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Ecology and evolution are considered distinct processes thatinteract
on contemporary time scales in microbiomes. Here, to observe these

processesinanatural system, we collected a two-decade, 471-metagenome
time series from Lake Mendota (Wisconsin, USA). We assembled 2,855
species-representative genomes and found that genomic change was
common and frequent. By tracking strain composition via single nucleotide
variants, we identified cyclical seasonal patternsin 80% and decadal shifts
in 20% of species. Inthe dominant freshwater family Nanopelagicaceae,
environmental extremes coincided with shifts in strain composition

and positive selection of amino acid and nucleic acid metabolism genes.
These genes identify organic nitrogen compounds as potential drivers

of freshwater responses to global change. Seasonal and long-term strain
dynamics could be regarded as ecological processes or, equivalently, as
evolutionary change. Rather than as distinct interacting processes,

we propose a conceptualization of ecology and evolution as a continuum
to better describe change in microbial communities.

Microbial communities allow us to observe eco-evolutionary dynam-
icsinreal time due to the short lifespans and large population sizes
of microbes'’. Real-time evolution was famously observed in the
Escherichia colilong-term evolution experiment?, but few long-term
observations exist for natural, ecologically complex systems. Here,
we introduce a two-decade, 471-sample microbial time series from a
freshwater lake, the TYMEFLIES dataset®, which allows us to directly
observe ecology and contemporary evolution in a natural ecosys-
tem. The Lake Mendota (Wisconsin, USA) microbial observatory® is
part of the North Temperate Lakes Long-Term Ecological Research
programme®, which builds on limnological research dating back to the
late1800s. Long-term and abrupt change in Lake Mendota are well doc-
umented and linked to multiple interacting driversincluding climate™’,
land use'*" and invasive species'>, and these drivers are also impacting
the lake’s microbial communities™".

The dynamism of freshwater and marine bacterial communi-
ties, especially in response to seasonal drivers, is evident in several
long-term time series where 16S ribosomal RNA genes were used to
define species-like units'®'¢, as well as in Lake Mendota'*. However,
a genome-resolved approach is necessary to incorporate evolution
into our understanding of microbial community change. Selective
pressures change gene frequencies, which manifest as genomic
diversity". This microdiversity can be measured across samples by
mapping short metagenomic reads against reference genomes and
identifying single nucleotide variants (SNVs) in the mapped reads?°?..
Such strain-resolved approaches have identified both the ecological
relevance of strains®>* and a variety of evolutionary strategies shap-
ing them**?’,

Here, we describe community-wide strain-resolved bacte-
rial change over 20 years. By reconstructing tens of thousands of
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metagenome-assembled genomes (MAGs), we found that inter- and
intraspecific changes unfold at short, seasonal time scales as well as
longer-term decadal time scales, in some cases coinciding with envi-
ronmental extremes. Research on such eco-evolutionary dynamics
usually focuses on feedbacks between distinct processes of ecology
and evolution®*2°, In our microbial data, however, these processes
were difficult to distinguish. Ecological dynamics appeared to occur
between strains within a population, but the strains themselves were
inferred from observations of genomic change. Consistent with the
ambiguity of the microbial species concept®, our observations sug-
gest thatitisnot possible to cleanly delineate between ecological and
evolutionary processes in natural microbial communities. Therefore,
we propose an adjusted conceptualization, where ecology and evolu-
tion converge along a continuum.

Results

The TYMEFLIES dataset

We collected 471 samples over 20 years from Lake Mendota (Wisconsin,
USA)*and obtained shotgun DNA libraries (Fig. 1a and Supplementary
Data1). We refer to these ‘Twenty Years of Metagenomes Exploring
Freshwater Lake Interannual Eco/evo Shifts’ as the TYMEFLIES dataset.
By cross-mapping reads from ~50 metagenomes to each single-sample
metagenome assembly, we obtained a total of 85,684 genome bins,
30,389 of which were medium or high quality (>50% completeness and
<10% contamination)*. We clustered these 30,389 bins at 96% average
nucleotide identity (ANI) and obtained 2,855 clusters from which we
chose representative MAGs™> (Supplementary Data 2). Several previ-
ous studies have found an emergent species boundary at similar ANI
cut-offs****, and we observed arapid increase in the number of clusters
above the 96% ANI cut-off. In this study, we treat the representative
MAGs from each 96% ANI cluster as bacterial species and refer to sub-
species delineations identified in the mapped metagenomic reads as
strains®.

The representative MAGs have high estimated completeness
(median 86%) and low contamination (median 0.9%) (Fig. 1b and Sup-
plementary Data 2) and reflect the abundant members of the lake’s
bacterial community, especially in well-sampled seasons (Fig. 1c).
Using a 16S rRNA gene amplicon dataset from the same time series*
as areference for the expected community composition (Fig. 1d), we
found that our representative MAGs comprise most of the abundant
taxa (Fig.1e). Moreover, we obtained 168 representative MAGs from the
Nanopelagicales order, whichisthe most abundant order in Lake Men-
dotaand accounts for22% of theampliconreads and 10% of the mapped
metagenomic reads. Similar to SAR11 bacteria in the oceans, this
freshwater lineage is abundant in lakes globally”, difficult to culture®
and typically has highly streamlined genomes™.

Seasonal ecology and evolution

From a century of limnological research, we know that Lake Mendota
follows a consistent annual phenology and that phenological patterns
are changing in response to climate change and invasive species**™*.
Theseseasonal dynamics are evidentinbacterial, viral** and protistan®
community composition. To confirm that phenological abundance
patterns also exist in our finely resolved bacterial species, we identi-
fied annual peaks in species relative abundance using periodograms
(magnitude of Fourier transforms). After limiting this temporal analysis
to the subset 0f 1,474 species that occurred at least 30 times over at
least 10 years, we found that 72% of them have consistent seasonal
abundance patterns (Fig. 2a).

To determine whether evolutionary dynamics (thatis, changesin
allele frequency withinthe species) also unfold seasonally, we mapped
reads from each sample against each species’ reference genome and
identified shiftsin strain composition from changesinnucleotide diver-
sity (r) and allele frequencies at SNVs. We found that 33% of the 1,474
species displayed consistent seasonal nucleotide diversity patterns
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Fig.1| The TYMEFLIES dataset. a, The metagenome sample dates are indicated
by black vertical lines, and microbial seasons' are indicated by coloured shading.
Ice-onindicates contiguousice cover; spring, adiatom bloom; clear-water,
aphase of intense zooplankton grazing and high water clarity; early summer,
aswitch to cyanobacterial dominance; late summer, a period of strong thermal
stratification; and fall, an unstratified period after fall mixing. b, The quality
ofthe 2,855 representative genomes obtained after clustering to 96% ANI. We
treat these genomes as species. ¢, The percent of metagenome reads from each
sample that mapped to all reference genomes with an ANI >93%. The samples
are grouped by season to highlight how well the reference genomes reflect

each seasonal community. d, The rank abundance of phyla as measured by

16S rRNA gene amplicon sequencing*. The abundant Nanopelagicales order

of Actinobacteria is highlighted. e, The abundance of phylain the TYMEFLIES
reference genomes, quantified as the mean relative abundance normalized

by genome size and sequencing depth. The Nanopelagicales order is again
highlighted. The box plotsindicate Q1 - 1.5 x interquartile range (IQR), Q1,
median, Q3and Q3 + 1.5 xIQR.

(Fig.2a). Togain greater resolution of the strain composition of the 236
species abundant enough over time to reliably call SNVs (median cover-
age >10x), we created a‘SNV profile’ for each date with the frequencies
of the reference alleles. For each species, we calculated the Euclidean
distance between every date’s SNV profile (Fig. 2b). We found that 80%
of these 236 abundant species had consistent phenological patterns
intheir strain composition. This demonstrates that phenological pat-
terns evidentin the bacterial community extend to the finest possible
taxonomicresolution. Several short-term freshwater studies have also
observed changes in strain composition on seasonal time scales***.
Phenological patterns in subspecies strains similar to those at the
species level suggest ecological processes may shape bacterial strain
composition, but these changes are evidenced by intraspecific genomic
change and could thus also be interpreted as seasonal evolution.
Given the ubiquity of seasonal patternsinboth species abundance
and subspecies diversity, we asked whether they were correlated. We
quantified whether aspecies’‘bloom’inabundance consisted of fewer
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Fig. 2| Bacterial seasonality at the subspecieslevel. a, The per cent of species
with seasonality in nucleotide diversity and abundance (a centred log ratio
transform was applied to relative abundances). The 1,474 species that occurred at
least 30 times were included in this analysis. b, A time-decay plot of the Euclidean
distances between the SNV profiles of an abundant species in the Nanopelagicus
genus (ME2017-06-13_3300043469_group7_binl4). A smaller distance between
SNV profilesindicates that the strain composition is more similar. Each blue
point represents a pairwise comparison between two sample dates, with the time
between those dates on the x axis. The black line is a 6 month moving average,
drawn to highlight the annual periodicity of strain similarities. c, An example of

aless diverse bloom, where nucleotide diversity decreases as relative abundance
increases. Displayed is an abundant species in the Planktophila genus (ME2011-
09-04_3300044729_group3_binl42).d, An example of amore diverse bloom,
where nucleotide diversity increases as relative abundance increases. Displayed
isan abundant species in the Nanopelagicaceae family, MAG-120802 genus
(ME2012-08-31.3300044613_group4_bin150). The thin blue lines represent
individual years, and thick black lines with shading represent mean + s.d.

e, Thedistribution of bloom diversity patterns across the 365 species that had
seasonality in both abundance and nucleotide diversity.

strains or more strains thanits baseline composition. Of the 365 species
with seasonal patterns in both abundance and nucleotide diversity
(Fig. 2a, purple bars), we found that both scenarios were common;
21% of these species had less diverse blooms (Fig. 2c,e, yellow bars),
while 19% had more diverse blooms (Fig. 2d,e, green bars). Further,
all abundant phyla demonstrated an even mix of both bloom types
(Fig. 2e). A lower-diversity bloom suggests that a subset of strains
outcompeted the others, while a higher-diversity bloom suggests
that micro-niches allowed rarer strains to gain abundance, resulting in
higher strain diversity*® due to amore even strain composition. This is
in agreement with a previous study that found both overlapping and
distinct niches within freshwater bacterial species®. The prevalence
of both bloom diversity patterns suggests ecological processes drive
changesinallele frequencies.

Long-term ecology and evolution

Long-term changes can be masked by seasonal oscillations, lost in
what is referred to as the ‘invisible present™’. The unprecedented
length of the TYMEFLIES metagenome dataset provides a unique
lensinto theinvisible present, enabling the identification of overlayed
long-term patterns. To find long-term changes in strain composition,

we developed a classifier trained on the distance between each date’s
SNV profile and the SNV profile of that species’ first occurrence in the
time series. We trained this classifier on 11 examples of manually identi-
fied temporal patterns and then applied it to all 263 species with suf-
ficientabundance toreliably call SNVs. Our classifier identified gradual
change (Fig. 3a), which may arise from genetic drift or in response to
aslow press disturbance. It also identified abrupt change (Fig. 3b,c),
which may arise in response to a new stable state after a tipping point
or from a sudden environmental shift®**'. Among instances of abrupt
change, we identified step changes (Fig. 3b), where the new strain com-
position persisted during the remainder of our time frame, as well
as patterns of disturbance with resilience (Fig. 3¢), where the strain
composition recovered to baseline.

We found that 21% of the most abundant species experienced
onekind of long-term change in their SNV profiles during our 20 year
study period, and these changes overlayed both seasonal and acycli-
cal short-term dynamics (Fig. 3d). Abrupt change was almost twice as
commonasgradual change (seenin36 versus 19 species), and resilience
wasonly slightly more common than alasting step change (20 versus 16
species) (Fig.3d). The three long-term change patterns were found in
many abundant species distributed across phyla (Fig. 3e). Many species
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Fig. 3| Long-term changes in strain composition. a, An example of long-term,
gradual change in strain composition. The points indicate sample dates and
distance refers to the Euclidean distance between a species’ SNV profile on

that sample date and its first occurrence in the time series. A species in the
Nanopelagicales order, AcCAMD-5 family is shown (ME2005-06-22_3300042363_
group2_bin84).b, An example of an abrupt step change in strain compositionina
species in the Nanopelagicus genus (ME2011-09-21 3300043464 _group3_bin69).
¢, Anexample of a disturbance/resilience pattern, where an abrupt changein
strain composition is followed by recovery to the original strain composition, in

aspecies in the Planktophila genus (ME2015-07-03_3300042555_group6_binl61).
d, Long-term change patterns often overlayed seasonal patterns. Of the 263
species abundant enough to observe their SNV profiles, 39 had both long-term
and seasonal patterns, while 16 had only long-term patterns. e, The distribution
of long-term patterns across phyla. Each species that underwent long-term
changeisindicated by asection of the phyla’s bar, scaled by the mean abundance
of that species. The sections corresponding to the examples highlightedina-c
arelabelled.

in the Actinobacteriota phylum were abundant enough to include in
this analysis, providing a detailed view of change in these common
freshwater heterotrophs. Long-term changes in SNV profiles reflect
shiftsinintraspecific strain composition, whichis typically attributed
to evolutionary processes®”. The fact that during our observation
period over afifth of the species experienced long-term changes in their
SNV profiles emphasizes the importance of including contemporary
evolutionary change in our understanding of microbial ecology.

Abrupt changes in Nanopelagicaceae
In general, related species did not change in unison with each other,
suggesting that the drivers of evolutionary change are highly specific
(Fig.4a). One exceptionisanabrupt change event thatimpacted seven
species within the Nanopelagicaceae family (acl) in 2012, specifically
speciesinthe Nanopelagicus and Planktophila genera (acl-Band acl-A).
This is the most abundant family in Lake Mendota and in freshwaters
globally®, and the 127 Nanopelagicaceae species we recovered together
accounted for 8% of the relative abundance on average. Five of these
Nanopelagicaceaespecies displayed resilience toanabrupt changein
2012, while two experienced lasting step changes in strain composition.
A myriad of possible environmental variables could have driven
this event. A leading candidate is extreme weather as Lake Mendotawas

unusuallywarm and dry in 2012. The lake experienced high epilimnion
water temperatures during spring and summer, with the hottest July on
record since 1894 (Fig. 4b), the fifth shortest winter ice duration on
record since 1856 (Fig. 4c), the eighth lowest annual discharge from
its major tributary on record since 1976 and the second lowest peak
discharge® (Fig. 4e). These environmental conditions led to top-down
and bottom-up controls on the lake’s primary productivity. The highest
spring zooplankton abundance since measurements began in 1994>
(Fig. 4d) was probably a result of the mild winter and spring>®, which
allowed zooplankton, including the prolific grazer Daphnia pulicaria,
toestablish early. Low total phosphorus and soluble reactive phospho-
rus (Fig. 4f,g) was probably a result of low external nutrient loading
associated with mild discharge events”. The resulting combination of
high zooplankton grazing and low phosphorus, typically the limiting
nutrient in lakes, may be responsible for low phytoplankton biomass
(Fig.4h), whichin Lake Mendotais dominated by cyanobacteria during
summer*®, Lake Mendota’s dissolved organic carbon (DOC) is primarily
provided by phytoplankton®’, consequently DOC was also low in 2012
(Fig. 4i). Lake heatwaves are predicted to become hotter and longer
with climate change®, and these observations suggest that the intense
epilimnetic heatwaves during 2012 had cascading effects on lake
biogeochemistry that extended to the level of bacterial strains.
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Fig. 4| Abrupt changes in Nanopelagicaceae strain composition coincide
with environmental extremesin 2012. a, Dates of all abrupt changes in strain
composition arranged by phyla. Most changes were isolated events, but multiple
species from two abundant genera of Actinobacteriota, Planktophila and
Nanopelagicus, experienced abrupt change in 2012. The point size is scaled by
species abundance. b, Unusually high epilimnion water temperatures during
spring and summer 2012 (relative to 1894-2019). ¢, The preceding winter had an
unusually shortice duration (relative to 1853-2023). d, The total zooplankton
biomass (excluding predatory Bythotrephes and Leptodora) was unusually high,
probably enabled by warm early spring temperatures (relative to 1995-2018).

e, Discharge from the Yahara River, the main tributary to Lake Mendota, was
unusually low and lacked high run-off events typical after storms and spring
snowmelt (relative to 1989-2021). f,g, The total phosphorus (TP) (f) and soluble
reactive phosphorus (SRP) (g) were low (relative to 1995-2021), probably due to
low sediment transport. h, Low phytoplankton biomass (relative t01995-2020),
probably resulting from both high zooplankton grazing and low nutrient
availability. i, Low dissolved organic carbon (DOC) (relative to 1996-2022),
probably aresult of low phytoplankton abundance. The box plots indicate
Q1-1.5xIQR, Ql, median, Q3and Q3 + 1.5 x IQR.

Another possible driveris the irruption of the invasive zooplank-
tonspiny water flea (Bythorephes cedertrémii) in 2009, whichitself was
driven by an unusually cool summer®. This major disturbance resulted
in a trophic cascade that decreased water clarity>*, increased lake
anoxia> and shifted the bacterial community composition*. Although
the abrupt changes in strain composition of seven Nanopelagicaceae
species were not observed until 3 years later, lag effects are common
in complex ecosystems®. In contrast to the 2009 species invasion, we
did not see bacterial community-level shifts corresponding to the 2012
extreme weather, but environmental drivers of strain dynamics may
be highly specific. Ecosystem-wide drivers like these two disturbances
can have cascading and interacting effects on nutrient and carbon
dynamics, which in turn impact bacteria. The observed long-term
intraspecific changes suggest that such ecological drivers are also
drivers of evolutionary change, further emphasizing how ecology and
evolution are intertwined.

Evolutionary signals in a Nanopelagicus

To understand the dynamics of abrupt evolutionary change, we fur-
ther examined one of the abundant species, a Nanopelagicus (acl-B),
that experienced a step change in strain composition in August 2012
(Fig. 3b). Anon-metric multidimensional scaling (NMDS) ordination of
its SNV profilesindicated the strain composition changed abruptly at
that time and settled into a new composition after a period of adjust-
mentin 2012 and 2013 (Fig. 5a).

Therelative abundance of this species was quite constant through-
out our 20 year observation period (Fig. 5b), typically with higher
abundances during the spring clear-water phase. The step change
in strain composition (Fig. 3b) coincided with one in genome-wide
nucleotide diversity (Fig. 5c). These patterns could result from the
introduction of a new strain or from an increase in the evenness of
existing strain abundances. To distinguish between these hypotheses,
we counted the number of previously unobserved SNVsin the mapped

reads of every sample. We did not see large spikes in new SNVs in 2012
(Fig. 5d), suggesting that the step change reflects shiftsin the relative
abundances of existing strains.

This interpretation is consistent with a dramatic increase in the
number of genes under positive selection that occurred at this time
(Fig. 5e). As the relative abundances of some strains increase, alleles
specific to them appear to undergo partial (or ‘soft’) selective sweeps.
If strain composition re-equilibrated, this signal would die out. How-
ever, the increase in the number of genes under selection persisted
(Fig. 5e). This could arise from continuing fluctuations in strain abun-
dances, consistent with the larger distances between SNV profiles seen
after the step change (Fig. 5a). To identify candidate loci that reflect the
phenotypicdifferences between strains driving adaptations, we sought
genes that consistently showed signs of being positively selected over
theentire timeseries, only during the pre-2012 period and only during
the post-2012 period. Four genes were consistently selected both pre-
and post-2012, four genes were consistently selected pre-2012 and 33
genes were consistently selected post-2012. We used gene functional
predictions® toidentify their potential metabolic pathways. Of the 33
consistently selected genes post-2012, ten are involved in amino acid
metabolism or aminoacylation and six are involved in nucleic acid
synthesis or degradation (Fig. 5f).

Previously, the absence of biosynthesis or auxotrophies for amino
acids and nucleotides has been highlighted for microorganisms with
streamlined genomes®*“. In the streamlined Nanopelagicus, auxo-
trophies for various amino acids**® coupled with an enrichment of
transporters for many small organic nitrogen compounds, including
amino acids**”*® and nucleic acid components®*®8, are common.
Moreover, the histidine pathway was found split between two different
strains of Nanopelagicus growing inamixed culture®®. Our observation
of consistent selection onamino acid and nucleic acid metabolism sug-
gests that these genes differentiate the post-2012 strains. Additionally,
the low phytoplankton biomass in 2012 (Fig. 4h) might indicate lower
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Fig. 5|Step change in strain composition coincides with more genes under
selection. a, An abundant Nanopelagicus species experienced astep changein
strain compositionin 2012 (ME2011-09-21 3300043464 _group3_biné9, see also
Fig.3b). Samples with more similar SNV profiles appear closer on this NMDS
ordination. The years 2000-2011 cluster together and are distinct from years
2014-2019, which cluster separately. A sudden change in strain composition
occurred on3 August 2012. b, Despite the abrupt change in strain composition,
the relative abundance of this species remained constant over time.

¢, Concurrent with the shift in strain composition, nucleotide diversity increased
and then remained high, indicating that the new equilibrium comprised a more
diverse assemblage of strains. d, The absence of a spike in the number of new
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SNVs suggests that anincrease in the evenness of existing strains occurred,
rather than theintroduction of new strains. e, Concurrent with the shift in strain
composition, the number of genes under positive selection also increased
(McDonald-Kreitman two-sided F-statistic P value <0.05). f, The occurrence of
consistently selected genesin all the samples, in the pre-2012 period and in the
post-2012 period. The x axis indicates samples ordered consecutively and the
yaxisindicates genes. The shading indicates the significance level of positive
selection (McDonald-Kreitman two-sided F-statistic P value). Amino acid-
related genes and nucleic acid-related genes are indicated on the right axis. Full
annotations are available in Supplementary Data 3. Note that the x axis is evenly
spaced by sample, so that years with more samples take up more space.

influx of fixed nitrogen into the system, which could have cascading
effects onthe processing of organic nitrogenin abundant microorgan-
isms. Therefore, it appears that biosynthesis, use and reuse of small
organic nitrogen compounds are key in the ecology and evolution of
these globally abundant lake bacteria.

Discussion

Freshwater lakes are focal points on the terrestrial landscape, pro-
cessing an estimated 70% of net terrestrial carbon production®.
These ecosystems are stressed by both climate change’® and inva-
sive species’’, but whether lakes will become net sources or sinks
of carbon is uncertain’>”®, The foundational role of bacteria in
aquatic food webs™ makes understanding their responses to global
change a pressing question”. The coincidence of the 2012 shifts in
Nanopelagicaceae strains with both a species invasion and environ-
mental extremes implicates anthropogenic drivers. Given the global
abundance of Nanopelagicaceae®, changes in its strain composition
may have wide-ranging impacts on freshwater ecosystems, and organic
nitrogen compounds may play a central role in freshwater responses to
global change. However, it isambiguous whether such shifts in strain
composition reflect ecological or evolutionary change.

Theinterface between ecology and evolutionis delineated by spe-
ciesboundaries, butinbacteria species definitions are hotly debated™..
Using acommonly chosen definition for microbial species boundaries,
we found interspecific ecological dynamics mirrored intraspecific
evolutionary dynamics, withnoemergentboundary delineating ecol-
ogy from evolution. Should interactions such as competition and
niche differentiation between strains be considered ecology, or does
thefactthatthey wereinferred from observations of genomic change
place them in the realm of evolution? Should positive selection of
organic nitrogen metabolism genes be considered evolution, or are
soft selective sweeps simply evidence of ecological shifts between
phenotypically distinct strains? Can we differentiate ecological from
evolutionary processes when they occur on the same time scales, in
response to the same likely environmental drivers, and across unclear
species delineations?

Our two-decade TYMEFLIES dataset, its associated 2,855
species-representative MAGs and decades of North Temperate
Lakes Long-Term Ecological Research program (NTL-LTER) envi-
ronmental data raise these questions again and again. We identi-
fied seasonal and decadal strain dynamics that could be considered
alternately ecology or evolution across diverse and abundant phyla.
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Other microbiome studies have similarly identified microdiversity at
the strain level as key to understanding microbial change. Strains have
displayed distinct environmental preferencesinanaerobic digesters’,
oceans**?***7778 and geysers’’, and strain-level dynamics have been
linked with outcomes such as cyanobacterial toxicity®’, pretermbirth®,
human health®and cheese rind aroma®. Strains have been described
alternately by ecological concepts such as metapopulations in the
subseafloor® and carrying capacity in the human gut®, or by evolution-
ary concepts such as modes of speciation in lakes?*?. In pitcher plant
microbiomes, strains were ecologically distinct when they differed
by only 100 SNVs®*¢. Among all these microbiome studies, sometimes
strain dynamics are framed as ecology®”7 8558 and sometimes as
evolution?>?*277681828¢ However, evenin plants and animals speciation
is not instantaneous and subspecies population structure creates a
blurred line between strains and species®*®, Therefore, we propose a
shift away from framing eco-evolutionary dynamics around feedbacks
between distinct processes?°, To better encompass microbial com-
munities, we should frame change as converging along a continuum
of ecology and evolution.

Methods

Lake Mendota samples

Lake Mendota is a eutrophic temperate lake located in Madison,
Wisconsin (USA)*. Integrated samples were collected from the upper
12 m at a 25 m deep location referred to as the central ‘deep hole’
(43°05’58.2”N, 89°2416.2” W). During the summer stratified months,
these 12 msamples spanthe epilimnion layer. Bacteria were collected
on 0.2 um polyethersulfonefilters (Pall Corporation), stored at -80 °C,
and DNA was extracted by a single person after randomizing sam-
ple order in 2018-2019 using FastDNA Spin kits (MP Biomedicals).
A detailed description of the study site, sample collection and DNA
extraction procedures is provided by Rohwer and McMahon*.

Metagenome sequencing and assembly

Sample DNA was sequenced by the US Department of Energy Joint
Genome Institute (JGI) using a paired library layout with a NovaSeq
6000 Sequencing System and an S4 flow cell (IlluminaInc.). Samples
were sequenced to a depth of 80 + 20 million reads and 23 + 6 billion
bases per sample. Sample metadata are available in Supplementary
Datalandrawsequencing dataare available from the National Center
for Biotechnology Information (NCBI) Sequence Read Archive (SRA)
under Umbrella Project accession PRJINA1056043. Individual metage-
nome SRA accession numbersarelisted in Supplementary Datal. Read
filtering was performed using standard JGI protocols® (IMG Pipeline
version 5, minor releases listed in Supplementary Data 1), which are
additionally detailed as metadata paired with each sample through
theJGI IMG/M website. Briefly, BBDuk” was used to remove adaptors
and quality trim reads, and BBMap®' was used to identify and remove
common contaminants. In our analyses we treated the resulting filtered
fastq files as the metagenome reads. Single-sample assemblies were
also generated by JGI with their standard protocol®® (IMG Pipeline
version 5, minor releases listed in Supplementary Data 1) using metas-
PAdes”. These filtered fastq files and single-sample assemblies are
available through theGl Genome Portal under ITS Proposal ID 504350.

Obtaining and characterizing genomes

Genomes were binned out of metagenomes using the Texas Advanced
Computing Center’s Lonestar6 supercomputer and the Launcher utility
(version 3.7)”. Metagenomic reads were mapped back to sample assem-
blies using BBMap (version 38.22)°!, sorted BAM files were created
using SAMtools (version1.9)** and MAGs were binned using MetaBAT2
(version 2.12.1)*. Metagenomic reads from different samples were
cross-mapped back to each single-sample assembly to perform differ-
ential coverage binning. Cross-mapping scales exponentially, so it was
performed on assemblies and sample reads broken into approximately

50-sample groups of consecutive sample dates, with samples from
the same year grouped together. This resulted in 85,684 genome bins.
CheckM2 (version 0.1.3)**was used to assess bin quality, including com-
pleteness and contamination estimates, and the Genome Taxonomy
Database Toolkit (GTDB-Tk) (version 2.1.1)° was used to assign GTDB
taxonomy (release 207)"” to all bins. 30,389 genome bins were at least
50% complete and less than 10% contaminated and these bins were
dereplicated to 96% ANI using dRep (version 3.4.0)*. To choose 96%
as our ANI cut-off, we ran dRep at ANIs ranging from 90% to 99% and
examined the resulting number of dereplicated bins, as well as the
number of bins from the same assembly that were combined. We chose
96% ANIbecause very few (one) of the 30,389 bins were combined into
an ANIgroup with abin created from the same assembly, and because
96% ANIwas generally located right before asuddenincreasein the total
number of genome groups. Our goal was to separate as many species
as possible while combining strains that were so closely related they
would compete for mapped reads. Applying a 96% ANI cut-off with
dRep resulted in 2,855 representative genomes, which we treated as
speciesin thisstudy. These MAGs are available from the NCBISRA under
BioProject accession PRJNA1158976 and their associated metadata is
detailed in Supplementary Data 2.

To quantify the relative abundance of each species in every sam-
ple, we mapped all sample reads against the concatenated 96% ANI
reference genomes using BBMap (version 38.22)”, created sorted BAM
files using SAMtools (version 1.9)°* and calculated relative abundance
using coverM (version 0.6.1)°®. With the coverM software, we required
aminimumread percentidentity of 93, proper pairs only, and excluded
1,000 bp from each contig end fromthe calculation. CoverM calculates
relative abundance as the mean coverage divided by the mean coverage
across allgenomes multiplied by the proportion of reads that mapped
tothe genome, thus normalizing by recovered genome size to estimate
the fraction of cells that belong to a given species in each sample. A
table of representative MAGs along with taxonomy annotations, quality
statisticsand abundance statisticsis available as Supplementary Data 2.

Tofurther characterize the genomes, we raninStrain (version1.7.1)”
using a minimum read ANI of 93%, as recommended by the inStrain
documentation given our previous choice of 96% ANI to dereplicate
genomes. This software called SNVs and calculated nucleotide diver-
sity,among other metrics. To identify genes, we ran prodigal (version
2.6.3)”” on each genome separately. We then used Kofamscan (version
1.3.0)'°° to assign gene annotations from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database (release 107.1)*. Additional
custom analyses were performed using the R programming language
(version 4.1.2)'"" and relied extensively on the data.table R package
(version 1.14.8)'?, the lubridate R package (version 1.9.3)'°> and GNU
parallel (version ‘Chandrayaan’)'®*,

Classifying seasonal and long-term change

To classify each species’ abundance pattern as seasonal or not, we
started with relative abundances as calculated by coverM (version
0.6.1)*® and further corrected any abundance to zero if the genome’s
coverage breadth was 70% or less than its expected breadth, as calcu-
lated by inStrain (version 1.7.1)*. We then applied a centered log ratio
transformation to the relative abundance values using the composi-
tions R package (version 2.0-6)'®. After taking a daily linear interpo-
lation to obtain evenly spaced samples, we detrended the temporal
profiles with a cubicfit. Finally, we performed a periodogram analysis
by computing the magnitude of the fast Fourier transform. If a peak
occurred within 30 days of 365 days, we considered it an annual oscilla-
tion, andif any of the top five peaks corresponded to an annual period,
we classified the species as having a seasonal abundance pattern. We
applied this analysis only tothe 1,474 species that occurred onleast 30
dates over atleast 10 years. To classify each species’ nucleotide diver-
sity pattern as seasonal or not, we similarly performed a fast Fourier
transform on its inStrain-calculated nucleotide diversity over time.
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We used the same periodogram analysis to classify it as having seasonal
nucleotide diversity or not, and we applied this analysis to the same
subset of 1,474 species.

To characterize blooms as more diverse or less diverse, we calcu-
lated the Pearson correlation between centered log ratio-transformed
relative abundance and nucleotide diversity for the 365 species that
had both seasonal abundance and seasonal nucleotide diversity annual
oscillations. We considered it a positive correlation (more diverse
blooms) if the Pearson correlation was at least 0.35 and a negative
correlation (less diverse blooms) if the Pearson correlation was less
than or equal to —0.35. We repeated this analysis with up to 2 weeks
of lag and used the highest correlation within that window. We chose
0.35 as areasonable cut-off after manual examination of the first 150
species’ correlations.

To calculate SNV profiles for each species, we created vectors
corresponding to every SNV position in its genome, where the value
of each element was the percent of mapped reads that matched the
reference genome base at that position in each sample. SNVs were
called using inStrain?, and we only applied this analysis to samples
where the species’ median coverage was over 10x, as at coverages less
than that we observed a drop in the total SNVs called. Therefore, for
bothlong-term and seasonal analysis of SNV profiles, we included only
species that had median coverage over 10x on at least 30 dates over
atleast 10 years, which resulted in a subset of 263 species. To identify
changesin SNV profiles, we created a distance matrix for each species
based on Euclidean distances between each sample’s SNV profile using
the vegan R package (version 2.6-4)'°°. From this, we created a table
of time elapsed and Euclidean distance between each sample date.

To identify seasonal patterns in each species’ SNV profiles, we
created a daily linear interpolation of pairwise distances between all
samples, taking the mean when multiple sample pairs occurred with
the same timeinterval. After detrending with a cubic fit, we performed
aperiodogramanalysis toidentify annual oscillations and the presence
of seasonal patterns using the same criteria as with our abundance and
nucleotide diversity annual oscillation analysis.

To identify long-term change patterns, we subset our pairwise
distance table to the distance of each sample from the first sample. We
developed a classifier for these temporal profiles of distances between
SNV profiles using 11 manually chosen species. We chose our training
set to encompass examples of each pattern of change including no
change, and toinclude both high and low numbers of observations. Our
classifier criteria was hierarchical: first gradual change was identified,
then step change was identified and finally disturbance/resilience pat-
terns were identified. After training, the classifier was applied to all 263
species above the abundance cut-off. Gradual change was identified if
alinearfit to the daily linearly interpolated distances, excluding dates
closer thanamonthto the starting date, resulted in anadjusted R*of at
least 0.55. Dates closer than amonth to the starting date were excluded
because they tended to be highly similar, and a linear interpolation
was applied to account for uneven sampling dates, particularly the
high frequency of summer sampling in the latter decade of the time
series. Possible step change locations were identified after excluding
dates closer than a month to the starting date and applying an F test
tothelinearly interpolated distances using the strucchange R package
(version1.5-3)'%.If abreakpoint wasidentified by the F test, the means
of measured (as opposed to interpolated) before and after distances
were different (two-sided Mann-Whitney Pvalue < 0.01), and the step
resulted in a new mean at least 33% higher than the previous mean, a
step change pattern was identified. Disturbance/resilience patterns
were then identified using outlier distances calculated by the default
box plotstatisticsinR.If a date’s distance was >1.5 times the difference
between the third and first quartile of observed distances, a date was
considered an outlier, and if outlier values were maintained for at
least amonth, the species was classified as having a disturbance event
withresilience.

Analysing abrupt change in Nanopelagicaceae

To place environmental conditions in 2012 in context, historical envi-
ronmental data was collected from the NTL-LTER through the Envi-
ronmental DataInitiative (EDI) (https://edirepository.org/) and the US
Geological Survey (USGS) Water Data for the Nation (https://waterdata.
usgs.gov/nwis) using the USGS dataRetrieval R package (version
2.7.14)'°%, EDl datasets analysed included ice duration®; nutrients, pH,
and carbon'®’; major ions"’; water temperatures combined from mul-
tiple datasets" " as described in Rohwer et al."; phytoplankton®; and
zooplankton' converted to biomass as described in Rohwer et al.”.
River discharge measurements were obtained from the USGS for
the Yahara River, the primary tributary into Lake Mendota (site ID:
05427718)*. After exploringall parameters included in these datasets,
the occurrence of ahot, dry year with low primary productivity became
apparent. Lake heatwaves spanning much of 2012 were confirmed using
the 90th percentile definition from Woolway et al.** and the heatwaveR
R package (version 0.4.6)"%.

Relativeabundance and nucleotide diversity of the Nanopelagicus
MAG ME2011-09-21_3300043464_group3_bin69 were calculated as
for the seasonal analysis. New SNVs were identified as SNV positions
that were called by inStrain* for the first time in a given sample. To
identify dates where an unusual number of new SNVs appeared, pos-
sibly indicating the emergence of a new strain, the new SNV counts
were compared across all sample dates. Initially, high numbers of
new SNVs are expected, so outlier dates were identified among the
remaining samples after excluding the initial consecutive dates where
new SNVs remained in the fourth quantile. Genes under selection
were identified using the ratio of nonsynonymous to synonymous
SNVs in relation to the reference genome (dN/dS) and the ratio of
nonsynonymous to synonymous SNVs when at least two alleles were
present (pN/pS) as calculated by inStrain®. A McDonald-Kreitman
test"’ was used to identify positively selected genes where the bias of
unfixed SNVs to be non-synonymous was lower than the bias of fixed
SNVs to be non-synonymous, that is, when (pN/pS)/(dN/dS) <1, and
positive selection was considered statistically significant when the
two-sided Fisher Pvalue was less than or equal to 0.05. Agene was con-
sidered consistently selected if it appeared under significant positive
selection with high frequency (in the fourth quartile). Consistently
selected genes were identified for the pre-2012 and post-2012 time
periods separately.

Gene annotations were analysed in the context of the KEGG path-
ways® they belonged to. For each potential pathway, all genes present
inthe genome were visualized with KEGG Pathway Maps (https://www.
genome.jp/brite/br08901). When multiple genes that surrounded the
selected gene existed in the genome, that pathway was considered a
likely annotation. When likely pathways involved amino acid metabo-
lism oraminoacylation, they were considered amino acid related. When
likely pathways involved purine or pyrimidine metabolism, they were
considered nucleic acid related.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Metagenome and MAG sequences are available from the NCBI SRA
under Umbrella Project accession PRINA1056043. Individual metage-
nome SRA accession numbers are listed in Supplementary Dataland
individual MAG SRA accession numbers are listed in Supplementary
Data 2. Most MAGs are available under the NCBI BioProject accession
PRJNA1158976, but a few, detailed in Supplementary Data 2, are avail-
able from the Open Science Framework'®. The filtered fastq files and
single-sample assemblies used in this study are available through the
JGIGenome Portal under ITS Proposal ID 504350. Environmental data
is publicly available through the EDI (https://edirepository.org/)*>1°°- 1
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and the US Geological Survey’s Water Data for the Nation (https://

waterdata.usgs.gov/nwis)**.

Code availability

Custom scripts used for data processing are available via GitHub at
https://github.com/rrohwer/TYMEFLIES manuscript and viaZenodo

at https://doi.org/10.5281/zen0d0.10663021 (ref. 121).
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https://github.com/rrohwer/TYMEFLIES_manuscript

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Metagenome and MAG sequences are available from the NCBI Sequence Read Archive (SRA) under Umbrella Project accession PRINA1056043. Individual
metagenome SRA accession numbers are listed in Supplementary Data 1, and individual MAG SRA accession numbers are listed in Supplementary Data 2. The
filtered fastq files and single-sample assemblies used in this study are available through the JGI Genome Portal under ITS Proposal ID 504350. Environmental data is
publicly available through the Environmental Data Initiative (https://edirepository.org/)41,101-109 and the U.S. Geological Survey’s Water Data for the Nation
(https://waterdata.usgs.gov/nwis)42.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender NA

Reporting on race, ethnicity, or NA
other socially relevant

groupings

Population characteristics NA
Recruitment NA
Ethics oversight NA

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|:| Life sciences |:| Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description In this observational study, water samples were collected from Lake Mendota from 2000 to 2019.

Research sample Lake water was collected from the approximate epilimnion layer using a 12 m sample tube. Samples were collected at the central,
deepest place on Lake Mendota (WI, USA). Bacteria were collected on 0.2 um filters, bulk DNA was extracted, and shotgun
sequencing on an lllumina instrument was used to generate metagenome samples.

Sampling strategy Samples were taken over 20 years from the same location. Sample frequency was determined largely by funding and feasibility.
Samples were taken approximately twice a month for the first 10 years, and 1-2 times a week for the second 10 years.

Data collection Water samples were filtered and filters were placed in a -80 C freezer until extraction and sequencing in 2018-2020. Sample
metadata was recorded in lab and field notebooks.

Timing and spatial scale  Samples were taken over 20 years from the same location. Sample frequency was determined largely by funding and feasibility.
Samples were taken approximately twice a month for the first 10 years, and 1-2 times a week for the second 10 years.

Data exclusions Some analyses required only 1 sample from each date. In these 6 instances, the sample with the most standard collection was
chosen to represent that date. These sample choices are indicated in the "Rohwer.Unduplicated.Dates.Sample.Choice" column of

supplemental Data 1.

Reproducibility All analysis scripts were sourced and ran without errors. Scripts are available and software versions are reported.
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Randomization Samples were grouped by season and by year for various analyses. The season was determined by either month, or using season
definitions defined from environmental variables in Rohwer et al 2023, PNAS.

Blinding Sample order was randomized and samples were blinded for DNA extraction and sequencing.

Did the study involve field work? X ves []no

Field work, collection and transport

Field conditions This observational study spanned 20 years and all seasons in south-central Wisconsin.

Location Lake Mendota (Madison, WI, USA), central deep hole (43°05'58.2"N 89°24'16.2"W)

Access & import/export  No permits were required for the publicly accessible lake.
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Disturbance No significant disturbance was created as this lake frequently hosts recreational boat/ice traffic and collecting water samples is a
similar activity.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies |:| ChIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern

X X X X X X X
Ooodoog

Plants

Plants

Seed stocks NA

Novel plant genotypes  NA

Authentication NA
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