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Abstract—With continued advancements in the cellular do-
main, the number of network devices is expanding rapidly.
Furthermore, as devices become smarter and more advanced
with the deployment of dynamic spectrum awareness techniques
that facilitate increased spectral efficiency, developing robust
methodologies to analyze limited spectrum resources will be
crucial to the success of FutureG wireless communications.
Central to the idea of dynamic spectrum awareness is the
need for robust techniques and metrics that provide insight
into the spectral utilization and can be harnessed by dynamic
control loops to maximize spectral usage and eliminate wasteful
inefficiencies. While a plethora of dynamic spectrum awareness
tactics have been proposed, existing strategies do not analyze
the power spectral density probability distribution across time,
which we demonstrate is a relevant indicator of spectral usage
and signal quality. Specifically, we harness the commercial-
grade, standalone, 5G network architecture located at the Air
Force Research Laboratory (AFRL) to perform an experimental
measurement study and show the effectiveness of representing
the localized spectral utilization as a distribution of power
correlations w.r.t. the bandwidth’s frequency bins. We analyze
the distributional structure of power spectral density correlations
for a variety of wireless channel environments (i.e., LOS, NLOS,
and Edge scenarios) and locations, and our key finding is that
the shape of the frequency-bin correlation distribution changes
significantly depending upon the particular wireless channel
situation. As such, our approach - which is not only blind (i.e.,
it doesn’t require knowledge about the signal prior to sensing
the spectrum), but also highly practical from an implementation
standpoint - provides fresh insight into the spectral utilization,
signal structure, and channel quality conditions.

I. INTRODUCTION

Recent advances in cellular communications [1] have caused
the number of mobile connections to increase significantly.
One study predicted that by 2025 the number of mobile
devices worldwide will exceed 18 billion [2]. As such, the
inherently scarce sub-6 GHz spectrum is becoming increas-
ingly overcrowded and underutilized [3] [4]. Researchers and
industry alike [5] [6] are working to make mobile devices
smarter and more spectrum-efficient, particularly with the rise
of fifth generation cellular networks (5G) and the Internet of
Things which are bringing in unprecedented device counts
that must be matched by equal advances in device capabilities
[4]. For instance, a new effort proposed by Restuccia et al.
motivates the need for data-driven solutions to address the
spectrum crunch [7]. They propose a system level architecture
which is based upon the principles of Open Radio Access
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Fig. 1: An Example Integration of our Spectrum Sensing
Approach with the O-RAN Architecture.

Networks (Open RAN) [8], [9], dynamic data-driven control
loops [10]-[13], and robust spectrum awareness techniques
[14]. This architecture and related dynamic spectrum aware-
ness strategies will radically transform the current cellular
landscape and introduce previously unseen spectral efficiency
into the 5G ecosystem.

With this in mind, we pursue a fresh technique to monitor
sub-6 GHz spectral utilization and channel quality in the 5G
landscape. Figure 1 provides an example of how our approach
could be integrated with the Open RAN system architecture
as a source of spectral information to data-driven, Artificial
Intelligence (Al)-based control structures housed inside the
Near-Real-Time-RIC [7]. As shown in Figure 1, the Radio
Access Network (RAN) would collect and send power spectral
density (PSD) samples to the Near-Real-Time-RIC via the E2
Interface. To collect the PSD measurements in this study we
used a simple horn antenna attached to a handheld spectrum
analyzer — in practice, any power level measurement collected
at the RAN would suffice. The Near-Real-Time-RIC then
transfers the PSD samples to a dedicated containerized XApp
located within the Near-Real-Time-RIC. xApps are at the
center of the Open RAN revolution as they house the Al
models that the Near-Real-Time-RIC uses to control the RAN
[8] [9]. In our case, the xApp would perform the correlation



analysis — see Section IV — and provide spectral insight
which could then be transferred to the Near-Real-Time-RIC
for dynamic RAN control, or logged for explainability.

Summary of Novel Contributions

In this work, we present a fresh technique for dynamic
spectrum awareness (particularly in the 5G landscape). Our
approach is blind, which means that it requires zero a priori
information about the signal or wireless channel. Specifically,
our strategy is to analyze the PSD frequency bin correlation
probability distribution to gain insight into the localized spec-
tral structure as it varies over time. We show that the shape
of the correlation distribution is directly related to the signal
characteristics and channel quality. We observe that the signal
structure induces a highly correlated block diagonal in the
frequency bin correlation matrix when the wireless channel is
relatively unobstructed. This block diagonal in turn causes a
multimodal structure in the probability density function (PDF)
due to the high-correlation clusters. Thus, the key finding is
that the structure of the correlation matrix, and thus the shape
of the correlation distribution, change in accordance with the
wireless channel condition. This implies that the shape of the
PSD frequency bin correlation distribution can be analyzed
to monitor the 5G signal/channel characteristics. In addition
to our in-the-field experiments using Air Force Research
Laboratory (AFRL)’s testbed, we also perform simulation
experiments using the MATLAB 5G Toolbox [15] to verify
our results and confirm our discoveries. To the best of our
knowledge, this distributional technique has not been explored
previously for dynamic spectrum awareness.

The remainder of our paper is divided as follows: Section
Il outlines related work. Section IIl provides an overview
of AFRL’s 5G testbed located in Stockbridge, New York
[16]. Section IV details our experimental setup, data analysis,
results, and an explanation of our findings. Section V con-
cludes our work and outlines extensions we plan to pursue in
collaboration with AFRL.

II. RELATED WORK

Many techniques related to the concept of dynamic spec-
trum awareness/sensing/access have been proposed over the
years and there are a plethora of helpful surveys covering these
topics [17] [18]. However, techniques that are closest to our
approach are those which correlate the power spectral density
frequency bins (e.g., [19] [20]), since we are also performing
this operation. However, while it is not novel to correlate PSD
frequency bins, we have not seen another work that analyzes
the probability distribution of the correlation matrix with the
goal of harnessing known distribution analysis techniques for
dynamic spectral awareness. Existing techniques analyze the
correlation matrix as a heatmap (which we do as well), but
our distributional approach seems to be uninvestigated.

III. TESTBED AND EXPERIMENTAL OVERVIEW

We used a commercial-grade 5G cellular network located
at the 300 acre test facility operated by AFRL in Stockbridge,

New York [16]. A high-level overview of the system architec-
ture is shown in Figure 2. As shown, a User Interface (UI)
gives the operator control of various network functionalities.
Two primary control capabilities are the Physical Resource
Block (PRB) blanking and beam muting applications. The
PRB blanking functionality allows designated portions of the
network bandwidth to be “blanked” or essentially “turned off”
upon operator command. The beam muting operation provides
flexibility in the beam configuration which allows specified
beams to be “muted” for various situations. During the course
of our experiments, we utilized the PRB blanking functionality
to downsize the bandwidth from its 100MHz default setting.
Figure 2 also shows a turntable upon which a gNodeB (gNB) is
mounted for convenient rotation. While there are others on site,
this was the primary gNB that we utilized for our experiments.
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Fig. 2: AFRL’s 5G Testbed in Stockbridge, New York [16].
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Fig. 3: Experimental Setup for LOS, Edge, and NLOS Wire-
less Channel Situations [21].
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The gNB we utilized for our experiments was placed in
an Artificial Loading mode to replicate User Equipment (UE)
connectivity. This way, the gNB pseudo-randomly selects time
and frequency resources in which to transmit and behaves
as if it were serving a large number of UEs. Next, we
utilized the existing terrain to capture the signal behavior in
Line-of-Sight (LOS), Edge, and Non-Line-of-Sight (NLOS)
wireless channel conditions. We were particularly interested
to observe the transition from LOS to NLOS. Figure 3 shows
our experimental setup in which we used a large concrete
block located on site as a signal obstruction and collected
PSD measurements for each of the three channel types using a
simple horn antenna attached to a handheld spectrum analyzer.
We performed twenty separate collections for each of the three
channel types, where each collection represented an average
of the last five hundred PSD measurements over a total of



401 frequency bins (which was the default) from 3.36GHz
to 3.39GHz (an arbitrary frequency range in the network’s
supported 5G band). We were able to perform this experiment
at two different locations on site by utilizing two different
concrete blocks that were separated from each other by about
five hundred feet, but comparable in their distances from the
gNB; we denote these two experimental locations as Scenario
1 and Scenario 2, respectively. This allowed us to compare the
LOS, Edge, and NLOS results for each scenario.
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Fig. 4: Average Power Spectral Density and Max Hold for 20
Collections Spanning 3.36GHz - 3.39GHz (Blue: LOS, Red:
Edge, Yellow: NLOS).

IV. EXPERIMENTAL RESULTS

Figure 4 shows the average PSD collected at the two
measurement locations, as well as the respective Max Hold
plots (which record the max power at each frequency bin).
Each of the graphs consist of sixty time series PSD (or Max
Hold) plots where the twenty blue plots represent the LOS
collections, the twenty red represent the Edge collections,
and the twenty yellow represent the NLOS collections. The
x-axis denotes the respective frequency bins into which the
observed bandwidth was divided at reception (i.e., in the
handheld spectrum analyzer); in our case we used the handheld
spectrum analyzer’s default setting which was 401 frequency
bins. As expected, there is a clear transition in the average and
maximum PSD magnitudes as the receiver was moved from
the LOS to the NLOS condition.

Upon collecting twenty PSD measurements for each of the
three wireless channel conditions (and at the two separate
locations) we then correlated the power level of each PSD
frequency bin across the twenty collections using (1).

c .- -
1 bl — by by, — b

C-1& o, oy

p(bzvby) =

In this equation C represents the number of collections
(20 in our case) and b, and b, represent the frequency bins
being correlated. Thus, in total we correlated all frequency bins
between 3.36GHz and 3.39GHz (the bandwidth we chose to

observe) and analyzed the relationship that individual frequen-
cies have with one another inside the bandwidth of interest.
Upon completing the correlation analysis we obtained a matrix
of the form, M from (2), for each channel condition/location
pair. Since we had 401 frequency bins, N was equal to 401.
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Fig. 5: Frequency Bin Correlations of Average Power Spectral
Density Spanning 3.36GHz - 3.39GHz for LOS, Edge, and
NLOS Wireless Channel Cases.

Figure 5 displays heatmap representations for each of these
correlation matrices. It is noteworthy that the average PSD
LOS cases exhibit a strong block diagonal structure at each of
the two collection locations; we will discuss the explanation
for this phenomenon shortly. Furthermore, we notice a clear
fading of the block diagonal as the channel condition moves
from Edge to NLOS.

A related phenomenon we observed upon analyzing the
PDF distribution of the frequency bin correlation matrices is
that the shape of the distribution changes in accordance with
the wireless channel situation. As shown in Figure 6 (which
represents the PDF for each of the matrices in Figure 5),
the distributions representing the LOS case are significantly
different from those of the NLOS case, while the Edge case
falls somewhere in between the two. Specifically, in Figure 6
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Fig. 6: Probability Density Functions of Average Power Spec-
tral Density frequency bin Correlations.

the LOS cases exhibits a clear bimodal structure; this feature
is much less distinct in the Edge cases, and noticeably absent
in the NLOS cases. It should be mentioned that to generate
the distributions shown in Figure 6 the left and right-hand
sides of the collected bandwidth were trimmed such that we
were only correlating the frequency bins with signal power
(this does not violate the claim to be a blind technique since
after blindly collecting the measurements it is clear from both
the time series plots in Figure 4 and the location of the block
diagonal in Figure 5 where the signal power is located).

Explanation of Experimental Findings

The reason behind the block diagonal structure in the
LOS and Edge correlation matrices and the corresponding
multimodal PDFs is not particularly obvious. At first glance,
one may suppose that the block diagonal is caused by the
windowing overlap introduced by the Fast Fourier Transform
in the handheld spectrum analyzer. However, because we are
not correlating w.r.t. time but rather frequency, this is clearly
not the case. Furthermore, the strength and well-defined nature
of the block diagonal clearly eliminates the possibility that this
is a natural phenomenon induced by the wireless channel itself.
If this were the case we would expect smearing in the block
diagonal structure rather than the clear-cut characteristics we
observe in Figure 5. Additionally, the absence of the block
diagonal structure in the NLOS case indicates that this is not
caused at the receiver side in the handheld spectrum analyzer.
Rather, our intuition is that it must be a characteristic of the
signal generated by the transmitter (the gNB in this case).
This seems to be the only logical reason for a well-defined
block diagonal structure in the LOS frequency bin correlation

matrix that is completely absent from the corresponding NLOS
frequency bin correlation matrix.

Additionally, the bimodal shape of the LOS distributions
in Figure 6 seems to be caused by the signal structure as
well. Our intuition is that it is not caused by multi-path
(since there were not many reflectors near our experimental
setup), but rather is explained by the existence of pockets
of high correlation amidst swaths of low correlation in the
correlation matrices. Given these observations, it then follows
that through our correlative analysis we are given a glimpse
into the structural characteristics of the signal. After validating
our intuitions through 1) additional in-the-field experiments
designed to establish a measurement baseline, and 2) software-
based simulations that replicated the 5G signal reception, we
will explore the significance of these results in the context of
dynamic spectrum awareness.

Validation of Experimental Explanations
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Fig. 7: Baseline Average Power Spectral Density and Max
Hold for Scenario 1 (Blue: LOS (20 collections), Red: Edge
(13 collections), Yellow: NLOS (20 collections)).
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Fig. 8: Baseline frequency bin Correlation Matrices and Dis-
tributions.

The primary distinction between the in-the-field baseline
collections and our previous experiments is that we powered
off the gNB prior to collecting the baseline data, thus removing
the effects of the 5G signal. Figure 7 shows the time series
representation of these collections for the LOS, Edge, and
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Fig. 9: MATLAB Simulations to Validate In-The-Field Experimental Findings.

NLOS wireless channel conditions; as shown, there is no 5G
signal power within the observed bandwidth now that the gNB
is powered off. Upon correlating the baseline frequency bins,
we see that the block diagonal structure is absent from all the
correlation matrices (see Figure 8) which further supports the
intuition that the 5G signal generated by the gNB is the cause
of the block diagonal structures shown in Figure 5. Similarly,
the LOS baseline PDF shown in Figure 8 is unimodal which
further supports our intuition that the structure of the 5G
signal is the cause of the bimodality exhibited by the LOS
distributions in Figure 6.

In order to eliminate the effects of the wireless channel and
any hardware idiosyncrasies, we also conducted simulations
using the MATLAB 5G Toolbox [15] to replicate the 5G signal
reception and verify our intuitions. Specifically, we created
a 5G signal as represented by the spectrogram on the left
hand side of Figure 9. The small yellow rectangles in the
center of the bandwidth are Synchronization Signal Bursts
(SSB), and are transmitted periodically as shown. Likewise,
the larger rectangles in the lower portion of the bandwidth
represent the Physical Downlink Control Channel (PDCCH)
signals which are also transmitted periodically. We performed
a similar correlation analysis (but averaging over a shorter
time scale for convenience) using the PSDs created from the
MATLAB 5G Toolbox and obtained the correlation matrix in
the center of Figure 9. The small block in the middle of the
correlation matrix (corresponding to frequencies in the center
of the 5G signal bandwidth) and the larger block to its left
(corresponding to frequencies in the lower portion of the 5G
signal bandwidth) confirm our intuition that the block diagonal
structure is caused by the structure of the 5G signal itself
since these align with the spectrogram structure. We aren’t
saying the blocks in our field-test correlation matrices where
caused by the SSB or PDDCH signals, but rather these serve
as specific examples of general 5G signal structure which
we argue is the root cause. Furthermore, the PDF of the
frequency bin correlations (shown in the right hand portion of
Figure 9) exhibits a bimodal structure which further bolsters
the credibility of our our claim that the multimodal shape of
the distribution is related to the pockets of high-correlation
in the correlation matrices and, therefore, to the 5G signal
characteristics.

Power Correlation Distributions for Spectrum Awareness

The practical benefit of analyzing the spectral correlation’s
probability distribution is that existing techniques for distri-
bution analysis can be applied to spectral analysis. Metrics
such as mean, variance, standard deviation, kurtosis, skew-
ness, and modality can all be used to monitor the spectral
utilization. Specifically, the multimodal structure of PDFs we
displayed provide insight into the spectrum’s utilization. A
distinct multimodal structure indicates there are pockets of
similar correlation values in the frequency bin correlation
matrix; this in turn speaks to the clusterability of the signal’s
correlation. Furthermore, the existence of well-defined clus-
ters speaks to the separability of the signals present in the
observed bandwidth. The PDF modes obtained from signals
with overlapping frequencies should be expected to be less
distinct than those obtained from bandwidths containing signal
with no overlapping frequencies. Thus, the modal structure of
the probability distribution indicates the separability of the
recorded signals.

Additionally, the PDF’s mean plays an important part in
determining the nature of the captured signal. Even if the dis-
tribution is unimodal, if the mean is high, this would seem to
indicate that the signal present in the observed bandwidth (not
necessarily only consisting of the signal from a single source,
but possibly multiple sources) is structurally simplistic (i.e., it
is not composed of distinct parts, unlike the spectrogram in
Figure 9 which induces a bimodality).

Furthermore, while it is beyond the scope of this paper,
kernel theory and clustering techniques could be used to shed
additional light on the spectral usage characteristics.

V. CONCLUSION AND FUTURE WORK

In this work we have presented a simple yet effective
technique for spectrum awareness in commercial 5G networks.
An analysis of the structure of the PSD correlation matrix,
and more specifically the characteristics of the respective
PDF distribution, provide insight into the 5G signal structure
and the channel quality. We conducted an experimental study
using AFRL’s 5G test site in Stockbridge, New York in
which we collected PSD measurements corresponding to three
different wireless channel conditions (i.e., LOS, Edge, and



NLOS) at two different locations on site. An analysis of
our results demonstrates that the frequency bin correlation
matrices exhibit a unique block diagonal structure for the
unobstructed wireless channel conditions, while they are much
more uniform in obstructed instances. Likewise, we have
demonstrated that the PDF distribution of the frequency bin
correlations does not scale linearly upon moving from an
unobstructed channel to a fully obstructed channel. Rather, a
clear multimodality is present for the LOS wireless condition
PDF, while this feature is completely absent from the NLOS
distribution. Thus, the shape the distribution is changing with
the wireless channel condition. Our findings indicate that the
certain structural characteristics of the signal(s) generated by
the transmitter(s) are detectable via our blind sensing approach
in which we analyze the power correlation distributions.

We plan to extend this work in collaboration with AFRL
in which we will further explore the probability distribution
alterations that emerge under various wireless channel condi-
tions, such as situations where many signals are present within
the same portion of spectrum and/or when cellular devices
are mobile. Additionally, we are interested to determine how
quickly the block diagonal structure disappears from the LOS
matrix as the distance is increased between the receiver and
the gNB or as the gNB’s signal power is decreased. Lastly,
we hope to explore the use of kernel theory and clustering
analysis on PSD data to better understand localized spectral
utilization. With these questions in mind, we plan to continue
this collaborative effort and integrate our findings with the
Open RAN paradigm.
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