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Abstract—In the authors’ earlier work, the notion of inference-
observability was introduced to characterize the existence of de-
centralized supervisors that perform multilevel inferencing against
self-ambiguity and the ambiguities of others to jointly arrive at
a correct control decision. When the property of N-inference-
observability holds, N-levels of inferencing are needed. We show
in this article that the class of N-inference-observable languages
increases strictly monotonically as the parameter NN is increased.
We further show that, in general, there is no upper bound on the
number of levels of inferencing required.

Index Terms—Decentralized supervisory control, discrete event
system (DES), inference-observability, inferencing.

|. INTRODUCTION

In any decentralized decision-making paradigm, such as decentral-
ized control or diagnosis, multiple decision-makers, each with its own
limited sensing capabilities, interact to come up with global decisions.
The presence of limited sensing capabilities can lead to ambiguity in
knowing the system state, and thereby, ambiguity in decision-making.
In the context of control of discrete event systems (DESs), a knowledge-
based mechanism for assessing self-ambiguity was presented in [7],
and later the same architecture was used for assessing self-ambiguity
as well as ambiguities of the others in [8]. The process of utilizing the
knowledge of self-ambiguity together with ambiguities of the others
for the sake of decision-making was referred to as “inferencing” in [8],
and for the special case of single-level inferencing, it was called “condi-
tioning” in [14] and [16]. A framework allowing multilevel inferencing
over various local control decisions of varying levels of ambiguity was
first introduced in [3]. This framework supports inferencing over an
arbitrary number of levels of ambiguities, and in addition, an a priori
partitioning of controllable events into disjunctive/conjunctive classes
as in [15] and [16] is not required. An approach for synthesizing a
sublanguage (respectively, a superlanguage) of a specification language
that can be enforced using the inference-based decentralized supervi-
sors is presented in [9] (respectively, [10]). An arborescent architecture
was proposed to realize the inference-based decentralized supervisors
in [2]. A similar inference-based framework for the management of
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ambiguities in the decentralized diagnosis (respectively, prognosis) of
failures was reported in [4] and [12] (respectively, [11]).

In the inference-based decentralized control framework of [3], each
local supervisor uses its observations of the system behavior to come
up with its control decision together with a grade or level of ambiguity
for that control decision. A local supervisor issues a control decision
with an ambiguity level /N when it knows that for each trace that causes
ambiguity, there exists another local supervisor, which can issue a con-
trol decision with an ambiguity level at most N — 1. A global control
decision is chosen to be the same as a local control decision with the
minimal level of ambiguity. The notion of N-inference-observability
was formulated in [3] to characterize the class of languages achievable
using N-levels of inferencing.

In this article, we establish that the class of /V-inference-observable
languages increases strictly monotonically as the parameter N is
increased by showing that for any NN, in general N-inference-
observability is strictly stronger than (N + 1)-inference-observability.
This result answers an open question whether or not, even in the setting
of finite-state plant and specification models, the number of levels of
inferencing required is in general unbounded (and so in general, such
a number should be decided a priori based on the available computing
resources).

[I. NOTATION AND PRELIMINARIES

We consider a DES modeled by an automaton G = (Q,%, 0,
Go, Qm ), where Q is the set of states, X is the finite set of events, a
partial function 0 : @ x ¥ — (@ is the transition function, gg € Q is
the initial state, and @,,, C @ is the set of marked states. Let >* be the
set of all finite traces of elements of X, including the empty trace €. The
function J can be generalized to 6 : Q x X* — @ in a usual way. The
generated and marked languages of G, denoted by L(G) and L,,,(G),
respectively, are defined as L(G) = {s € £* | (3¢ € Q)d(qo,s) = ¢}
and L,,(G) = {s € £* | §(qo, $) € Qm }.Let K C ¥* be a language.
The set of all prefixes of traces in K is denoted by K. For supervisory
control purposes [6], the event set X is partitioned into two disjoint sub-
sets 2. and X, of controllable and uncontrollable events, respectively.
K is said to be controllable if K¥,,. N L(G) C K [6].

Let the set C' = {0, 1, ¢} be the set of control decisions, where “0”
represents a disablement decision, “1” represents an enablement deci-
sion, and “¢” represents an unsure (or pass) decision. Formally, a super-
visorisdefinedasamap S : L(G) x ¥ — C'suchthat S(s, o) = 1 for
any s € L(G) and any o € X,,.. We inductively define the generated
language L(.S/G) under the control action of .S as follows:

1) e € L(S/G);
2) (Vs € L(S/G))(Vo € X)

so € L(S/G) < [so € L(G) N S(s,0) =1].

S is said to be valid when for any so € L(G) N L(S/G)%,
S(s,0) # ¢, i.e., none of the control decisions for feasible events are
unsure.
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IIl. REVIEW OF THE INFERENCE-BASED DECENTRALIZED CONTROL
FRAMEWORK

We review the inference-based decentralized control framework
introduced in [3]. In the decentralized control setting, there exist n
local supervisors, whose decisions are fused to obtain a global control
decision so that the controlled behavior satisfies a (global) specification.
Let ¥;. be the set of locally controllable events for the ith local
supervisor S; (i € I := {1,2,...,n}),inwhichcase, ¥, := [J,.; Zic.
For each controllable event o € ¥, the index set of local supervisors
for which o is controllable is denoted by In(o) ={i € [ | 0 € ¥;.}.
The limited sensing capability of the ith local supervisor S; (i € I) is
represented by a local observation mask, M; : ¥ — A; U {e}, where
A, is the set of locally observed symbols. The observation mask M;
canbe extended to M; : ¥* — A7 inausual way. Two traces s, s’ € ¥*
with M;(s) = M;(s') are said to be M;-indistinguishable. For any
languages L C ¥* and L' C A}, M;(L) C A and Mi’l(L’) c ¥
are defined as M; (L) = {M;(s) € A} | s € L}and M; *(L') = {s €
¥* | M;(s) € L'}, respectively.

Each inference-based local supervisor .S; is defined as a map .S, :
M;(L(G)) x 3;. — C x N, where N denotes the set of nonnegative
integers, so that for any s € L(G) and any o € X,

Si(M;(s),0) = (ci(My(s),0),ni(M;(s),0)).

Here, ¢;(M;(s),0) € C denotes the control decision of S; for a lo-
cally controllable event o € X;. following an observation M;(s) €
M;(L(G)), and n;(M;(s),o) € N denotes the ambiguity level of the
control decision ¢;(M;(s), o). Let n(s, o) be the minimal ambiguity
level of local decisions, i.e.,

n(s,o) = min{n;(M;(s),0) € N | i € In(0)}.

The decentralized supervisor {.5;};c; that consists of local super-
visors S; (i € I) issues global decisions on controllable events. For
simplicity, with a slight abuse of notation, {S;};cs is defined as a
map {S;}ier : L(G) x ¥ — C (as opposed to the accurate notation,
{Si}ier : TLic; Mi(L(G)) x ¥ — C). For any s € L(G) and any
o € 3, the control decision {.S; },c; (s, o) is given as follows.

1) Ifo e,

{Si}ier(s,0)

¢, otherwise.

2) If o € Yy, {Si}ici(s,0) = 1.

In other words, for a controllable event, a global control decision
is taken to be the same as the minimal ambiguity level local control
consensus decision. Such local control consensus decisions are called
“winning” decisions.

A useful notion of a decentralized supervisor is the boundedness of
the ambiguity level of its winning decisions. A decentralized supervisor
is said to be N-inferring if for each controllable event, all winning
enablement or all winning disablement decisions have ambiguity levels
below V.

Definition 1 ([3]): Given a nonnegative integer N € N, a decen-
tralized supervisor {S; },c; : L(G) x ¥ — C'is said to be N-inferring
if it is valid and for each o € X, either

(Vs € L({Si}ier/G))
[so € L(G) A{S;}ier(s,0) =0] = n(s,0) <N

or

(Vs € L({Si}ier/Q))
[so € L(G) AN{S;}ier(s,0) =1] = n(s,0) < N.

Given a specification language K C L(G) of the plant G, a pair
of sublanguages of K is constructed for each controllable event o €
Y. The set Dg (o) C K is the set of traces in K where o must
be disabled (i.e., s € Dy o(0) < so € L(G) — K), whereas the set
Ek (o) C K is the set of traces where o must be enabled (i.e.,
s € EKO(U) < so € K). Using these as the base step, we induc-
tively define a monotonically decreasing sequence of language pairs
(Dg,n(0), Ex,n(0)) as follows:

0 {DKO(J) = {se€K|soecL(G)-K}
Exo(o) = {se€K|soeK}.
Dk hi1(o)
) = Dr,n(0) VN (Micrn(o) Mi ' Mi(Ex 1 (0)))
Ex n+1(0)

= Exn(0) N (Micrnioy Mi ' Mi(Dre,n(0))).

Note that D 541(0) is a sublanguage of D (o) consisting of
traces for each of which there exists an M;-indistinguishable trace in
Ek n(o) foreachi € In(o). As aresult, all the local supervisors that
have control over o will be ambiguous about their control decisions for
o following the execution of a trace in D 511 (c). The sublanguage
Ek n+1(0) of Ex (o) can be understood in a similar fashion.

Then, we have the following definition of /V-inference-observability.

Definition 2: [3] Given a nonnegative integer N € N, a language
K C L(G) is said to be N-inference-observable if for any o € X,
Dy ny1(0) =0 or Ex nyi1(o) =0. K is said to be inference-
observable if there exists N € N such that K is N-inference-
observable.

Remark 1: Itwas shownin [3] that C&PVD&A-coobservability [15]
and conditional C&P V D&A-coobservability [16] are equivalent to
O-inference-observability and 1-inference-observability, respectively.

The following theorem shows the necessity and sufficiency of N-
inference-observability for the existence of an N-inferring decentral-
ized supervisor enforcing the given specification.

Theorem 1 ([3]): For a nonempty language K C L(G) and a
nonnegative integer N € N, there exists an N-inferring decentralized
supervisor {S; }ier : L(G) x ¥ — Csuchthat L({S;}ic;/G) = K if
and only if K is controllable and NN -inference-observable.

IV. STRICT MONOTONICITY OF N-INFERENCE-OBSERVABILITY
W.R.T. N

It was shown in [3] that forany /N € N, the property of /N-inference-
observability implies the property of (N + 1)-inference-observability
(implying that if a specification can be achieved with N-levels of
inferencing, then it can also be achieved using larger than /N-levels
of inferencing). The question whether more levels of inferencing can
help achieve a strictly larger class of specifications has remained open.
Only in the cases of N = 0 and N = 1, it was shown that N-inference-
observability is strictly stronger than (N + 1)-inference-observability
in general in [16] and [3], respectively, as shown in the following
example.

Example 1: We consider the finite automaton GG shown in Fig. 1,
where a double circle is used to identify a marked state. It is obtained
by adding certain transitions labeled by a or b to the finite automaton
presented in Fig. 1(a) of [3] to form cycles by a’b or ¥ a.
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Fig. 1. Automaton G for Example 1 and proof of Theorem 2.

(b)

Fig. 2. Automata Gk, and G, for Example 1. (a) Gk, . (b) Gk,-

Let n =2, ¥1. = {a,d,c}, Yo = {b,V,c}, Ay ={a,d,d,e},
Ay ={b,VV,d, e}, and

_ Jo, ifoed{a,d,d e}
Mi(o) = {6, otherwise

o, ifoe{bl,de}
My(o) = {5, otherwise.

In addition, let K; and K> be the languages marked by the finite
automata G, and G g, shownin Fig. 2(a) and (b), respectively, which
are taken from [15] and [16], respectively.

First, we show that K, is 1-inference-observable but not O-inference-
observable. For the events a, @/, b, and ¥/, we have Dy, o(a) =0,
Ex, o0(a’) =0, D, 0(b) =0, and Ex, o(t') = 0. For the event c,
we have

Dk, o(c)=d(a+b)+e
EKl,O(C) = d+ €(a+ b)

Since
Mi(Dk, o(c)) =d(a+e)+e
M5(Dgy0(c)) =d(e+b) +e
Mi(Ek, o(c)) =d+e(a+e)
My (Er,0(c)) =d+e(e+0b)
we have

DKl,l(c) = DKl,O(C) N ﬂ M{lMi(EKlyo(C))

ie{1,2}

:e’

EK],l(C) = EK],O(C) n ﬂ M{lMi(DKlyo(C))

ie{1,2}
=d

which imply that K; is not O-inference-observable. Two strings
da,db € D, o(c) (respectively, ea, eb € Er, o(c)) which cannot be
distinguished from d (respectively, e) by the second and first local
supervisors, respectively, are used to show that Fx, 1(c) =d # 0
(respectively, Dy, 1(c) = e # ).

However, since

M (D, ,1(c)) = Ma(Drey ,1(c))
M, (Ek, 1(c)) = My(Ek, 1(c)) =d

we have

Dk, a(e) = Dy a(e)n | [ M M(Ek, 1(c))

1e{1,2}
=0,

EK],Q(C) = EK],I(C) n ﬂ M{lMi(DKlyl(C))

ie{1,2}
=0,

which imply that K is 1-inference-observable.
Next, we show that K5 is 2-inference-observable but not 1-inference-
observable. For the event a, we have

D, 0(a) = (d+e)at/
Esz()(CL) =d +e.

Since M;(Dg, 0(a)) = (d+e)a and M;(Ek, o(a)) =d+e, we
have

Dy, 1(a) = Dg, o(a) N My M (Ege, 0(a)) =0
Ex, 1(a) = Ex, ola) N M{*M,(Dg, o(a)) = 0.
For the event b, we have
D, 0(b) = (d+e)bd
Egk,ob) =d+e.

Since Ms(Dg, 0(b)) = (d+e)b and My(Ex, 0(b)) =d+e, we
have

0
0.

For the events a’ and b, we have D, o(a') = Dy, 0(b') = 0. For the
event ¢, we have

Dy 1(b) = Dy 0(b) N My My (Ex, (b))
Ex,1(b) = Er, 0(b) N My Ma(Di, (b))

D,y 0(c) = d(a+b) + e(z + ab' + ba')
Ex,0(c) =d(e+ab +ba') + e(a+ b).

Compared to Dy, o(c) (respectively, Ex, o(c)), Dk, o(c) (respec-
tively, Fx, o(c)) contains eab’ and eba’ (respectively, dab’ and dba’)
additionally. Since

Mi(Dg,0(c) =d(a+e)+ele+a+a)
M>(Dg,0(c)) =d(e+b) +e(s+b +b)
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My(Ek,0(c)) =d(e + a+a) +e(a+e)
Mz (Ercy,0(c)) = d(e +b +b) +e(e +b)

we have

Diy1(e) = Diyo(e)n | () M Mi(Ex, 0(c))

ie{1,2}

=d(a+b)+e

Ex,1(c) = Exyo(c)N | [ M;'Mi(Dx, o(c))

i€{1,2}
=d+e(a+b).

Since DK2,1(C) = DKl,O(C) and EKz,l(C) = EKl,O(C)s we have

Dy a(e) = Dicya(e) 0 | [ M My(Ex, 1(c))

ie{1,2}

=Di,o(e)n | () M'M(Ex, o(c))
ie{1,2}

= Dk, 1(0)

=e

(| M;'Mi(Dx, 1(c))
ie{1,2}

= Ek,0(c)N ﬂ M M;(Dr, o(c))

1e{1,2}

= EKl,l(C)

Similarly, since Dy, 2(c) = Dk, 1(c) and Eg, 2(¢c) = Ek, 1(c),
we have Dy, 3(c) = Dg, 2(c) =0 and Fx, 3(c) = Ex, 2(c) =
(¢, which imply that K, is 2-inference-observable but not 1-
inference-observable. Two strings dab’, dba’ € E, o(c) (respectively,
eab', eba’ € Dy, o(c)) and their prefixes da, db € Dy, o(c) (respec-
tively, ea, eb € Eg, o(c)) are used to show that Ex, o(c) =d # 0
(respectively, D, o(c) = e # ). The event a’ (respectively, b') is
introduced so that dba’ € E, o(c) (respectively, dab’ € Ex., o(c))
for which ¢ must be enabled can be distinguished from da € D, o(c)
(respectively, db € D, o(c)) for which ¢ must be disabled by the first
(respectively, second) local supervisor.

By extending Example 1, we show in the following theorem
that even when the plant language is regular, the property of N-
inference-observability is strictly stronger than the property of (N +
1)-inference-observability for any N € N, i.e., the classes of N-
inference-observable languages form a strictly increasing chain of
languages in general.

Theorem 2: For any N € N, in general, N-inference-observability
is strictly stronger than (/N + 1)-inference-observability.

Proof: By [3, Th. 2], N-inference-observability implies (N + 1)-
inference-observability for any N € N. We need to show that the
reverse implication does not hold in general.

We consider the setting of Example 1, where G is the finite au-
tomaton shown in Fig. 1. In addition to the languages K; and K
marked by the finite automata G'x, and G'x, shown in Fig. 2(a) and

(@)

(b)

Fig. 8. Theorem 2.

Automaton Gg, (
(@) Gry (1> 0). (0) Gy, (>0

N >3) for

proof of

=

(b), respectively, for any N > 3, let Ky C L(G) be the language
marked by the finite automaton G g, shown in Fig. 3. We show by
inductionon! € N that K5 is (2] 4 1)-inference-observable but not
2l-inference-observable, and Koo is (2] + 2)-inference-observable
but not (2! + 1)-inference-observable, proving the desired strict mono-
tonicity result.

The base step where [ = 0 holds by Example 1. For the induction
step, we suppose that, for [ = h > 0, Koy is (2h + 1)-inference
-observable but not 2h-inference-observable, and Ko, 12 is (2h + 2)-
inference-observable but not (2h + 1)-inference-observable.

First, we show that Ky(q1)41 is (2(h + 1) 4 1)-inference-
observable but not 2(h + 1)-inference-observable. The language
Ks(h+1)+1 € L(G) is marked by the finite automaton Gk, , shown
in Fig. 3(a), where [ = h + 1. For the events a and b, we have
}?K2(h+1)+1’0(a) =0 and D, ,,,,,0(b) = 0. For the event a’, we

ave

DKZ(h,+1)+110(a/) = (d + e)(ba/)h-Hb

EKz(h,+1)+1,0(al) = (d+ e) <Z(ba/)jb> .

=0
Since
Mi(Diyy, 41 10.0(a)) = (d+e) (@)
h
My(Bkyp41)51.0(@)) = (d+e) (Zw)
=0
we have

Diyy1y411(@) = Dy 41400(@)

N M Mi(Exy, ), 00(a)
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=0
Exyniny411(@) = Bty 1) 10.0(a)
N My My(Dieyy40.0(0))
= 0.
For the event b/, we have

DK2(h+1)+1a0(b,) = (d + 6) (abl)h+1a

h
EK2(h+1)+1,0(b') = (d+ 6) (Z(ab/)ja) .

=0
Since
MQ(DK2(h+1)+170(b/)) =(d+e) (b/)h+1
h
MQ(EK2(h+1)+170(b/)) =(d+e) (Z(b/)J>
=0
we have

Ditagnsays1:1() = Dy 1y 41,0(0)
N My ' My (Exy, 1,0 ,0(0)
=0
By 11 (8) = Eky iy 41,0(0)
N My Ma(Dicypy, )4 .0(0)
= 0.

For the event ¢, we have

7=0

h+1
Dityipinyir0(c) =d (Z((ab')ja + (ba’)jb)>

htl . .
+e (z«aw + (ba/)f))

Jj=0

ht1 . .
EKz(h+1)+1v0(c) =d (Z((ab’)] + (ba’)a)>

j=0

h+1
+e (Z((ab’)ja + (ba’)jb)> .
Since

htl ‘
Mi(Dicyy 1y1r0(0)) = d (Zmﬂa + (a'm)

=0

h+1 ) ]
+e (Z(af + W)>

Jj=0

h+1
M2(DK2(h+1)+170(C)) =d (Z((bl)j + bjb))

=0

h+1
+e (Z((b’)j + bj))

htl ,
M, (EKz(h+1)+1’O(C)) =d (Z(a] + (a')])>

Jj=0

h+1 ) )
+e (Z(afa + W)>

Jj=0

h+1
Ms(Exy,41y410(€)) = d (Z((b')j + bj))

h+1
+e (Z((b’)j + bjb)>
we have

DKz(h+1)+1’1 (c) = DKQ(;L+1)+1»0(C)

n ﬂ M Mi(Biky 14y 40,0(¢)

ie{1,2}

=d (Z((ab')ja + (ba/)jb)>
h+1
+e (Z((ab’)j + (ba/)f’))

j=0
= DKQ(h+1) 0(0)

EK2(h+1)+171 (c) = EKg(h+1)+1,0(C)

n ﬂ MiflMi(DKz(hrH)Jrl’O(C))

1e{1,2}

ht1
=d (Z((ab')j + (ba’)j)>

+e (Z((ab/)j a+ (ba') b))
= EKQ(h+1)70(C).

Then, for any N € N with N > 1, we have
DKQ(h,+1)+17N(C) = DKZ(h,+1)7N*1(C)
EKQ(h+1)+17N(C) = EKQ(;L-H),N*l(C)‘

Since Kj(p41y is 2(h 4 1)-inference-observable but not (2h + 1)-
inference-observable by the inductive assumption, we can conclude that
Ky(ht1)+1 18 (2(h + 1) 4 1)-inference-observable but not 2(h + 1)-
inference-observable.

Next, we show that Koypi1)12 is (2(h + 1) + 2)-inference-
observable butnot (2(h + 1) 4 1)-inference-observable. The language
Ksny1)+2 € L(G) is marked by the finite automaton G, , , shown
in Fig. 3(b), where [ = h + 1. For the event a, we have

DK2(n+1)+270(a) =(d+ e)(ab/)h+2

h+1 ‘
EKQ(h+1)+27O(a’) =(d+e) (Z(ab’)3> .

=0
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Since
M, (DK2(h+1)+2’0(a’)) =(d+ e)ah+2
h+1
Ml(EKQ(}H»lH»Q’O(a)) =(d+e) <Z aj>
j=0
we have

Dicy41y421(@) = Dy, 14y 15,0(a)
N MflMl(EKQ(hHW,o(a))
=0
Ekanins21(0) = Eriy 40 45.0(a)
N M Mi(Drey,, ) 4000(a))
=0.
For the event b, we have

Diypy1ys00(0) = (d + e)(ba')h*?

h+1
Bty i1y1200) = (d+e) <Z(ba')j> .

j=0
Since
MQ(DKz(h,+1)+270(b)) = (d + e)bh+2
h+1
M2(EK2(h+1)+2y0(b)) = (d+e) <Z bj)
j=0
we have

Dicyniy42:1(0) = Dreygp ) 42,0(0)
N My Ma(Ercy 4 1)42.0(0)
=0
EKz(hr+1)+2v1(b) = Bk 11)420(0)
N My " My (Diey,, )4 0.0(b))
=0.

i / N —
For the events a' and b/, we have DK2(h,+1>+270 (¢/)=10 and
DKy s1y42,0(0) = 0. For the event c, we have

h+1 ‘ '
DK2(h+1)+2,O(C) =d (Z((ab’)]a + (ba/)]b))

=0

h+2
+e (Z((ab'v‘ + (ba')j))

j=0

h+2 . )
EK2(h+1)+270(C) =d (Z((ab’)] + (b(]/)]))

=0

h+1
+e (Z((ab’)ja + (ba’)jb)> .

=0

Since

h+1
M,y (DKz(h+1)+2,0(C)) =d (Z(aja + (a/)j)>

Jj=0

ht2
+e (Z(aj + (a')j)>

=0

h+1
MQ(DK2(1L+1)+2,0(C)) =d (Z((b/)j + b]b)>

Jj=0

h+2
+e (Z((b/)j + bj)>

Jj=0

h+2
M, (EKz(h,+1)+2v0(C)) =d (Z(aj + (a/)j)>

j=0

h+1
+e (Z(afa + (a’)j))

Jj=0

h+2 ‘ )
Ma(Ercy s 1) p0(€)) = d (Z((b’)ﬂ + bﬂ))

h+1
+e (Z((b’)j + bjb)>
J=0

we have

DK2(h,+1)+2,1(C) = DKz(h+1)+2,O(c)

n ﬂ MiﬁlMi(EK2(h+1>+2»0(C))
ie{1,2}

h+1
=d (Z((ab’)ja + (ba')? b))

3=0
h+1
+e <Z((ab’)j + (ba’)j)>
7=0
= Diys1y41,0(¢)
EKz(h+1)+211(C) = EKz(h+1)+270(c)

n m MiilMi(DK2<h+1>+2vO(c))

ie{1,2}

h+1
=d (Z((ab/)f + (ba')f)>

7=0
h+1
+e <Z<<ab'>ﬂ'a + <ba/>fb>>
j=0
= Bty iy 41:0(0)-

Then, for any N € N with N > 1, we have

DK2(h+1)+2’N(C) = DKz(h+1)+1vN*1(C)
Ekaniny 428 (€) = By 1y 0,8-1()-

Since Ky(p41)41 18 (2(h + 1) + 1)-inference-observable but not
2(h + 1)-inference-observable, we can conclude that Ko(j1)42
is (2(h + 1) + 2)-inference-observable but not (2(h+ 1)+ 1)-
inference-observable. |
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Furthermore, since
Mi(Dg 2nt1(c) = g
My (Dg any1(c)) = "o
M (Exk 2nt1(c)) = g
Fig. 4. Automata G and Gk for proof of Theorem 3. (a) G. (b) Gk . My(Ex 2ns1 () = 00"

V. NONEXISTENCE OF UPPER BOUND TO
INFERENCE-OBSERVABILITY

Checking the inference-observability property of a language K C
L(G) requires checking the existence of N € N such that for any
0 €Y., Dini1(0) =0 or Ex ny1(0) = (0. When the specification
language is N-inference-observable for some N € N, the iterative
computation of (Dg (0), Ex,n(0)) converges in a finite number of
steps, i.e., N + 1 steps. The following theorem shows that a finite-step
convergence of this iterative computation is not guaranteed even if the
plant and specification languages are regular and there are only two
local supervisors.

Theorem 3: For a nonempty language K C L(G) and a control-
lable event o € X, in general there does not exist N € N such that
DK,N(U) = DK’N+1(O') and EK,N(U) = EK,N+1(O').

Proof: We consider the finite automaton G shown in Fig. 4(a). Let
n = 2, EC = Elc = EQC = {C}, Al = {a}, AQ = {b}, and

o, ifo=a
M (o) = {57 otherwise

o, ifo=0b
Ms(o) = {6, otherwise.

Also, let K C L(QG) be alanguage marked by the finite automaton G'xc
shown in Fig. 4(b).
First, we show by induction on & € N that

Dy on(c) = (ab)h(ab)*
Ek on(c) = a(ba)" (ba)*.

By the definitions, we have D o(c) = (ab)* and Ex o(c) = a(ba)*.
This establishes the base step where h = 0.

For the induction step, we suppose that D o5, (¢) = (ab)"(ab)* and
Er 2n(c) = a(ba)"(ba)* for some h € N. Since

My (Dg 2n(c)) = a"a*
M;(Dg on(c)) = b"b*
My (Ek 2n(c)) = a"*'a’
M>(Eg 21 (c)) = b"b*
we have
() M, Mi(Exan(c))
ie{1,2}

= (ab)thl (ab)*

Dg ant1(c) = Dg an(c) N

(| M;'Mi(Dxk 2n(c))
ie{1,2}

= a(ba)"(ba)".

Ex ont1(c) = Exan(c) N

we have

D a(hs1)(€) = Dic2ns1(c)

Nl () M 'Mi(Exznia(c))
ie{1,2}

= (ab)"**(ab)’

Ex 2h+1)(c) = Ex any1(c)

N [ M "Mi(Dkania(c)
ie{1,2}

= a(ba)"* (ba)".

This completes the induction step.

Thus, we have DK,Q(h+1)(C) - DK,Qh(C) and EK,Q(h+1)(C) C
Ek on(c) for any h € N. For the sake of contradiction, we sup-
pose that there exists NV € N such that Dg n(0) = Dg n+1(0) and
EK,N(O) = EK,N+1(U)- Then, we have DK,N(O) = DK,N«H(J)
and Ex n(0) = Ex, n4i(0) for any [ > 0, which is a contradiction
to the first statement of the paragraph. |

VI. CONCLUSION

This article settles an open problem of inference-based decentralized
control by showing that, in general, there does not exist an upper bound
on the number of levels of inferencing required to arrive at a correct
control decision as the iterative computation used to arrive at the control
decision need not terminate in general. From a design perspective,
this suggests that such a number N should be decided as a design
parameter based on the available computing resource, and a sensor
selection algorithm should be developed for ensuring NV-inference-
observability (e.g., by extending the work in [1]) or the specification
should be relaxed/constrained to a computed N -inference-observable
super/sublanguage as in [9] and [10]. The nonexistence of an upper
bound to inference-observability suggests that in general there may
not exist a finite-time procedure to check for inference-observability
(like the property of joint observability [13] and the solvability of
the distributed supervisor synthesis problem [5], which are known to
be undecidable). Identifying a special case where verifying inference-
observability is decidable is a topic of future research.
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