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Figure 1: Transformation procedure used in our data augmentation scheme to create new examples in a percussion dataset,
which consists of swapping out randomly selected patterns from a MIDI drum file with Afro-Cuban rhythmic seed patterns.
Our scheme creates at least one new example per original example in the percussion dataset, and can replace more than one
pattern per transformation.

Abstract
We present ClaveNet: a generative MIDI model for Afro-Cuban
percussion. We adapt the Monotonic Groove Transformer (MGT)
—originally trained on the Groove MIDI Dataset (GMD)— to gen-
erate Afro-Cuban-influenced MIDI drum grooves. As Afro-Cuban
drum MIDI data is scarce in the GMD and overall, we devise a
data augmentation scheme to enrich MIDI percussion datasets with
Afro-Cuban-inspired drum grooves by mixing examples with “seed
patterns” rudimentary to Afro-Cuban percussion. To validate the
effectiveness of our data augmentation algorithm at creating drum
grooves infused with Afro-Cuban patterns, we trained MGT mod-
els on variants of the Groove MIDI Dataset augmented with our
algorithm, and compared them to a baseline model trained on a
non-augmented dataset. Our results show that MGT models trained
with our augmented datasets are able to generate drum grooves
whose rhythmic features are cumulatively closer to those from an
evaluation set of real Afro-Cuban examples. We explore the effects
of different hyperparameters to our system, discuss individual gen-
erated samples of selected models, and assess their faithfulness
to Afro-Cuban styles. We hope this project fosters more research
on developing music co-creation systems that encompass diverse
musical styles outside those found in publicly available datasets.
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1 Introduction
Machine learning (ML) techniques have been a tool in the arsenal of
researchers and artists building new instruments and interfaces for
musical expression [8, 13, 14] for over a quarter century. In the field
of music information retrieval, deep learning models are used for
analytical tasks, like automatic music transcription [5, 10, 16]. More
recently, deep generative models have become a common technique
for generating both music audio [3, 9, 15] and symbolic music
[22, 36, 41], with the goal of creating a generation of human-AI co-
creative musical instruments [12]. There is a growing body of work
focused on creating human-AI interfaces for symbolic music co-
creation [17, 26, 27, 36]. These human-AI co-creation systems, like
the one we propose, leverage symbolic music generation systems
at their core. However, the effectiveness of a generative model is
closely tied to the size of its training data [19]. The availability of
training data for musical styles varies widely; thus, this availability
dictates the feasibility of generating a music signal in a particular
style.
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Some musical styles and instruments are well represented in
large datasets. For instance, publicly-available datasets for jazz [2]
and classical [23] piano are sufficiently large to train deep learning
models. Consequently, research on music generation hovers around
styles for which large datasets exist or can be easily compiled. Styles
for which data is scarce are overlooked, even if their inherent mu-
sical characteristics are well-suited for deep learning architectures.
With the widespread adoption of human-AI co-creation models in
musicmaking interfaces, it is important that the multimodality of
real musical styles is well-reflected in co-creative generative mod-
els, allowing artists across a wide variety of musical traditions to
have meaningful interactions with these co-creative systems.

Afro-Cuban music is considered to be a “fundamental music
of the New World” [39], as its musical concepts have permeated
through classical music, ragtime, tango, jazz, rhythm and blues,
country, rock and roll, funk, hiphop, and especially salsa. Its impact
on American music has, however, gone largely unrecognized [39].
As such, despite the fact that the basic rhythmic structures intrinsic
to the music can be conveyed faithfully with symbolic representa-
tions of music, and could be well captured through deep learning
methods, there have not been any efforts to generate Afro-Cuban
music with deep learning. Furthermore, we are not aware of the
existence of any large Afro-Cuban percussion datasets.

This work presents ClaveNet, a generative music system that
can convey the rhythmic idiosyncracies of Afro-Cuban music. To
the best of our knowledge, this is the first attempt at training a
deep learning-based generative model specific to Afro-Cubanmusic.
Specifically, we achieve this goal by devising a data augmentation
scheme that leverages domain knowledge of Afro-Cuban rhythms
to infuse Afro-Cuban patterns into those of an existing percussion
dataset; parameters to this scheme specify the size of the output
dataset, the number of patterns infused per new example, and
stylistic coherence among infused patterns. Our evaluation shows
that, when trained on a dataset with our augmentation scheme, a
symbolic percussion generation system is able to generate sym-
bolic drum grooves that more closely resemble an evaluation set of
human-performed MIDI Afro-Cuban drums than a baseline model.

2 Background
2.1 Symbolic Drum and Percussion Generation

with Deep Learning
Deep learning architectures have been shown to be successful for
music generation [6]. The GrooVAE Tap2Drum model by Gillick et
al. [18] is a sequence to sequence Variational Autoencoder (VAE)
that receives as input a single-voiced “tapped” rhythmic-sequence
and outputs a multi-voiced “drum groove”. Haki et al. [19] base their
Monotonic Groove Transformer (MGT) model on the GrooVAE
Tap2Drum model, using similar I/O representation but replacing
the VAE architecture with a transformer encoder. Furthermore, they
showcase an application of the MGT by incorporating it into a real-
time accompaniment system. This system is limited to reinforcing
the rhythm of a performance (in other words, it cannot provide
contrapuntal rhythmic accompaniment). On the other hand, it is a
pitch-agnostic system and thus is able to accompany any instrument
that projects rhythmic information and can be reused within larger
models for instrument-specific accompaniment generation [19]. We

describe the MGT in more detail in section 2.4. McCormack et al.
[30] present an alternative real-time drum accompaniment system
which incorporates extramusical information via biometric data
collection of the instrumentalist.

2.2 Afro-Cuban percussion
Afro-Cuban music is a fusion of a rhythms, melodies, harmonies
and instruments stemming from African and European traditions;
it is characterized by its complex rhythmic base comprised of syn-
copated patterns. The fundamental pattern is a two-measure phrase
called the clave, which comes in two variations/orientations: the
3-2 clave and the 2-3 clave. Other patterns either rhythmically rein-
force or syncopate against the clave; these patterns often also come
in two variations that match the orientation of the clave; layering
these patterns results in the “thick weave” that characterizes the
sound of an Afro-Cuban percussion section [29].

2.3 Data Augmentation
Data augmentation techniques have been shown to be effective at
several deep learning tasks [20, 35, 37, 40]. In the audio domain,
augmentations like pitch-shifting, time-stretching, random filtering
and cropping of a waveform have been shown to benefit various
analysis tasks [1, 4, 31]. In symbolic music, transformations such
as tempo and key changes [43, 45], MIDI excerpt “degradation” by
applying note onset shifts, note addition and deletion, pitch-shifting
[32], or augmenting the size of a dataset with generated examples
[25] have been shown to improve both analytical (i.e., transcription)
and generative models for human-AI co-creation interfaces.

2.4 Monotonic Groove Transformer
We chose the MGT [19] as the baseline drum generation model
over other real-time drum accompaniment systems such as the one
proposed by McCormack et. al [30] because of its reproducibility
—as it is based on the transformer and trained on a publicly avail-
able dataset— and the fact that, being a Tap2Drum-like model, it
generates drum grooves using only rhythmic information.

2.4.1 Dataset. The MGT is trained on the two-bar variant of the
Groove MIDI Dataset (GMD) [18], which consists of MIDI record-
ings of 10 drummers’ performances. As Table 1 shows, the GMD
contains Afro-Cuban MIDI data, but this style makes up a small
proportion of the dataset.

Table 1: Distribution ofmusical styles across theGrooveMIDI
Dataset (GMD). Less than 4% of the examples in the GMD are
Afro-Cuban.

Total Rock Latin Jazz Funk Afrobeat Afrocuban Other

21312 31% 18% 11% 11% 5% 4% 20%

2.4.2 I/O Representation: HVO Sequences. The inputs to the MGT
are single-voiced “tapped sequences” (a.k.a. monotonic grooves),
while the outputs are multi-voiced drum grooves, both represented
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with Hit-Velocities-Offsets (HVO) Sequences: a tensor-based sym-
bolic representation of drum performances that uses a fixed rhyth-
mic grid with a sixteenth note grid resolution. They are comprised
of three matrices:

• Hits (𝐻 ∈ {0, 1}𝑡×𝑣): Each entry denotes whether a note
(also referred to as a hit) occurs at a particular time step for
a given voice.
• Velocities (𝑉 ∈ [0, 1]𝑡×𝑣): Denotes the normalized velocity
of each hit.
• Offsets (𝑂 ∈ [−1, 1]𝑡×𝑣): Denotes the deviation from the
grid for each hit. Used to encode micro-timing information.

where 𝑡 is the number of timesteps in the rhythmic grid and 𝑣
is the number of voices (e.g., hi-hat, snare). Since each example
is two-bars long, we let 𝑡 = 32. Additionally, we choose a 9-voice
set to represent drums, so 𝑣 = 9. A pre-processing step converts
each MIDI example in the GMD into an input/target pair of HVO
Sequences.

2.4.3 Loss. The loss of the MGT is a sum of three terms: one for
predicted hits, one for predicted velocities, and one for predicted
offsets. Entries in the predicted velocities and offsets matrices whose
locations correspond to values of zero in the target hits matrix are
scaled by a penalty factor. For the hits term, binary cross entropy
is used. For the velocities and offsets terms, mean squared error is
used.

3 Methods
3.1 Drum Data Augmentation with Seed

Patterns
We introduce a data augmentation scheme that aims to infuse Afro-
Cuban sensibilities into a drum generator model trained on an aug-
mented dataset. For each example in the GMD, the scheme creates
new examples by transforming the original example. This transfor-
mation consists of randomly swapping out some of the example’s
voice patterns with a randomly chosen Afro-Cuban “seed pattern”.
To illustrate this process, suppose we would like to transform a
two-bar rock back-beat drum pattern. Now, assume we randomly
choose to replace the hi-hat voice. We would then replace the rock
hi-hat pattern with a randomly chosen Afro-Cuban hi-hat seed
pattern. Suppose this pattern is the clave. Then, our transformed
MIDI file would sound like a rock back-beat with the clave on the
hi-hat.

3.1.1 Seed Patterns. A seed pattern is a MIDI representation of a
rhythmic pattern. The seed patterns used to augment the GMD are
drawn from various Afro-Cubanmusical traditions and styles as pre-
sented in the book Afro-Cuban Rhythms for Drumset [28] by Frank
Malabe and Bob Weiner. The book’s drumset exercises, grouped
by Afro-Cuban styles (Son, Mozambique, Conga, Songo, Chachá,
Merenge, Guaguancó), served as the seed pattern sources. By ex-
tension, each seed pattern is assigned a unique Afro-Cuban style.
We selected a subset of these exercises and manually converted
them to two-bar MIDI files using Logic Pro; when converting, we
assigned unaccented MIDI notes a velocity value of 70 and accented
notes a value of 100. The exercises in the book do not communicate
micro-timing information, so as a workaround, we randomly offset

each note by up to 10 ticks. These solutions naïvely include velocity
and microtiming information in seed patterns and more work is
needed to integrate this information into the augmentation scheme.

We use five voices to distinguish seed patterns in an exercise. In
other words, we could theoretically extract up to five seed patterns
from a single exercise. These voices are: Hi-hat, Snare, Kick, Toms,
and Ride. Although HVO Sequences use separate Low Tom, Mid
Tom, and High Tom voices, these were combined into a single voice
to avoid splitting traditional patterns such as the “conga guaguancó
figure”. Additionally, the “Open Hi-hat” and “Crash” voices were
omitted since they are not present in any exercise. The subset of
exercises were selected such that all rhythmic patterns in the book
appear in at least one of the exercises and no exercise’s set of seed
patterns is a subset of another exercise’s set of seed patterns. In
addition, we partitioned styles in two subgroups: styles based on
the 2-3 clave, and styles based on the 3-2 clave. Table 2 shows the
extracted seed pattern count for the 2-3 and 3-2 partitions.

Table 2: Seed pattern counts for Afro-Cuban styles, retrieved
from Afro-Cuban Rhythms for Drumset [28].

Songo Mozambique Son (2-3) Conga Total
Kick 8 9 6 6 23
Snare 8 10 9 6 33
Hi-hat 6 3 4 1 14
Tom 6 10 6 2 24
Ride 7 10 15 2 34
Total 35 42 40 9 134

(a) 2-3 styles

Son (3-2) Chachá Merengue Guaguancó Total
6 1 2 16 25
9 2 5 14 30
4 3 5 8 20
6 2 1 16 25
15 2 1 3 21
40 10 14 57 121

(b) 3-2 styles

3.1.2 Algorithm. To augment a MIDI-drum dataset with our ex-
tracted Afro-Cuban seed patterns, we create new examples by trans-
forming each original example in the dataset.We denote the number
of transformations —in other words, the number of new examples
created per original example— with 𝑛𝑡 . The size of an augmented
data set is thus given by |𝐴| = |𝐷 | (𝑛𝑡 +1), where𝐴 is the augmented
dataset, and 𝐷 is the original dataset.

Given an input example to transform, we first choose between
the 2-3 and 3-2 seed pattern partitions uniformly at random. After
having chosen between the 2-3 and 3-2 partitions, we can uniformly
at random select a primary style 𝑠 for the seed patterns to use to
augment the input example. We also allow our algorithm to select
any secondary style for each voice outside the primary style with
a hyperparameter probability 𝑝𝑠′ . Finally, we replace 𝑛𝑟 voices
from the original example with seed patterns, where 𝑛𝑟 is an input
parameter given by the user. Algorithm 1 shows the pseudocode
for our data augmentation algorithm.
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Algorithm 1: Transform MIDI Drum Example
Input: 𝑑𝑟𝑢𝑚𝐸𝑥𝑎𝑚𝑝𝑙𝑒 - The MIDI drum example to transform
𝑠𝑡𝑦𝑙𝑒𝑆𝑒𝑡 - Set of Afro-Cuban styles
𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑆𝑒𝑡 - Set of candidate seed patterns
𝑛𝑟 - Number of voices to replace
𝑝𝑠′ - Probability of choosing a secondary style
Output: Transformed 𝑑𝑟𝑢𝑚𝐸𝑥𝑎𝑚𝑝𝑙𝑒

𝑠 ← style from the 𝑠𝑡𝑦𝑙𝑒𝑆𝑒𝑡 selected uniformly at random
for 𝑖 ← 1 to 𝑟 do

𝑢𝑠𝑒𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑆𝑡𝑦𝑙𝑒 ←
True with probability 𝑝𝑠′ , False otherwise

if 𝑢𝑠𝑒𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑆𝑡𝑦𝑙𝑒𝑠 then
𝑠𝑒𝑒𝑑𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ←
selected uniformly at random from 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑆𝑒𝑡 s.t.:

𝑠𝑒𝑒𝑑𝑃𝑎𝑡𝑡𝑒𝑟𝑛.𝑠𝑡𝑦𝑙𝑒 ≠ 𝑠

𝑠𝑒𝑒𝑑𝑃𝑎𝑡𝑡𝑒𝑟𝑛.𝑣𝑜𝑖𝑐𝑒 ∉ 𝑣𝑜𝑖𝑐𝑒𝑠𝑇𝑜𝐸𝑥𝑐𝑙𝑢𝑑𝑒

else
𝑠𝑒𝑒𝑑𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ←
selected uniformly at random from 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑆𝑒𝑡 s.t.:

𝑠𝑒𝑒𝑑𝑃𝑎𝑡𝑡𝑒𝑟𝑛.𝑠𝑡𝑦𝑙𝑒 = 𝑠

𝑠𝑒𝑒𝑑𝑃𝑎𝑡𝑡𝑒𝑟𝑛.𝑣𝑜𝑖𝑐𝑒 ∉ 𝑣𝑜𝑖𝑐𝑒𝑠𝑇𝑜𝐸𝑥𝑐𝑙𝑢𝑑𝑒

end
𝑣𝑜𝑖𝑐𝑒𝑠𝑇𝑜𝐸𝑥𝑐𝑙𝑢𝑑𝑒.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑠𝑒𝑒𝑑𝑃𝑎𝑡𝑡𝑒𝑟𝑛.𝑣𝑜𝑖𝑐𝑒 )
Replace 𝑠𝑒𝑒𝑑𝑃𝑎𝑡𝑡𝑒𝑟𝑛.𝑣𝑜𝑖𝑐𝑒 in 𝑑𝑟𝑢𝑚𝐸𝑥𝑎𝑚𝑝𝑙𝑒 w/ 𝑠𝑒𝑒𝑑𝑃𝑎𝑡𝑡𝑒𝑟𝑛.𝑚𝑖𝑑𝑖

end
return 𝑑𝑟𝑢𝑚𝐸𝑥𝑎𝑚𝑝𝑙𝑒

4 Experimental Evaluation
To evaluate our data augmentation scheme, we analyze the gen-
erated output of a set of models trained on different augmented
datasets. We compare these models to a baseline model trained on
the original GMD. 1

4.1 Experiment Design
To create different data augmented datasets, we perform a grid
search over the parameter space for our algorithm:
• for the number of transformations 𝑛𝑡 , we choose the values
{1, 2, 3};
• for the number of voice replacements 𝑛𝑟 , we choose the
values {1, 2, 3, 4};
• for the probability of choosing a secondary style 𝑝𝑠′ , we
choose the values {0.0, 0.5, 1.0}.

We train all models using one of the hyperparameter settings
that Haki et al. [19] showed to result in a model with highest hit
prediction accuracy and lowest test loss. This model is a transformer
encoder a model dimension of 128, feed-forward dimension of 16, 4
attention heads, trained with a dropout of 0.16 and batch size of 16.
Each model was trained for 50 epochs with a stochastic gradient
descent optimizer. A penalty factor of 0.497 was used for velocity
and offset losses.

4.2 Evaluation Set Comparison
As a method of performance evaluation for music generation mod-
els, we use a scheme proposed by Yang et al. [44]. Our objective is
to compare a set of HVO Sequences generated by a data augmented
model to an evaluation set of Afro-Cuban drum loops. Specifically,
1Link to codebase: https://github.com/dafg05/ClaveNet-Parent

for each evaluation example (represented with an HVO Sequence)
in the evaluation set, we reduce it to a monotonic groove which is
used to prompt a model, yielding a generated example. Then, we as-
sess the distance between the evaluation example and the generated
example as follows. We first extract a set of rhythmic features for
both examples. For each feature, we compute an intraset distance
array out of the evaluation example’s feature values and an interset
distance array between the feature values of the generated example
and the evaluation example. For both of these distance arrays, we
estimate a probability density function (pdf) using a Kernel Density
Estimator (KDE) with Scott’s method for bin selection.2 We then
compute two distance metrics between the intraset pdf and the
interset pdf; namely, KL Divergence and Overlapping Area.

We used two feature sets for evaluation, both defined in Table 3.
The first —the complete-feature-set— mostly encodes note onset
information, such as syncopation and voice density. This is the same
set that Haki et al. used to evaluate their MGT models.3 The second
—the reduced-feature-set— is a subset of the complete-feature-set,
where we exclude features that encode velocity and microtiming
information, as this information is not essential to representing
Afro-Cuban rhythmic structures; although future work would focus
on investigating the importance of microtiming information on
Afro-Cuban performance.

For our evaluation set, we used ToonTrack’s Latin Midi Rhythms
Pack [21], which is a set of MIDI drum grooves performed by the
drummer Mauricio Herrera. Originally meant for the EZDrummer
plugin, we were able to extract four-bar drum MIDI files labeled by
style. We filtered out drum fills and non-Afro-Cuban MIDI files. Ad-
ditionally, we split eachMIDI file into two two-bar MIDI files, which
were then converted to HVO Sequences. The resulting evaluation
set contains 256 examples.

4.3 Ranking Models
To rankmodels we need to define distance from amodel’s generated
set to the evaluation set. Let 𝐺 = 𝑔(𝑀, 𝐸) denote a generated set
for a model𝑀 that is prompted by the monotonic grooves from an
evaluation set 𝐸. Let 𝐹 be the the feature set used to evaluate𝐺 . We
define the cumulative distance 𝐶𝐷 between a generated set 𝐺 and
an evaluation set 𝐸 as:

𝐶𝐷 (𝐺, 𝐸) =
∑︂
𝑓 ∈𝐹
| | ®𝑑 (𝐺, 𝐸, 𝑓 ) − ®𝑡 | |, where

®𝑑 (𝐺, 𝐸, 𝑓 ) =
[︃
KL-D(𝐺, 𝐸, 𝑓 )
OA(𝐺, 𝐸, 𝑓 )

]︃
, ®𝑖 =

[︃
0
1

]︃
where ®𝑑 (𝐺, 𝐸, 𝑓 ) is the distance vector for a given feature, ®𝑖 is the
“target” vector that we would like our distance vector to be close to,
KL-D is the KL-divergence, and OA is the overlapping area.

We say that a model “performs better than another” if the cu-
mulative distance from its generated set to the evaluation set is
less than the other, i.e., if𝐶𝐷 (𝑔(𝑀, 𝐸), 𝐸) < 𝐶𝐷 (𝑔(𝑀 ′, 𝐸), 𝐸). Using
this logic, we compute the cumulative distance of all of our candi-
date models and compare these to the cumulative distance of the
baseline model.
2In our implementation, we used sklearn.neighbors.KernelDensity [34]
3With the exception of the ‘Timing Accuracy’ feature, as this measure is undefined for
HVO Sequences that do not contain hits at eighth note locations.

https://github.com/dafg05/ClaveNet-Parent
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Table 3: Evaluation features. Bold features are included in the
reduced-feature-set, all features are included in the complete-
feature-set. These features as extracted for the generated set
and the evaluation set, then they are used to compute the
cumulative distance between the two. Adapted from Real-
Time Drum Accompaniment Using Transformer Architecture
[19].

Feature Description
NoI Number of instruments [11]
Total Step Density Steps with at least one hit

Total number of steps [11]

Average Voice Density
(Low/Mid/Hi)

Step density of either low (Kick), mid (Snare,
Toms), or high (Hi-Hat, Ride, Crash) voice
groups over total step density [11]

Weak to Strong Ratio number of onsets not on downbeats
number of onsets on downbeats [7]

Polyphonic Sync Polyphonic syncopation measure [7, 42]
Monophonic Sync
(Low/Mid/Hi)

Monophonic syncopation of low, mid, or high
voice groups [7]

Syness (Low/Mid/Hi) Monophonic sync in voice group
Number of onsets in voice groups [11]

Combined Sync Sum of monophonic syncopation for all voices
[7]

Complexity Complexity measure based on mean of density
and syncopation [7, 38]

Vel Similarity Score Velocities of second bar minus velocites of first
bar [19]

AC Skewness, Max, Cen-
troid and Harmonacity

Autocorrelation curve attributes of velocity pro-
files [7, 24, 33]

Swingness Measures swing weighted by number of swung
notes [7]

Laidbackness Measures laidbackness weighted by number of
laidback onsets [7]

4.4 Results
Thirty models (twenty-nine augmented and the baseline model)
were analyzed w.r.t. the reduced-feature-set and the complete-
feature-set. Table 4 shows the cumulative distance for the base-
line model as well as the cumulative distances of selected data
augmented models evaluated w.r.t. each feature set.

Six data-augmented models exhibited a smaller cumulative dis-
tance than the baseline model w.r.t to the complete-feature-set,
likely due to the way that our data augmentation scheme includes
velocity and microtiming information. This observation leads us
to the preliminary conclusion that only a small subset of data-
augmented models demonstrate more pronounced Afro-Cuban
rhythmic characteristics. Our reduced-feature-set analysis yields
more promising results. Nineteen out of twenty-nine data-augmented
models exhibited a smaller cumulative distance than the baseline
model. In addition, our best model’s cumulative distance is ≈ 30%
smaller than that of the baseline. With these results, we can con-
clude that our proposed data augmentation scheme can produce
models whose outputs have rhythmic features that are decidedly
more Afro-Cuban than that of the baseline.

We make the following observations regarding the reduced-
feature-set analysis:

Table 4: Cumulative distances of selected models w.r.t.
reduced-feature-set and complete-feature-set. The reduced-
feature-set is comprised of rhythmic features encoding onset
information, while the complete-feature-set also includes
features encoding velocity and microtiming information.

Model ID 𝐶𝐷 ↓ 𝑛𝑡 𝑛𝑟 𝑝𝑠′

upbeat-resonance 0.455 2 1 0.5
twilight-mountain 0.470 1 1 0.5
morning-cosmos 0.499 3 2 0.0
cosmic-plasma 0.569 2 3 0.5
expert-music 0.613 1 1 0.0
dashing-terrain 0.638 2 2 0.5

Baseline 0.652 0 0 0.0
jumping-aardvark 0.728 3 3 0.0

vivid-sky 0.883 2 4 1.0
rosy-violet 0.985 2 4 0.5

(a) Reduced-feature-set

Model ID 𝐶𝐷 ↓ 𝑛𝑡 𝑛𝑟 𝑝𝑠′

twilight-mountain 0.969 1 1 0.5
morning-cosmos 1.093 3 2 0.0

Baseline 1.132 0 0 0.0
expert-music 1.173 1 1 0.0
efficient-snow 1.231 2 2 1.0
dashing-terrain 1.288 2 2 0.5

sage-jazz 1.361 1 2 0.5
pretty-dew 1.412 2 3 1.0
expert-bush 1.643 1 3 1.0
rosy-violet 1.896 2 4 0.5

(b) Complete-feature-set

• Ten out of the top twelve models have values of 𝑛𝑡 > 1, a
fact that reinforces the notion that bigger datasets lead to
better performing-performing models.
• Eight out of the top twelve models have a value of 𝑛𝑟 = 1.
Additionally, the bottom 9 models (which all perform worse
than the baseline) have values of 𝑛𝑟 = 3 or 𝑛𝑟 = 4. We con-
jecture that using fewer replacement patterns results in gen-
erated examples that strike a balance between representing
Afro-Cuban patterns and preserving the “human-recording”
quality from the GMD that is also present in the evaluation
set.

Figure 2 shows a detailed breakdown of the reduced-feature-set
analysis for models upbeat-resonance (the top model) and morning-
cosmos (the top model with 𝑛𝑟 > 1), each model compared to the
baseline model. The points in these plots represent feature distance
vectors ®𝑑 . In accordance with our definition of cumulative distance,
“better” points minimize kl-divergence and maximize overlapping
area; in other words, they are closer to the ‘target’ vector ®𝑡 = (0, 1).

4.5 Discussion of generated samples
Although we were not able to conduct a formal subjective evalua-
tion of our data augmented models, we present our own musical
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Figure 2: Feature distance vectors (KL-Divergence, Overlapping Area) of the generated set for models upbeat-resonance (left)
and morning-cosmos (right) compared to feature distance vectors of the baseline’s generated set. The closer a vector is to (1, 0),
the closer the generated set’s corresponding feature values are to the evaluation set.

assessment of a subset of the generated output of model A (upbeat-
resonance), model B (morning-cosmos), and the baseline model. To
obtain generated samples from each model, we selected ten ran-
dom examples from the evaluation set, reduced them to monotonic
sequences, and used these to generate ten samples synthesized to
.wav files4. We listened to these samples individually to help us
evaluate each model. We encourage the reader to listen to these
samples before reading this section.

Based on these samples, we consider Model B to be the most
characteristically Afro-Cuban, followed by A, and then the base-
line model. All models exhibit Afro-Cuban elements in at least
some of their samples, which is surprising for the baseline model.
Still, the augmented models are better at accurately representing
Afro-Cuban rhythms. For example, many samples across all models
exhibit a songo snare pattern. However, songo-snare-samples from
the baseline model feature non-snare patterns more idiomatic to
Brazilian samba (such as the four-on-the-floor kick pattern). Con-
versely, songo-snare-samples from Model A also include palito
patterns idiomatic to guaguancó, while songo-snare-samples from
Model B feature non-snare patterns (such as the kick and tom pat-
terns) that reinforce the songo feel. In general, the baseline model
gravitates more towards rock and samba, although it does introduce
Afro-Cuban-like patterns occassionally.

Some samples generated by the augmented models exhibit un-
conventional drumset arrangement. Some Model A samples exhibit
layered, dense Afro-Cuban rhythmic patterns that seem to lack
polyrhythmic cohesion, which might be due to the absence of the
clave. Other samples are essentially unplayable on a standard drum-
set by a single drummer, as they feature multiple simultaneous
patterns voiced in a way that requires more than two hands to per-
form. We conjecture that unconventionally arranged samples are
an artifact of the pattern replacement procedure from the data aug-
mentation scheme. Regardless, such samples are both aesthetically
and practically valuable, as there exist numerous widely-adopted
techniques that enable the performance of these samples, such as
MIDI sequencing and arranging to multiple percussionists.

4Link to generated samples: https://dafg05.github.io/ClaveNet-Samples/

5 Conclusions
To initiate discourse around deep-learning generation of Afro-
Cuban percussion, we devised a data augmentation scheme that
instills Afro-Cuban rhythmic patterns onto a percussion dataset.We
found that models trained on augmented datasets generate drum
grooves that exhibit more pronounced Afro-Cuban rhythmic ideas
than those generated by a non-augmented baseline model. Thus, we
believe that the development of these models are an important step
towards faithful representation of Afro-Cuban music in generative
music co-creation systems.

For future work, we’d like to conduct a formal subjective study
of the augmented models’ output; for an adequate study, it is crucial
that it involves multiple musicians that have significant experience
performing and/or studying Afro-Cuban music. Additionally, we
would like to investigate enhancements to our data augmentation
scheme that represent rhythmic patterns with meaningful velocity
and micro-timing information. Finally, a more flexible rhythmic
grid than that encoded into HVO Sequences is necessary to generate
triplet-based polyrhythms and 6/8-based patterns idiomatic tomany
Afro-Cuban styles.
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