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Abstract—Effective spectrum sensing is quintessential to de-
crease spectrum congestion across time, space and frequency
in Internet of Things (IoT) networks. To circumvent the severe
bandwidth constraints of IoT networks, federated machine learn-
ing (FML) can be used, but it is still unclear whether FML can
be successfully performed in resource-constrained bandwidth-
limited IoT networks. In this paper, we demonstrate for the first
time that FML can tolerate losses up to a certain percentage
and still converge. Then, we leverage this key result to design
FedLoRa, an optimization networks for LoRa that is (i) fast, as it
reduces the FML round time in comparison with other resource
allocation schemes; (ii) energy-efficient, as the time reduction
does not imply a higher energy consumption. The key idea is to
balance the network load over the available spreading factors,
and to exploit sequential polling of nodes to maximize the num-
ber of simultaneous non-interfering transmissions, leading to a
shorter FML round time. As the problem is NP-Hard, we provide
an approximation algorithm. We evaluate the performance of
FedLoRa through experimental evaluation on the Colosseum
channel emulator, as well as with real-world data collection
with off-the-shelf LoRa devices in an Skmx5km urban setting
in Portland, Maine. Our results show that FedLoRa reduces the
round time by up to about 35%, as compared to the baselines.

I. INTRODUCTION

The recent growth of the Internet of Things (IoT) — poised
to reach 29 billion devices by 2025 — is quickly saturating
unlicensed spectrum bands. As spectrum becomes increasingly
congested, spectrum sensing operations such as spectrum hole
detection (SHD) and radio fingerprinting (RFP) will become
crucial to enable secure and effective dynamic spectrum access
(DSA) in IoT networks [1]. Prior work has unveiled that
deep neural network (DNN) models can be extremely effective
in performing SHD and RFP [2]-[4]. At the same time,
existing work has shown that the non-stationary, dynamic
and unpredictable effect of the wireless channel, as well as
hardware-level transceiver impairments, may cause the DNN
classification accuracy to plummet [5]. For example, RFP
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accuracy may decrease by 30% when tested with data col-
lected days after it was trained [6]. To address generalization
issues, regularly updating DNN models with data collected in
different noise/interference conditions and by multiple devices
may significantly increase classification accuracy [6]. While
this approach is feasible in high-power wireless networks,
the IoT presents a significantly more challenging scenario.
Specifically, periodically sending waveform-level I/Q data to
a central server far exceeds the capacity of IoT networks. For
example, a low-power wide-area network (LPWAN) network
such as LoRa has a maximum data rate of 37.5 kbps due to
duty cycle and other limitations [7]. By assuming an analog-
to-digital converter (ADC) providing 1/Q samples with 16-bit
resolution, a 100 MHz channel generates 200 MB/s worth of
I/Q data, implying that sending a 1-second dataset would take
about 11.85 hours.

To address this issue, federated machine learning (FML) has
been shown to be very effective in improving the robustness
of locally-trained DNNs without the need of sharing datasets
to a centralized server. This is ultimately achieved by merging
local DNNs into a globally-shared model [8]. Existing work
on FML has considered either wired networks and/or high-
bandwidth wireless networks [9]-[11]. On the other hand,
enabling fast and efficient FML in the IoT context is a
significantly more challenging problem. Specifically, FML
is based on the exchange of local DNN parameters to a central
server (also called the aggregator). However, as mentioned
above, IoT protocols based on the LPWAN paradigm have
very limited data rates. Moreover, IoT nodes are severely
power-constrained. Thus, on one hand, we want the nodes
to send their DNN parameters to the aggregator as fast as
possible, to ensure faster FML convergence. On the other
hand, we want to keep energy consumption to a minimum to
prolong the sensor’s lifetime. Although existing literature has
investigated energy-aware LoRa optimization [12], [13] and
FML techniques for IoT [14], [15], a series of assumptions
(e.g., OFDM-based transmissions, zero interference, single-
node network) make prior work not entirely applicable to real-
world IoT contexts.
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To address the above challenges, this paper makes the
following novel contributions:

e We first demonstrate a fundamental theoretical result for
FML schemes under lossy wireless communication channels.
In particular, we show that, even in presence of random losses
of local DNNs parameters at the aggregator, it is possible
to derive a steady-state bound on the global model errors.
Importantly, this bound can be related to the communication
error rate experienced by each sensor, and forced to zero in
case the learning rate gradually decreases with the number of
updating rounds.

e We leverage the theoretical result to design FedLoRa,
an optimization framework for efficient large-scale federated
learning in LoRa wireless networks, in which we optimize the
Resource Allocation scheme for transmitting the local models
trained by the sensors. We formalize a Resource Allocation
Problem for LoRa (LoRa-RAP), where the communication
resources (spreading factor and transmission power) assigned
to each sensor are optimized so as to minimize the FML
round time and keeping energy consumption into account. The
key intuition behind this result is to apply a load balancing
logic to the resource allocation procedure. In other words, the
objective is fairly distribute the network load over the available
Spreading Factors (SFs). Usually, nodes sharing the same SF
must transmit in a sequential fashion to avoid any possible
message collision. Thus, allocating most of the nodes to the
same SF results in a long FML round time. Conversely, we
spread the nodes over different SFs, so that many simultaneous
transmissions can happen at once. This implies a more efficient
usage of the network and a shorter FML round time.

e We build a full-fledged prototype of FedLoRa and evalu-
ate its performance through extensive experimental evaluation
on the Colosseum network emulator [16]. As part of the
prototype, we designed and developed (i) a complete Software
Defined Radio (SDR) implementation of a LoRa transmitter
and receiver; (ii) a generalized GPU-based FML training
framework on Colosseum. To the best of our knowledge, we
are the first to investigate and evaluate FML-based algorithms
in realistic wireless settings;

e We consider a state-of-the-art DNN for SHD [3], and
investigate the FedLoRa performance with different RF con-
figuration scenarios on Colosseum, as well as with real-world
measurements with a LoRa gateway and a LoRa node. Our
results show that FedLoRa reduces the FML round time by
up to about 35% with respect to baselines. To allow full
reproducibility of our results, we pledge to share our code
repositories to the community.

II. BACKGROUND ON LORA

The Long Range (LoRa) protocol is a low-power wide-area
network (LPWAN) modulation technique originally developed
by Cycleo and later acquired by Semtech, the founding
member of the LoRa Alliance. Specifically, LoRa covers
the physical layer (PHY), while LoRaWAN (Long Range
Wide Area Network) covers the upper layers (e.g., encryption
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features) [17]. Note how the framework presented in this
paper leverages on plain LoRa, rather than on the full
LoRaWAN stack. The upper layers are indeed customized
and tailored to fit our specific Federated Learning use case.
LoRa networks typically are deployed in a star network
configuration, with a centralized LoRa gateway receiving data
from the LoRa nodes. LoRa leverages sub-GHz license-free
Industrial, Scientific, and Medical (ISM) bands such as 915
MHz in North America, 868 MHz in Europe, and 923 MHz
in Asia, and supports three bandwidth (BW) settings (125kHz,
250kHz, and 500kHz). While wider bandwidths provide higher
data rates, they also degrade the receiver sensitivity. LoRa
relies on the CSS modulation chirp spread spectrum (CSS),
which spreads the signal over a broader frequency band to
attain interference resiliency in ISM bands and increase the
communication range. Specifically, a LoRa symbol is one
chirp spanning the entire bandwidth. By defining SF as the
spreading factor, the chirp is modulated by cyclically shifting
its instantaneous frequency by one of 25F values to carry SF
binary symbols. In particualr, LoRa supports up to six different
SFs ranging from 7 to 12. Increasing the SF extends the
coverage at the expense of reducing the data rate as the packet
duration will also increase. For example, if SF equals 7 (each
symbol carries seven bits but symbol lasts 27 chips), then the
length of the chirp is 25F = 128 chips and the data rate 7/128
bits per chip = 6.8 kbps. Techniques based on forward error
correction (FEC) can further improve the receiver sensitivity.
LoRa supports four channel coding rate values between 0.5
and 0.8, computed by 4/(4+CR), CR € {1, 2, 3,4}. A bigger
CR enhances the protection but lowers the information bit rate.

III. THE FEDERATED LEARNING SCHEME

We defined a federated learning scheme suitable for LoRa
networks, in which communication links have limited band-
width and are error prone. We assume that N Al-ready
IoT devices (e.g., Nvidia Jetson series embedded computing
boards), also called clients, work each on a local data-set to
be used for training a model characterized by a vector of d
parameters w € W C R? where W denotes the hypothesis
class. Let S; = {1”}1‘“;' denote the data-set available to the
i-th client with size |S;|, and S = UY;S; denote the total
data-set. Let f(w, z) denote the loss of model w on sample z
and f(w,B) =1/|B|}_,cp f(w,z) denote the average loss
on the set B. For simplicity we also use f;(w) to indicate the
average loss on the client-i’s dataset, i.e., f;(w) = f(w, S;).
The goal of the training process is to find a minimizer w* € W
of an opportune weighed sum of clients’ local losses:

N
* . A
w” = ar Hllllg o; fi(w) = F(w
EEW Py fiw) (w)

)]

where {ai}iiil are weighing parameters, and can be properly

set, for instance, to ensure per-client fairness (a; = %) or
i 1S4
per-sample fairness (a; = ] ).

Our algorithm is an adaptation of the FedAvg algo-
rithm [18]. The process is organized in a set of communication
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rounds, in which each client locally executes multiple update
epochs before sending back the local weights to the central
server. More into details, at a generic round k the process
works as described below.

Broadcasting phase: the central server transmits in downlink
the current model parameter vector w*° to all clients.

Local update: each client ¢ performs multiple gradient
updates of the local model over a set of £/ random batches
of samples B = {BF“}E_| drawn from the local data-set.
Given the per-round learning rate 1)*, each client computes

k,e+1 k.e
w; e+ kaz( P7 Bi ,P)
k,E

for e = 0,1,...,F — 1. The final model update, w,”", is
sent back to the central server by transmitting, in general,
multiple LoRa frames. The frames are organized by including
randomly ordered components, together with the relevant
model index, in order to allow an exact identification of the
updated parameters at the server. Therefore, we assume that
losses due the corruption of one packet are uniformly spread
on the total number of model dimensions d.

Central update: At the end of each communication round,
the central server aggregates all the parameters received by
the clients. Let w’”f be the local models available at the
aggregator, which are generally different from w E because
of transmission errors. We assume to replace any missing
component [wall sent by the i-th client with the component
[wf-C _1’0]1 from the previous step. This replacement occurs
with probability CER;, CER,; being the Component Error
Rate associated to client 7. In order to compensate for the
learning bias introduced by the component loss, assuming that
the server has an estimate of the C ER; experienced by client
i, the global model is updated as:

k,O)) (2)

k+1,0: k,0 kE
w HW(“’ +ZlfCER (w

where Ilyw denotes the Euclidean projection on W, i.e.,
Iy (w') = arg min,, cyw|lw — w’||. Instead of simply averag-
ing the current local models as in FedAvg, in (2) the global
model is updated by a pseudo-gradient as in [19], [20].

—'LU

A. Convergence

In this section we investigate the convergence of our FML
scheme in case of losses on the communication links.

Note how, in our scheme, there are two main sources of
randomness: i) random batch selection at each node, and ii)
channel losses. We make the following assumptions:

Assumption 1: W, the hypothesis class (i.e., the set of
possible parameter vectors), is convex and compact with
diameter D, and contains w™ in its interior.

Assumption 2 (L-Smoothness): The local loss functions
{fi}XN., have L-Lipschitz continuous gradients: ||V fi(w) —
Vii(w)] < Ljlw—w'|, V w,w € W.

Assumption 3 (Convexity): The local loss functions { f;} Y,
filaw + (1 - a)w/) < afi(w) + (1 -
W w,w e WYV ael0,1].

are convex.

a) fi(w
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Assumption 4 (Bounded variance): The variance of the
local estimated gradients V f;(w¥, BY) due to the random

sampled data is bounded by o*: Epgs [HVfl(wf,Bf) —
Vii(wh)|?] < o

Assumption 5 (Losses): Transmission losses occur only
upstream and are independent across clients and over time.
From Assumptions 1, 2, and 4 it follows that HGQ(: o+
L?D?) such that EBM[HWZ( k B’”)H?l < G Let fr
be the global minimum of f;. S1m1larly to other works [19],

[21],T = Zl 1 o ff — F(w™) quantifies the heterogeneity of
clients’ local data-sets.

n

Theorem 1. If we select n* = L with o € (1,1), and 1 <

1 ke
m, then:
2
IE[F(EK’O) _ F(w*):| < {|’U)1’0 w*||2+
EZ§:1 n*

3
+ 4LE(1+ LE)T + 02E2

[EQG2 Za,

1 2
SE(E-1)(E - 1)G l}

CER

Kk, k0

a75k,0 Do W

where w = =Kk
S n®

for any K).

andzk1 P <0 (< +,

The proof for Theorem 1 is in the Appendix A. As
Z,I:: 1 n*co (K 1*0‘), the theorem shows that the optimality
gap F(w?) — F(w*) converges to 0 in expectation. In
particular, the convergence rate can be made arbitrarily close
to K~1/2 by choosing smaller values of «. We remark how
higher data-set heterogeneity (larger I') and higher levels
of noise due to batch sampling (larger o2 and G?2) and
to trasmission losses (larger {CER;}Y ;) negatively affect
convergence. In particular, for CER; — 1, the bound diverges,
corresponding to the fact that client ¢ does not succeed in
participating in the training, i.e., no information about f; is
available to the server. All in all, Theorem 1 describes the
relationship between the Federated Learning model and the
system parameters, including the CER.

Figure 1 shows a numerical example of our federated
learning scheme. The reference machine learning (ML) model
for our experiments is the neural network from [3], whose
specific aim is the detection of Spectrum Holes in LTE cellular
networks. The overall size of the network is 62 kBytes, and
can thus suit the low data-rate capabilities of LoRa. The total
number of weights in the network is 15,888. Since each weight
is represented as a 4 byte float, a single LoRa packet can fit
up to 62 weights. In our experiments, we assume that: i) the
dataset is equally split among all clients, with an overlapping
percentage of 10%, which makes the data distribution strongly
non-i.i.d; ii) all clients experience the same C E'R value. Figure
la depicts the F1 score of the global model as the CER
varies in the range {0,0.1,0.2,0.3,0.4,0.5} Such an error rate
varies as a function of the interference level experienced in
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the network (i.e., on the number and position of nodes which
can transmit simultaneously). Specifically, we observe that the
final F1 score of the model after 5 rounds decreases as the
CER gets higher. Notably, when the CER = 0.1, the final
score is only minimally impacted by the CER. Accordingly,
in Section 4.1 we decide to target a CER equal at most to
10% for all clients, as a trade-off between the acceptable
interference level and the convergence speed of the training
process. Figure 1b shows how the F1 score is affected by the
number of involved nodes, and, consequently, by the level of
fragmentation of the dataset, for a fixed C ER = 0.3. The more
fragmented is the dataset, the less is the F1 score after five
rounds. The impact of the fragmentation becomes critical for
the case for N = 15 and N = 18, causing a significant drop
in the F1 score. In fact, the more are the nodes and the dataset
fragmentation, the more rounds are required to converge to an
acceptable model performance. An interesting insight is that
the more fragmented is the dataset, the lower should be the
target CER, to compensate the performance drop induced by
the fragmentation.
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Fig. 1: F1 score of the DeepSense model [3] with our proposed
FML scheme.

IV. THE FEbLoRA FRAMEWORK

The main target of FedLoRa is to establish reliable, effec-
tive and energy-efficient federated learning in LoRa networks,
taking into account the channel and interference conditions
of the sensors (i.e. the network level) and the acceptable
errors on the global model over time (i.e. the learning level).
We now provide a walkthrough of FedLoRa below with the
help of Figure 2. At the beginning, the architecture of the
DNN model M = w is shared with FedLoRa (Step 1).
The DNN model weights are then forwarded to the LoRa
nodes by the LoRa gateway (Step 2). Then, the DNN model
size is fed to the LoRa Resource Allocation Problem (LoRa-
RAP), formulated in Section IV-A. The LoRa-RAP takes as
input some channel-related information, such as signal-to-
noise ratio (SNR) and signal-to-interference (SIR) ratio, which
are estimated experimentally through pilot transmissions (Step
3), and the desired CER on the model components. The PHY
parameters are then sent to each node in the network through
the LoRa gateway (Step 4). As regards the FML training, each
node trains a local DNN model in several subsequent rounds.
Since nodes are not computationally powerful, the local model
for node i, M; = w—nV f;(w), is trained only with a random
sampled batch B; of the locally-available data. Each node
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then transfers the weights of M; to the gateway. The weights
received from all the nodes are aggregated for updating the
global model, which is then sent back to the nodes for the
next round (Step 5).

Input: DL Model

Som b e

1)

(5) LoRa
Global RAP
DL Model | L] LoRa
Gateway

I N ®
E ] ay, LoRa
: Z (@ J‘nﬁ’\” 2 @ PHY
H Parameters

FedLoRa Framework

Fig. 2: High-level overview of the FedLoRa framework.
A. LoRa-RAP Formulation

We assume that the network configuration can be optimized
by dynamically adjusting the transmission power and SF
used by each sensor. Higher SFs are associated to more
robust links, yet to lower data-rates (and, thus, to a longer
transmission time). Moreover, higher values of transmission
power guarantee better SNR at the receiver, but also imply a
bigger energy consumption, and produce more interference to
other nodes in the network. Other communication parameters
such as the transmission bandwidth B and coding rate CR are
not considered as network tunable parameters. In real LoRa
applications the bandwidth is not configurable. For example,
according to EU LoRa regulations, all SFs can only work on
a bandwidth of 125 kHz (except for SF7). Moreover, we do
not include the CR PHY parameter in the optimization as we
assume a Line-of-Sight channel model (i.e. Rice fading), and
a very limited effect of the coding gain employed in LoRa.

Since each sensor has to transmit a bulk of frames at each
model update round, which results in a temporary congestion
of the network!, as a first optimization strategy we consider
the possibility of polling the network nodes sequentially rather
than using random access. Multiple polling rounds are exe-
cuted in parallel on different SFs, by exploiting the capability
of LoRa modulation of rejecting signals modulated at different
SFs even for negative SIR values. By considering this access
solution, we set the signal to noise (SNR) and interference
(SIR) ratios which need to be provided to each node for
guaranteeing the desired CER. For a reference node n, we
assume that interfering signals are only due to other LoRa
nodes transmitting at a SF different from SF,, (which are not
perfectly orthogonal [22]) and that the channel is AWGN.

The goal of LoRa-RAP is to find the values of SF and
transmission power for each node able to minimize the FML

'In this work, we assume to work on a channel without duty-cycle
limitations (869.7MHz).
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round time, while also taking into account the aforementioned
constraints. We define A/ as the set of LoRa nodes in our
reference scenario and SF as the set of available spreading
factors. Moreover, p, and SF,, are the transmission power
and the spreading factor for a generic node n, respectively.
We now model the transmission time in the system. First, as
in [23], the data-rate of a LoRa node n is:

B 4
"92SF. 4 + CR

Accordingly, being s the size of the model weights (in bytes)
to be transmitted, the transmission time of node n is equal to:

r, = SF

s 25F» 44 CR

. °B.SF, 4

where we assume that the model size s is fixed for all the
nodes?. We define the resource allocation problem as follows.

LoRa Resource Allocation Problem (LoRa-RAP)

TSF.,HTL =

' Nep o|T: z}
,Iilsué{rs%&}i{l SsF,«|TSF, 3)
s.t.
Pmin § Pn S Pmax vn € N (4)
SF, € {7,8,9,10,11,12} Vn e N 5)

SIRn(SFna SFint) Z SIRth(SF’ru SFert) Vn € N7
YV SFine € {7,8,9,10,11,12},SF;n; # SF,,  (6)

SNR,, > SNRy,(SF,,) ¥n € N %)

where:

e Nsr, is the number of users assigned to SF x;
e SIR,,(SF,,,SF,,;) is the worst-case Signal to Interfer-
ence Ratio of node n w.r.t. any interfering transmission
performed at spreading factor SF;,,; at the gateway. In
other words, it measures the interference produced by
the strongest interfering node on SF;,¢;
« SNR,, is the signal to noise ratio of node n at the gateway.
With reference to constraint (6), whenever SIR,, is below
the threshold SIR,,;, (SF,, SF;:), decoding of weights sent
from node n may fail with a given CER that depends on the
chosen threshold. Hence, we properly tune the threshold values
to guarantee the desired CER of 10% on the incoming packets
transmitted at each SF. The reference values are shown in
Table 1. The reference threshold values are derived as in [22].

For what concerns constraint (7), the threshold value
SN Ry, (SF,,) corresponds to the minimum SNR required to
correctly decode the incoming frames. The SNR threshold
values are set as in [24].

2A further direction for optimizing the system could be the usage of
compression schemes for sending the model weights, which could lead to
heterogeneous model sizes s,.
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The problem above formulated is non-linear and includes
continuous variables (p), integer variables (SF), as well as
non-linear constraints (constraints 6 and 7), and therefore falls
into the category of Mixed-Integer Nonlinear Programming
(MINLP) problems. More in detail, LoRa-RAP can be as-
similated to a Parallel Machine Scheduling (PMS) problem
[25]. A PMS problem involves the minimization of the max-
imum completion time, i.e., the makespan, for a given set
of n tasks. The tasks should be properly allocated among m
parallel computing machines according to several constraints,
e.g., the allowed maximum processing time and the required
minimum processing power. In such a perspective, the LoRa
nodes are the machines of the PMS problem, the set of SFs
corresponds to a set of tasks, the round time is the makespan,
and the sensitivity and interference constraints correspond
to the processing power requirements. Since PMS problems
are provably NP-Hard, LoRa-RAP falls into this category
of problems, and accordingly can be solved through either
numerical approximation or greedy algorithms.

B. A Greedy Algorithm for LoRa-RAP

We designed a greedy algorithm for resource allocation.
In particular, the algorithm is based on a key-intuition: the
round time can be minimized if the network nodes are properly
distributed among the available SFs. Hence, we introduce the
following load-balancing constraint, which aims at balancing
the load on all the available SFs:

(1/ATSF,x)
ZSFESF (1/ATSF)

Hence, the smaller is the air time, the bigger is the portion
of users assigned to the corresponding SF. The main reason
to perform load balancing is indeed to maximize the parallel
(non-interfering) transmissions and, consequently, to reduce
the FML round time.

The algorithm is split in several phases: (i) Estimate the
channel, (ii) Meet SNR constraints, (iii) Meet SIR constraints.
During the first phase, the gateway node estimates the maxi-
mum SNR of each node (we assume the channel gain matrix
and signal noise power to be known a priori). The maximum
SNR can be easily estimated by assuming the nodes to transmit
at the maximum available power. Nodes are accordingly or-
dered by SNR, in descending order. In the second phase, each
node is assigned to the minimum SF possible, in compliance
with the SNR constraint (7). However, if this choice violates
the load-balancing constraint (8), the algorithm tries to assign

Vr € SF

Nsp =N ()

P SFint 7 8 9 10 11 12
7 01 70 87 96 -102 -0
8 104 03 -102  -12.1  -12.8 -132
9 142 <133 06  -13.0 -144 -15.7
10 169 <172 -159 09  -16.1 -17.9
11 2197 -198 200 -19.0 -1.3  -192
12 222 226 228 232 221 -19

TABLE I. SIR thresholds for a 10% Packet Error Rate,
maximum size payload, CR =1
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the node to the next higher SF. This procedure is repeated until
either constraint (8) is satisfied, or until the maximum SF value
is reached. The last phase focuses on the SIR constraint (6).

For each node n in the scenario, the algorithm checks if
the assigned transmission power is compliant with the SIR
constraint for SF,,. If not, the algorithm proceeds to increase
the transmission power, until either the constraint is satisfied,
or the assigned power exceeds the maximum power limit.
In the latter case, no feasible solution can be found. Then,
the algorithm starts over and repeats the check — since the
nodes are examined in a sequential fashion, adjusting the
transmission power of node ¢ could lead to a violation of the
SIR constraint for at least one of the ¢ — 1 previous nodes.
Hence, the algorithm needs to repeat the check and exits if and
only if the SIR constraint is still satisfied for all nodes. If not,
the algorithm executes step 3 several times. If the algorithm
converges, it yields a sub-optimal solution to the round time
minimization problem formulated in (3).

C. FedLoRa Prototype

We prototyped and evaluated FedLoRa and LoRa-RAP
on Colosseum, the world’s largest network emulator [16].
Colosseum is a wireless emulator with 128 Standard Radio
Nodes (SRNs). Each SRN is equipped with 48-core Intel Xeon
E5-2650 CPUs and an NVIDIA Tesla K40m GPU, and with
a NI/Ettus USRP X310 SDR as well. The SRNs are all linked
together by a Massive Channel Emulator (MCHEM), which
is responsible for the emulation of the wireless channels.
Thanks to its FPGA modules, the MCHEM processes the radio
signals through Finite Impulse Response (FIR) filters, and thus
emulate the effects of a real radio channel, such as attenuation
and propagation delay.

As part of the prototype, we implemented from scratch the
first full-fledged LoRa PHY layer for SDR platforms, able to
guarantee compatibility with commercial LoRa-based sensors.
To this purpose, we performed a low-level analysis of real
signals, transmitted by LoRa commercial devices, for solving a
few modulation ambiguities of the LoRa patent from Semtech.
The full implementation of our SDR LoRa transceiver is
presented in [26], and is available on GitHub?.

Besides the LoRa PHY, we implemented for the first time
a MAC protocol to establish reliable data exchange between
the nodes and the gateway based on polling. Indeed, for
transmitting the gradient components of the local model at
each communication round, sensors generate a bulk of data
frames. Our polling mechanism is intended to replace the
ALOHA mechanism of standard LoRa networks, which has a
very limited efficiency in case of greedy traffic sources. With
a polling mechanism, nodes assigned to the same SF transmit
in a sequential way, and do not interfere with each other,
while nodes working on different SFs can be polled in parallel.
For this reason, balancing the load in the network is of
crucial importance for maximizing parallel (non-interfering)
transmissions, thus reducing the FML round time.

3https://github.com/fabio-busacca/sdr-lora
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V. COLOSSEUM RESULTS

Before presenting the results obtained through Colosseum,
we first describe the baselines and the RF scenarios.

Baselines. We compare LoRa-RAP with:

o MinPower: this algorithm first focuses on the minimiza-
tion of the node transmission power. Then, it assigns
the lowest SF possible, in compliance with LoRa SNR
requirements.

BestSF: as opposed to MinPower, the main goal of BestSF
is to first find the minimum SF allowed by the SNR
constraints, and, only then, to minimize the transmission
power. No load balancing criteria are applied.

Both algorithms also deal with the SIR constraints in (6).
The adopted procedure is identical to the one of LoRa-RAP.

Scenario Description. We now describe the custom LoRa
scenarios implemented in Colosseum to evaluate LoRa-RAP. A
network scenario is easily defined in Colosseum as a collection
of wireless links between several radio nodes. Each link is
specified by digital channel taps, which are fed to the MCHEM
at run time. As depicted in Figure 3, the scenario involves a
maximum of 18 LoRa nodes and one LoRa gateway, scattered
over a 400 x 400m? area. The color scheme is related to the SF
value assigned to each node by LoRa-RAP in the full setting
(as the number of considered nodes varies, the allocation of
resources is accordingly different).
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Fig. 3: Colosseum Testbed: Location of the LoRa Nodes and of
the Gateway in the emulated scenario. Each node is associated
to a SF value through the LoRa-RAP algorithm

Channel attenuation is calculated by means of Friis propa-
gation model, with a path loss exponent o = 2 (i.e. the coeffi-
cient for free space path loss scenarios). Note that the choice to
simulate a ”small” area and to assume a free space propagation
model could seem unsuitable for the emulation of LoRa-based
communications. This choice, however, is due to the intrinsic
limitations of Colosseum, and, more specifically, of the SDR
hardware, which introduces a noise power estimated as high as
02 ~ 3,5 %1078, This effect naturally reduces the maximum
allowed simulated attenuation and, as a consequence, the
maximum simulated communication distance.

Figure 3 depicts the virtual locations of the nodes in the
emulated scenario, as well as the SF resource allocation
performed by LoRa-RAP. Note how the farthest nodes are
naturally associated to higher SFs. Moreover, the SF allocation
reflects the load balancing criterion previously described.
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Experiments. The experiments performed on the Colos-
seum channel emulator aimed at the evaluation of two main
metrics: FML round time, and energy consumption. Note
how the latter represents a normalized energy value, rather
than a real energy value. Indeed, since SDRs are uncalibrated
devices, calculating the actual output power is not possible.
Instead, we calculate the energy consumption for each node
from the digital signal amplitude, and from the model trans-
mission time. As already stated in Section III, the reference
ML model for our experiments is the neural network from [3].
The experiments were run for several sub-sets of active nodes,
ranging from just three LoRa nodes, to the full configuration
of eighteen nodes. In each configuration, the chosen nodes
were the closest to the gateway. Finally, the FML round time
and the energy consumption have been averaged on a total of
five federated rounds per experiment.

Note how, in this particular scenario, the baseline MinPower
allocates all the nodes to SF 9, while, for BestSF, every node
is assigned to SF 7.

Figure 4 depicts the average FML round time for LoRa-RAP
and the baselines. The results show how our approach is able
to reduce the average time for a FML round, and, hence, to
finally reduce the convergence time of the FML procedure. In
fact, while BestSF simply assigns the smallest SF possible to
each node, LoRa-RAP balances the load among the available
SFs, allowing for simultaneous transmissions on different SFs,
thus reducing the FML round time by up to about 35%. The
baseline MinPower offers instead the worst performance: since
the priority is the minimization of the transmission power, the
nodes are allocated to higher SFs (in this specific case, SF 9),
resulting in a high transmission time.
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Fig. 4: Colosseum-LoRa-RAP vs baselines: FML Round Time

Figure 5 reports the average per-node energy consumption
for LoRa-RAP and the baselines. Significantly, all three strate-
gies exhibit a similar performance for each node configuration,
with a slight reduction in the energy consumption for the
BestSF strategy. Note how a bigger number of active nodes
results in a bigger average energy consumption. Indeed, the
farthest nodes either transmit on higher SFs and/or with high
transmission power. Hence, the average energy consumption
accordingly increases.

In conclusion, Figures 4 and 5 highlight how LoRa-RAP is
able to sensibly reduce the FML round time without impacting
on the average per-node energy consumption.
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VI. TESTBED RESULTS

To validate the performance of FedLoRa with real-world
data on a larger scale, we have collected realistic SNR
and RSSI values from real-world measurements through the
testbed depicted in Figure 6. Specifically, we used (i) one
Adafruit RFM95W LoRa radio transceiver breakout board
operating at 915MHz, equipped with a Semtech SX1276
Engine with 127 dB Dynamic Range RSSI; (ii) a LoRa-
compliant RAK7268C WisGate Edge Lite 2 gateway from
RAK Wireless; (iii) an NVIDIA Jetson Nano. We placed
the LoRa gateway inside our laboratory and collected several
SNR/RSSI measurements in several different locations, at a
maximum distance of about 5 Km from the gateway, as
shown in Figure 6. The SNR and RSSI values have been
used to model the channel conditions between the nodes
and the gateway, with an estimated noise power of about -
105 dbm. All these data has been fed to LoRa-RAP and
to the baseline allocation procedures. Since results from the
previous section demonstrated the ineffectiveness of MinPow,
we omit the performance results from this baseline. Instead,
we introduce a variant of LoRa-RAP called LoRa-RAP Min
SE. The difference is in the way the load balancing criterion
is applied. While LoRa-RAP tries to distribute the nodes over
all the available SFs (if possible), LoRa-RAP Min SF also
aims at keeping the SFs as low as possible. Intuitively, in
small-scale scenarios, LoRa-RAP Min SF performs similarly
to vanilla LoRa-RAP. For this reason, we chose not to evaluate
LoRa-RAP Min SF on Colosseum, and, instead, to test its
performance over a larger, simulated scenario. Once again, the
baselines are evaluated in terms of both average FML round
time, and energy consumption. Similarly to the experiments
run on Colosseum, we evaluate the allocation strategies over
a variable number of nodes, ranging from 24 to 42 nodes.
Figure 6 illustrates the SF allocation for LoRa-RAP over all
the 42 evaluated positions.

Figure 7 depicts the FML round time. LoRa RAP and LoRa-
RAP Min SF achieve a relevant improvement in the FML
round time. More specifically, LoRa-RAP is the best allocation
strategy in most configurations, with an improvement of up
to 50% over BestSF. However, in some specific cases, LoRa
RAP Min SF introduces a slight improvement in the FML
round time, as compared to its vanilla version. The reason is
the following: in some specific cases, the node number can
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Fig. 6: Locations of the nodes during the data collection.

not exactly match the load balancing criteria. For instance,
let us consider a network made up of 8 nodes. if the airtime
over SF x is always double the airtime over SF z + 1, i.e.
ATsp 341 = 2 ATsp 5, then the load balancing condition is
{4x,2x,x}, i.e. 4 nodes assigned to SF 7, two nodes to SF 8,
and one to SF 9. In this case, however, this condition can not be
satisfied, and the resulting allocation is instead {4,2,2}. The
maximum transmission time, therefore, is 2 * ATgr 9. Under
proper channel conditions, one extra node could instead be
allocated to SF 8, resulting in the distribution {4,3,1}, and in
a smaller transmission time of 3 x ATgp g = 1.5 % ATgp 9.
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Fig. 7: Testbed - LoRa-RAP vs baselines: FML Round Time
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Figure 8 reports the average energy consumption per-node.
In line with the results from Colosseum, LoRa-RAP and LoRa-
RAP Min SF exhibit a slightly higher energy consumption, as
compared to BestSF. Once again, including more nodes, and,
specifically, the farthest ones, results in an increased average
energy consumption.

The results show how LoRa-RAP is able to sensibly reduce
the FML round time with little to no impact on the average
per-node energy consumption.

VII. CONCLUSIONS

We have presented FedLoRa, an optimization framework
for fast and efficient Federated Learning in IoT LoRa wireless
networks. We have first demonstrated a fundamental theoreti-
cal result for federated learning schemes with communication
errors, and demonstrated that the related learning error can be
forced to zero in case the learning rate gradually decreases
with the number of updating rounds. Then, we leveraged this
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important result in the formalization of the LoRa Resource
Allocation Problem (LoRa-RAP). In LoRa-RAP, the commu-
nication resources (spreading factor and transmission power)
assigned to each LoRa sensor are optimized according to
a load balancing logic to achieve an improved FML round
time while reducing energy consumption. Since the proposed
optimization problem is NP-Hard, we have provided an ap-
proximation algorithm to solve it in polynomial time. We have
built a full-fledged prototype of FedLoRa and evaluated its
performance through extensive experimental evaluation on the
Colosseum emulator [16]. To the best of our knowledge, we
are the first to investigate and evaluate FML-based algorithms
in realistic IoT settings. We have considered one state-of-the-
art DNN model for SHD [3], and investigated the FedLoRa
performance on Colosseum, as well as with real-world mea-
surements with a LoRa gateway and a LoRa node. Our results
have shown that FedLoRa reduces the FML round time by
up to about 35% with respect to baselines. To allow full
reproducibility of our results, we pledge to share our code
to the community.

APPENDIX

We introduce the following notation:

N E-1
g"=>">" aiVfi(wl, B, ©)
=1 e=0
N E-1
g =>"> aVfi(w!), (10)
1=1 e=0
N
whth = wh0 ¢ Z s (whF — w0, (1)
i=1

Note that, ignoring the projection, w!‘fﬁl would coincide

with the global model under ideal lossless transmissions
(CER; = 0 for all 7). Let B* = {B¥,B%,--- B%} denote
the batches drawn during communication round &, and Tk
denote the channel losses occurred during round k. In what
follows, when we write an expectation with respect to variables
at round £+ 1, we implicitly condition on the previous history,
ie,on H* ={B',T' B2 T2, ... B* T*}.

The proofs of the first three Lemmas can be easily obtained
adapting the proofs of Lemma 1, 2, and 3 in [21].
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Lemma 1. Under Assumptions 24, if k. < spmpr L(21E 1 then:
Bp[lwf™ - wi?] < b
w*||? 31" E 211\11 o (fi(wk’o) - fi('W*)) +
Ep S S5 whO 2] + a2 (LEQ +

LE)T +0*E? + Ep [[g* — ¢*12]).

Lemma 2. Under Assumption 4, E g [Hgkfg'“HQ] < 1E%02.
Lemma 3. Under Assumptian 4,
N k,0
IS e S bt — wfOl?) < d0EE -
1)(2F — 1)G2.

Lemma 4. Under Assumptions 1, 4 and 5, Egr 7w [Hwk“’o—
« k+1,0
wiP] < (BT 0B + Bl -

w*||%.
Proof. w10 — |2 < [l + 3T =i (" ~
wk 0) w ||2
ki k+1,0

= [wk? + Zrl TCER (@h — wh0) — w™O? 4

k+1,0 2
Hw —w| . .

= | 2L =5 @] — wh0) — ai(wfF — whO)|? +
a0~

- k,E

D I A

FHLO _w* |2, where we apphed in order, the properties of

K10 the triangle inequality,

[wig

the projection, the definition of w;,

and the Jensen’s inequality.
Computing the expectation over random events at round £,

we obtain: Egr g [[wb+10 —w* |2 < SN B ||wk?
wk,OHQ . ’

[(1 — CER) (=g — 1)? + CERZ} + Epi[wht0 —
el
k+1 "
21 0411 CER IEB’CHw wh O[> +Epx |wig 0w |12.
Moreover, )
kil pk,l
B o —wh? = g | S (7)Y A, BE?
SEY o ) EBkIIVfL( S BEDI? < () B2GR.
We conclude by combining the two inequalities above. t
Let A= B2G? YY) ;1S5 +ALE(14+ LE)T+E%0*+
3E%? + LE(E —1)(2E — 1)G2.
By combining Lemmas 1-4, we obtain:
N * *
Ept S (fiwh) = filw)) < b0 = wr?
Epe g [[wh 10 — w2 + ()" A,

Summing for k = 1,..., K, and computing the expectation
over the whole history, we obtain:

E ot S E[fi(wh) - fi(w)]

< Juwt® - Bl 0 — w2+ AT ()
The result follows by dividing both terms by % Zszl nk

and observing that, bj convexity of the functions f;:

E[F(@"") - F(w)] = E[Y, i (fi(@") - fi(w")]
S nkE{fi(wf‘o)ffm(w*)]
Sy :

w*||2 _

N
<Dt
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