaluation of Tracking-based Beamforming System.
We evaluated the designed tracking-based beamforming sys-
tem by implementing it in m

3
MIMO testbed. The system is

tested through real-world over-the-air experiments involv-
ing one beamformer and one beamformee, as shown in Figure
10. We kept the beamformer’s location !xed while moving
the beamformee horizontally, maintaining a constant dis-
tance from the beamformer. This setup allowed us to form
di"erent AoAs for evaluating the performance of the com-
munication in terms of BER and SNR when leveraging the
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Figure 11: BER and SNR of tracking-based beamform-
ing test with di!erent AoAs ranging from -60↗ to 60↗.
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Figure 12: DNN architecture for gesture recognition.

designed tracking-based-beamforming system with m
3
MIMO.

Figure 11 presents the comparative analysis of BER and SNR
for unbeamformed transmission and beamformed transmis-
sion performed through the designed tracking-based beam-
forming system. The results show that the tracking-based
beamforming improves the BER and SNR performance by
up to 4x and 2.8x times, respectively, compared to unbeam-
formed transmissions.

4.2 mmWave Sensing: Gesture Recognition
Beyond enhancing connectivity, the unprecedented rise in
the number of smartphones, laptops, and various other wire-
lessly connected devices [21] is driving the emergence of
wireless sensing applications. These include activity recog-
nition [22], radio !ngerprinting [23], and gesture recogni-
tion [24], among others [25].
The vast majority of such works are based on mmWave

radar systems [24, 26, 27]. Despite leading to good perfor-
mance, radar-based sensing techniques require dedicated
infrastructure which hampers the scalability. In this section,
we provide the implementation details of gesture recognition
on m

3
MIMO. The mmWave CFR is processed through a deep

neural networks (DNN)-based learning approach for recog-
nition of the gestures representing digits 0-9. Speci!cally,
the DNN classi!er relies on the CFR estimated by the beam-
formees in the network, captured during the depiction of the
gestures.

4.2.1 Data Processing and Learning Approach. Firstly, the
estimated CFR (see step 2 of Figure 3) corresponding to the
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Experimental Setup

TXRX

Figure 13: m3MIMO setup and data collection campaigns
for gesture recognition.

depiction of di"erent digits are stacked individually. As the
duration of the depiction of di"erent gestures is di"erent, the
number of CFR frames also varies across di"erent gestures.
However, to reduce the complexity of the DNN model, we
need to have the same input dimension for di"erent gestures.
Thus, for every gesture, only the !rst 𝑈 = 𝑉 → 𝑊 = 600
number of CFR samples are considered. Here, 𝑉 = 100𝑋𝑌
and𝑊 = 6𝑍 represent the sampling frequency of CFR and the
considered time duration for individual gestures respectively.
Thus, our input size of the DNN learning model becomes
𝑎 →𝑈 →𝐿 →𝑆 →𝑅 where,𝑎 = 10 represents the total number
of gestures, and 𝐿 →𝑆 → 𝑅 = 1024 → 8 → 8 is the dimension
of every CFR sample. To further reduce the computational
complexity, we reshaped the input dimension and performed
SVD to have a reduced dimension of𝑎 → 𝑈 → (𝐿 ·𝑆 ·𝑅 ), i.e.,
10 → 600 → 2048 in our case.

In the last decade, convolutional neural networks (CNNs)
have achieved tremendous success in addressing computer
vision tasks [28, 29]. The convolution layer, at the basis of
CNNs, can e$ciently extract relevant features from the input
by performing convolution operations on the data through
learnable kernels. As we aim to investigate the e"ectiveness
of mmWave OFDM CFR as a sensing primitive, we use a
widely adopted VGG-based CNN architecture as the clas-
si!er for gesture recognition. The network is depicted in
Figure 12 and entails stacking three convolutional blocks
(conv-block) and a max-pooling (MaxPool) layer. The Soft-
max activation function is applied to the #attened output
to obtain the probability distribution over the gestures. The
three conv-blocks have 128, 64, and 32 !lters, respectively.
We choose a descending order of the number of activation
maps to reduce the model size. Moreover, features in lower
layers are usually sparser and thus require extracting more
activation maps to be properly captured.
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Figure 14: Accuracy of gesture recognition in three
di!erent environments.
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Figure 15: Accuaracy of gesture recognition when
trained with data from one environment and tested
with others.

4.2.2 Experimental Setup and Data Collection. We deploy
the m

3
MIMO testbed with one transmitter and one receiver

for an extensive data collection campaign for ten di"erent
gestures showing 0 to 9 at three di"erent environments – con-
ference room, study room, and lab. The experimental setup
and the data collection campaign in di"erent environments
are depicted in Figure 13. Data collection in each environ-
ment involves two subjects performing each of the gestures,
50 times each. The CFR corresponding to each gesture is
captured and labeled synchronously to create the training
dataset. The captured dataset is then processed and fed to
the learning model as presented in Section 4.2.1.

4.2.3 Performance Evaluation. Figure 14 shows that the de-
signed gesture recognition systemwithmmWaveCFR achieves
an accuracy of up to 99%whereas the average accuracy across
three di"erent environments is 98.66%. Moreover, general-
ization across di"erent domains, i.e., di"erent environments
being one of the open challenges in integrated sensing and
communication in general, we also present the domain gen-
eralization performance. Figure 15 shows that the designed
system can achieve an accuracy of up to 91% with an average
of 86.21 % when the model is trained with the data from one
environment and tested with the others.

5 CONCLUSIONS AND REMARKS
We have presented m

3
MIMO, an 8 × 8 mmWave MU-MIMO

testbed, designed to facilitate advanced research in areas such
as MIMO, OFDM, and mmWave integrated sensing. m3MIMO
is equipped with three Zynq UltraScale+ RFSoC-based SDR
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and supports OFDM transmission and beamforming over a 1
GHz bandwidth. m3MIMO’s unique capabilities include an inte-
grated channel sounding and precoding procedure, enabling
both SU-MIMO and MU-MIMO transmission modes. This
integration allows m3MIMO to support and validate emerging
research algorithms in the mmWave spectrum, thus con-
tributing signi!cantly to the advancement of communica-
tion technologies. To demonstrate its versatility, we explored
two research use cases with m

3
MIMO: tracking-based beam-

forming and mmWave sensing through gesture recognition.
These examples underscore m3MIMO’s potential as a compre-
hensive tool for exploring and testing innovative solutions
in OFDM, MU-MIMO, mmWave communications, and in-
tegrated sensing applications. Overall, m3MIMO represents
a signi!cant step forward in providing researchers with a
robust and #exible platform for developing and validating
next-generation communication systems.
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