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Nonexistence of Upper Bound to Inferencing Level in Decentralized
Discrete Event Control
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Abstract—In the authors’ earlier work, the notion of inference-
observability was introduced to characterize the existence of de-
centralized supervisors that perform multilevel inferencing against
self-ambiguity and the ambiguities of others to jointly arrive at
a correct control decision. When the property of N -inference-
observability holds, N -levels of inferencing are needed. We show
in this article that the class of N -inference-observable languages
increases strictly monotonically as the parameter N is increased.
We further show that, in general, there is no upper bound on the
number of levels of inferencing required.

Index Terms—Decentralized supervisory control, discrete event
system (DES), inference-observability, inferencing.

I. INTRODUCTION

In any decentralized decision-making paradigm, such as decentral-

ized control or diagnosis, multiple decision-makers, each with its own

limited sensing capabilities, interact to come up with global decisions.

The presence of limited sensing capabilities can lead to ambiguity in

knowing the system state, and thereby, ambiguity in decision-making.

In the context of control of discrete event systems (DESs), a knowledge-

based mechanism for assessing self-ambiguity was presented in [7],

and later the same architecture was used for assessing self-ambiguity

as well as ambiguities of the others in [8]. The process of utilizing the

knowledge of self-ambiguity together with ambiguities of the others

for the sake of decision-making was referred to as “inferencing” in [8],

and for the special case of single-level inferencing, it was called “condi-

tioning” in [14] and [16]. A framework allowing multilevel inferencing

over various local control decisions of varying levels of ambiguity was

first introduced in [3]. This framework supports inferencing over an

arbitrary number of levels of ambiguities, and in addition, an a priori

partitioning of controllable events into disjunctive/conjunctive classes

as in [15] and [16] is not required. An approach for synthesizing a

sublanguage (respectively, a superlanguage) of a specification language

that can be enforced using the inference-based decentralized supervi-

sors is presented in [9] (respectively, [10]). An arborescent architecture

was proposed to realize the inference-based decentralized supervisors

in [2]. A similar inference-based framework for the management of
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ambiguities in the decentralized diagnosis (respectively, prognosis) of

failures was reported in [4] and [12] (respectively, [11]).

In the inference-based decentralized control framework of [3], each

local supervisor uses its observations of the system behavior to come

up with its control decision together with a grade or level of ambiguity

for that control decision. A local supervisor issues a control decision

with an ambiguity level N when it knows that for each trace that causes

ambiguity, there exists another local supervisor, which can issue a con-

trol decision with an ambiguity level at most N − 1. A global control

decision is chosen to be the same as a local control decision with the

minimal level of ambiguity. The notion of N -inference-observability

was formulated in [3] to characterize the class of languages achievable

using N -levels of inferencing.

In this article, we establish that the class of N -inference-observable

languages increases strictly monotonically as the parameter N is

increased by showing that for any N , in general N -inference-

observability is strictly stronger than (N + 1)-inference-observability.

This result answers an open question whether or not, even in the setting

of finite-state plant and specification models, the number of levels of

inferencing required is in general unbounded (and so in general, such

a number should be decided a priori based on the available computing

resources).

II. NOTATION AND PRELIMINARIES

We consider a DES modeled by an automaton G = (Q,Σ, δ,
q0, Qm), where Q is the set of states, Σ is the finite set of events, a

partial function δ : Q× Σ → Q is the transition function, q0 ∈ Q is

the initial state, and Qm ⊆ Q is the set of marked states. Let Σ∗ be the

set of all finite traces of elements of Σ, including the empty trace ε. The

function δ can be generalized to δ : Q× Σ∗ → Q in a usual way. The

generated and marked languages of G, denoted by L(G) and Lm(G),
respectively, are defined as L(G) = {s ∈ Σ∗ | (∃q ∈ Q)δ(q0, s) = q}
and Lm(G) = {s ∈ Σ∗ | δ(q0, s) ∈ Qm}. Let K ⊆ Σ∗ be a language.

The set of all prefixes of traces in K is denoted by K. For supervisory

control purposes [6], the event setΣ is partitioned into two disjoint sub-

setsΣc andΣuc of controllable and uncontrollable events, respectively.

K is said to be controllable if KΣuc ∩ L(G) ⊆ K [6].

Let the set C = {0, 1, φ} be the set of control decisions, where “0”

represents a disablement decision, “1” represents an enablement deci-

sion, and “φ” represents an unsure (or pass) decision. Formally, a super-

visor is defined as a mapS : L(G)× Σ → C such thatS(s, σ) = 1 for

any s ∈ L(G) and any σ ∈ Σuc. We inductively define the generated

language L(S/G) under the control action of S as follows:

1) ε ∈ L(S/G);
2) (∀s ∈ L(S/G))(∀σ ∈ Σ)

sσ ∈ L(S/G) ⇔ [sσ ∈ L(G) ∧ S(s, σ) = 1].

S is said to be valid when for any sσ ∈ L(G) ∩ L(S/G)Σ,

S(s, σ) �= φ, i.e., none of the control decisions for feasible events are

unsure.
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III. REVIEW OF THE INFERENCE-BASED DECENTRALIZED CONTROL

FRAMEWORK

We review the inference-based decentralized control framework

introduced in [3]. In the decentralized control setting, there exist n
local supervisors, whose decisions are fused to obtain a global control

decision so that the controlled behavior satisfies a (global) specification.

Let Σic be the set of locally controllable events for the ith local

supervisorSi (i ∈ I := {1, 2, . . . , n}), in which case,Σc :=
⋃

i∈I Σic.

For each controllable event σ ∈ Σc, the index set of local supervisors

for which σ is controllable is denoted by In(σ) = {i ∈ I | σ ∈ Σic}.

The limited sensing capability of the ith local supervisor Si (i ∈ I) is

represented by a local observation mask, Mi : Σ → Δi ∪ {ε}, where

Δi is the set of locally observed symbols. The observation mask Mi

can be extended toMi : Σ
∗ → Δ∗

i in a usual way. Two traces s, s′ ∈ Σ∗

with Mi(s) = Mi(s
′) are said to be Mi-indistinguishable. For any

languages L ⊆ Σ∗ and L′ ⊆ Δ∗
i , Mi(L) ⊆ Δ∗

i and M−1
i (L′) ⊆ Σ∗

are defined as Mi(L) = {Mi(s) ∈ Δ∗
i | s ∈ L} andM−1

i (L′) = {s ∈
Σ∗ | Mi(s) ∈ L′}, respectively.

Each inference-based local supervisor Si is defined as a map Si :
Mi(L(G))× Σic → C × N, where N denotes the set of nonnegative

integers, so that for any s ∈ L(G) and any σ ∈ Σic,

Si(Mi(s), σ) = (ci(Mi(s), σ), ni(Mi(s), σ)).

Here, ci(Mi(s), σ) ∈ C denotes the control decision of Si for a lo-

cally controllable event σ ∈ Σic following an observation Mi(s) ∈
Mi(L(G)), and ni(Mi(s), σ) ∈ N denotes the ambiguity level of the

control decision ci(Mi(s), σ). Let n(s, σ) be the minimal ambiguity

level of local decisions, i.e.,

n(s, σ) := min{ni(Mi(s), σ) ∈ N | i ∈ In(σ)}.

The decentralized supervisor {Si}i∈I that consists of local super-

visors Si (i ∈ I) issues global decisions on controllable events. For

simplicity, with a slight abuse of notation, {Si}i∈I is defined as a

map {Si}i∈I : L(G)× Σ → C (as opposed to the accurate notation,

{Si}i∈I :
∏

i∈I Mi(L(G))× Σ → C). For any s ∈ L(G) and any

σ ∈ Σ, the control decision {Si}i∈I(s, σ) is given as follows.

1) If σ ∈ Σc

{Si}i∈I(s, σ)

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1, if (∀i ∈ In(σ))ni(Mi(s), σ) = n(s, σ)
⇒ ci(Mi(s), σ) = 1

0, if (∀i ∈ In(σ))ni(Mi(s), σ) = n(s, σ)
⇒ ci(Mi(s), σ) = 0

φ, otherwise.

2) If σ ∈ Σuc, {Si}i∈I(s, σ) = 1.

In other words, for a controllable event, a global control decision

is taken to be the same as the minimal ambiguity level local control

consensus decision. Such local control consensus decisions are called

“winning” decisions.

A useful notion of a decentralized supervisor is the boundedness of

the ambiguity level of its winning decisions. A decentralized supervisor

is said to be N -inferring if for each controllable event, all winning

enablement or all winning disablement decisions have ambiguity levels

below N .

Definition 1 ([3]): Given a nonnegative integer N ∈ N, a decen-

tralized supervisor {Si}i∈I : L(G)× Σ → C is said to be N -inferring

if it is valid and for each σ ∈ Σc, either

(∀s ∈ L({Si}i∈I/G))

[sσ ∈ L(G) ∧ {Si}i∈I(s, σ) = 0] ⇒ n(s, σ) ≤ N

or

(∀s ∈ L({Si}i∈I/G))

[sσ ∈ L(G) ∧ {Si}i∈I(s, σ) = 1] ⇒ n(s, σ) ≤ N.

Given a specification language K ⊆ L(G) of the plant G, a pair

of sublanguages of K is constructed for each controllable event σ ∈
Σc. The set DK,0(σ) ⊆ K is the set of traces in K where σ must

be disabled (i.e., s ∈ DK,0(σ) ⇔ sσ ∈ L(G)−K), whereas the set

EK,0(σ) ⊆ K is the set of traces where σ must be enabled (i.e.,

s ∈ EK,0(σ) ⇔ sσ ∈ K). Using these as the base step, we induc-

tively define a monotonically decreasing sequence of language pairs

(DK,h(σ), EK,h(σ)) as follows:

1)

{

DK,0(σ) := {s ∈ K| sσ ∈ L(G)−K}
EK,0(σ) := {s ∈ K| sσ ∈ K}.

2)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

DK,h+1(σ)
:= DK,h(σ) ∩ (

⋂

i∈In(σ) M
−1
i Mi(EK,h(σ)))

EK,h+1(σ)
:= EK,h(σ) ∩ (

⋂

i∈In(σ) M
−1
i Mi(DK,h(σ))).

Note that DK,h+1(σ) is a sublanguage of DK,h(σ) consisting of

traces for each of which there exists an Mi-indistinguishable trace in

EK,h(σ) for each i ∈ In(σ). As a result, all the local supervisors that

have control over σ will be ambiguous about their control decisions for

σ following the execution of a trace in DK,h+1(σ). The sublanguage

EK,h+1(σ) of EK,h(σ) can be understood in a similar fashion.

Then, we have the following definition ofN -inference-observability.

Definition 2: [3] Given a nonnegative integer N ∈ N, a language

K ⊆ L(G) is said to be N -inference-observable if for any σ ∈ Σc,

DK,N+1(σ) = ∅ or EK,N+1(σ) = ∅. K is said to be inference-

observable if there exists N ∈ N such that K is N -inference-

observable.

Remark 1: It was shown in [3] that C&P∨D&A-coobservability [15]

and conditional C&P ∨ D&A-coobservability [16] are equivalent to

0-inference-observability and 1-inference-observability, respectively.

The following theorem shows the necessity and sufficiency of N -

inference-observability for the existence of an N -inferring decentral-

ized supervisor enforcing the given specification.

Theorem 1 ([3]): For a nonempty language K ⊆ L(G) and a

nonnegative integer N ∈ N, there exists an N -inferring decentralized

supervisor {Si}i∈I : L(G)× Σ → C such thatL({Si}i∈I/G) = K if

and only if K is controllable and N -inference-observable.

IV. STRICT MONOTONICITY OF N -INFERENCE-OBSERVABILITY

W.R.T. N

It was shown in [3] that for anyN ∈ N, the property ofN -inference-

observability implies the property of (N + 1)-inference-observability

(implying that if a specification can be achieved with N -levels of

inferencing, then it can also be achieved using larger than N -levels

of inferencing). The question whether more levels of inferencing can

help achieve a strictly larger class of specifications has remained open.

Only in the cases of N = 0 and N = 1, it was shown that N -inference-

observability is strictly stronger than (N + 1)-inference-observability

in general in [16] and [3], respectively, as shown in the following

example.

Example 1: We consider the finite automaton G shown in Fig. 1 ,

where a double circle is used to identify a marked state. It is obtained

by adding certain transitions labeled by a or b to the finite automaton

presented in Fig. 1(a) of [3] to form cycles by a′b or b′a.
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Fig. 1. Automaton G for Example 1 and proof of Theorem 2.

Fig. 2. Automata GK1
and GK2

for Example 1. (a) GK1
. (b) GK2

.

Let n = 2, Σ1c = {a, a′, c}, Σ2c = {b, b′, c}, Δ1 = {a, a′, d, e},

Δ2 = {b, b′, d, e}, and

M1(σ) =

{

σ, if σ ∈ {a, a′, d, e}
ε, otherwise

M2(σ) =

{

σ, if σ ∈ {b, b′, d, e}
ε, otherwise.

In addition, let K1 and K2 be the languages marked by the finite

automataGK1
andGK2

shown in Fig. 2(a) and (b), respectively, which

are taken from [15] and [16], respectively.

First, we show thatK1 is 1-inference-observable but not 0-inference-

observable. For the events a, a′, b, and b′, we have DK1,0(a) = ∅,

EK1,0(a
′) = ∅, DK1,0(b) = ∅, and EK1,0(b

′) = ∅. For the event c,

we have

DK1,0(c) = d(a+ b) + e

EK1,0(c) = d+ e(a+ b).

Since

M1(DK1,0(c)) = d(a+ ε) + e

M2(DK1,0(c)) = d(ε+ b) + e

M1(EK1,0(c)) = d+ e(a+ ε)

M2(EK1,0(c)) = d+ e(ε+ b)

we have

DK1,1(c) = DK1,0(c) ∩

⎛

⎝

⋂

i∈{1,2}

M−1
i Mi(EK1,0(c))

⎞

⎠

= e,

EK1,1(c) = EK1,0(c) ∩

⎛

⎝

⋂

i∈{1,2}

M−1
i Mi(DK1,0(c))

⎞

⎠

= d

which imply that K1 is not 0-inference-observable. Two strings

da, db ∈ DK1,0(c) (respectively, ea, eb ∈ EK1,0(c)) which cannot be

distinguished from d (respectively, e) by the second and first local

supervisors, respectively, are used to show that EK1,1(c) = d �= ∅
(respectively, DK1,1(c) = e �= ∅).

However, since

M1(DK1,1(c)) = M2(DK1,1(c)) = e

M1(EK1,1(c)) = M2(EK1,1(c)) = d

we have

DK1,2(c) = DK1,1(c) ∩

⎛

⎝

⋂

i∈{1,2}

M−1
i Mi(EK1,1(c))

⎞

⎠

= ∅,

EK1,2(c) = EK1,1(c) ∩

⎛

⎝

⋂

i∈{1,2}

M−1
i Mi(DK1,1(c))

⎞

⎠

= ∅,

which imply that K1 is 1-inference-observable.

Next, we show thatK2 is 2-inference-observable but not 1-inference-

observable. For the event a, we have

DK2,0(a) = (d+ e)ab′

EK2,0(a) = d+ e.

Since M1(DK2,0(a)) = (d+ e)a and M1(EK2,0(a)) = d+ e, we

have

DK2,1(a) = DK2,0(a) ∩M−1
1 M1(EK2,0(a)) = ∅

EK2,1(a) = EK2,0(a) ∩M−1
1 M1(DK2,0(a)) = ∅.

For the event b, we have

DK2,0(b) = (d+ e)ba′

EK2,0(b) = d+ e.

Since M2(DK2,0(b)) = (d+ e)b and M2(EK2,0(b)) = d+ e, we

have

DK2,1(b) = DK2,0(b) ∩M−1
2 M2(EK2,0(b)) = ∅

EK2,1(b) = EK2,0(b) ∩M−1
2 M2(DK2,0(b)) = ∅.

For the events a′ and b′, we have DK2,0(a
′) = DK2,0(b

′) = ∅. For the

event c, we have

DK2,0(c) = d(a+ b) + e(ε+ ab′ + ba′)

EK2,0(c) = d(ε+ ab′ + ba′) + e(a+ b).

Compared to DK1,0(c) (respectively, EK1,0(c)), DK2,0(c) (respec-

tively, EK2,0(c)) contains eab′ and eba′ (respectively, dab′ and dba′)

additionally. Since

M1(DK2,0(c)) = d(a+ ε) + e(ε+ a+ a′)

M2(DK2,0(c)) = d(ε+ b) + e(ε+ b′ + b)
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M1(EK2,0(c)) = d(ε+ a+ a′) + e(a+ ε)

M2(EK2,0(c)) = d(ε+ b′ + b) + e(ε+ b)

we have

DK2,1(c) = DK2,0(c) ∩

⎛

⎝

⋂

i∈{1,2}

M−1
i Mi(EK2,0(c))

⎞

⎠

= d(a+ b) + e

EK2,1(c) = EK2,0(c) ∩

⎛

⎝

⋂

i∈{1,2}

M−1
i Mi(DK2,0(c))

⎞

⎠

= d+ e(a+ b).

Since DK2,1(c) = DK1,0(c) and EK2,1(c) = EK1,0(c), we have

DK2,2(c) = DK2,1(c) ∩

⎛

⎝

⋂

i∈{1,2}

M−1
i Mi(EK2,1(c))

⎞

⎠

= DK1,0(c) ∩

⎛

⎝

⋂

i∈{1,2}

M−1
i Mi(EK1,0(c))

⎞

⎠

= DK1,1(c)

= e

EK2,2(c) = EK2,1(c) ∩

⎛

⎝

⋂

i∈{1,2}

M−1
i Mi(DK2,1(c))

⎞

⎠

= EK1,0(c) ∩

⎛

⎝

⋂

i∈{1,2}

M−1
i Mi(DK1,0(c))

⎞

⎠

= EK1,1(c)

= d.

Similarly, since DK2,2(c) = DK1,1(c) and EK2,2(c) = EK1,1(c),
we have DK2,3(c) = DK1,2(c) = ∅ and EK2,3(c) = EK1,2(c) =
∅, which imply that K2 is 2-inference-observable but not 1-

inference-observable. Two strings dab′, dba′ ∈ EK2,0(c) (respectively,

eab′, eba′ ∈ DK2,0(c)) and their prefixes da, db ∈ DK2,0(c) (respec-

tively, ea, eb ∈ EK2,0(c)) are used to show that EK2,2(c) = d �= ∅
(respectively, DK2,2(c) = e �= ∅). The event a′ (respectively, b′) is

introduced so that dba′ ∈ EK2,0(c) (respectively, dab′ ∈ EK2,0(c))
for which c must be enabled can be distinguished from da ∈ DK2,0(c)
(respectively, db ∈ DK2,0(c)) for which c must be disabled by the first

(respectively, second) local supervisor.

By extending Example 1, we show in the following theorem

that even when the plant language is regular, the property of N -

inference-observability is strictly stronger than the property of (N +
1)-inference-observability for any N ∈ N, i.e., the classes of N -

inference-observable languages form a strictly increasing chain of

languages in general.

Theorem 2: For any N ∈ N, in general, N -inference-observability

is strictly stronger than (N + 1)-inference-observability.

Proof: By [3, Th. 2], N -inference-observability implies (N + 1)-
inference-observability for any N ∈ N. We need to show that the

reverse implication does not hold in general.

We consider the setting of Example 1, where G is the finite au-

tomaton shown in Fig. 1. In addition to the languages K1 and K2

marked by the finite automata GK1
and GK2

shown in Fig. 2(a) and

Fig. 3. Automaton GKN
(N ≥ 3) for proof of Theorem 2.

(a) GK2l+1
(l > 0). (b) GK2l+2

(l > 0).

(b), respectively, for any N ≥ 3, let KN ⊆ L(G) be the language

marked by the finite automaton GKN
shown in Fig. 3. We show by

induction on l ∈ N thatK2l+1 is (2l + 1)-inference-observable but not

2l-inference-observable, and K2l+2 is (2l + 2)-inference-observable

but not (2l + 1)-inference-observable, proving the desired strict mono-

tonicity result.

The base step where l = 0 holds by Example 1. For the induction

step, we suppose that, for l = h ≥ 0, K2h+1 is (2h+ 1)-inference

-observable but not 2h-inference-observable, and K2h+2 is (2h+ 2)-
inference-observable but not (2h+ 1)-inference-observable.

First, we show that K2(h+1)+1 is (2(h+ 1) + 1)-inference-

observable but not 2(h+ 1)-inference-observable. The language

K2(h+1)+1 ⊆ L(G) is marked by the finite automaton GK2l+1
shown

in Fig. 3(a), where l = h+ 1. For the events a and b, we have

DK2(h+1)+1,0
(a) = ∅ and DK2(h+1)+1,0

(b) = ∅. For the event a′, we

have

DK2(h+1)+1,0
(a′) = (d+ e)(ba′)h+1b

EK2(h+1)+1,0
(a′) = (d+ e)

(

h
∑

j=0

(ba′)jb

)

.

Since

M1(DK2(h+1)+1,0
(a′)) = (d+ e)(a′)h+1

M1(EK2(h+1)+1,0
(a′)) = (d+ e)

(

h
∑

j=0

(a′)j

)

we have

DK2(h+1)+1,1
(a′) = DK2(h+1)+1,0

(a′)

∩M−1
1 M1(EK2(h+1)+1,0

(a′))
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= ∅

EK2(h+1)+1,1
(a′) = EK2(h+1)+1,0

(a′)

∩M−1
1 M1(DK2(h+1)+1,0

(a′))

= ∅.

For the event b′, we have

DK2(h+1)+1,0
(b′) = (d+ e)(ab′)h+1a

EK2(h+1)+1,0
(b′) = (d+ e)

(

h
∑

j=0

(ab′)ja

)

.

Since

M2(DK2(h+1)+1,0
(b′)) = (d+ e)(b′)h+1

M2(EK2(h+1)+1,0
(b′)) = (d+ e)

(

h
∑

j=0

(b′)j

)

we have

DK2(h+1)+1,1
(b′) = DK2(h+1)+1,0

(b′)

∩M−1
2 M2(EK2(h+1)+1,0

(b′))

= ∅

EK2(h+1)+1,1
(b′) = EK2(h+1)+1,0

(b′)

∩M−1
2 M2(DK2(h+1)+1,0

(b′))

= ∅.

For the event c, we have

DK2(h+1)+1,0
(c) = d

(

h+1
∑

j=0

((ab′)ja+ (ba′)jb)

)

+ e

(

h+1
∑

j=0

((ab′)j + (ba′)j)

)

EK2(h+1)+1,0
(c) = d

(

h+1
∑

j=0

((ab′)j + (ba′)j)

)

+ e

(

h+1
∑

j=0

((ab′)ja+ (ba′)jb)

)

.

Since

M1(DK2(h+1)+1,0
(c)) = d

(

h+1
∑

j=0

(aja+ (a′)j)

)

+ e

(

h+1
∑

j=0

(aj + (a′)j)

)

M2(DK2(h+1)+1,0
(c)) = d

(

h+1
∑

j=0

((b′)j + bjb)

)

+ e

(

h+1
∑

j=0

((b′)j + bj)

)

M1(EK2(h+1)+1,0
(c)) = d

(

h+1
∑

j=0

(aj + (a′)j)

)

+ e

(

h+1
∑

j=0

(aja+ (a′)j)

)

M2(EK2(h+1)+1,0
(c)) = d

(

h+1
∑

j=0

((b′)j + bj)

)

+ e

(

h+1
∑

j=0

((b′)j + bjb)

)

we have

DK2(h+1)+1,1
(c) = DK2(h+1)+1,0

(c)

∩

⎛

⎝

⋂

i∈{1,2}

M−1
i Mi(EK2(h+1)+1,0

(c))

⎞

⎠

= d

(

h
∑

j=0

((ab′)ja+ (ba′)jb)

)

+ e

(

h+1
∑

j=0

((ab′)j + (ba′)j)

)

= DK2(h+1),0
(c)

EK2(h+1)+1,1
(c) = EK2(h+1)+1,0

(c)

∩

⎛

⎝

⋂

i∈{1,2}

M−1
i Mi(DK2(h+1)+1,0

(c))

⎞

⎠

= d

(

h+1
∑

j=0

((ab′)j + (ba′)j)

)

+ e

(

h
∑

j=0

((ab′)ja+ (ba′)jb)

)

= EK2(h+1),0
(c).

Then, for any N ∈ N with N ≥ 1, we have

DK2(h+1)+1,N
(c) = DK2(h+1),N−1(c)

EK2(h+1)+1,N
(c) = EK2(h+1),N−1(c).

Since K2(h+1) is 2(h+ 1)-inference-observable but not (2h+ 1)-
inference-observable by the inductive assumption, we can conclude that

K2(h+1)+1 is (2(h+ 1) + 1)-inference-observable but not 2(h+ 1)-
inference-observable.

Next, we show that K2(h+1)+2 is (2(h+ 1) + 2)-inference-

observable but not (2(h+ 1) + 1)-inference-observable. The language

K2(h+1)+2 ⊆ L(G) is marked by the finite automaton GK2l+2
shown

in Fig. 3(b), where l = h+ 1. For the event a, we have

DK2(h+1)+2,0
(a) = (d+ e)(ab′)h+2

EK2(h+1)+2,0
(a) = (d+ e)

(

h+1
∑

j=0

(ab′)j

)

.
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Since

M1(DK2(h+1)+2,0
(a)) = (d+ e)ah+2

M1(EK2(h+1)+2,0
(a)) = (d+ e)

(

h+1
∑

j=0

aj

)

we have

DK2(h+1)+2,1
(a) = DK2(h+1)+2,0

(a)

∩M−1
1 M1(EK2(h+1)+2,0

(a))

= ∅

EK2(h+1)+2,1
(a) = EK2(h+1)+2,0

(a)

∩M−1
1 M1(DK2(h+1)+2,0

(a))

= ∅.

For the event b, we have

DK2(h+1)+2,0
(b) = (d+ e)(ba′)h+2

EK2(h+1)+2,0
(b) = (d+ e)

(

h+1
∑

j=0

(ba′)j

)

.

Since

M2(DK2(h+1)+2,0
(b)) = (d+ e)bh+2

M2(EK2(h+1)+2,0
(b)) = (d+ e)

(

h+1
∑

j=0

bj

)

we have

DK2(h+1)+2,1
(b) = DK2(h+1)+2,0

(b)

∩M−1
2 M2(EK2(h+1)+2,0

(b))

= ∅

EK2(h+1)+2,1
(b) = EK2(h+1)+2,0

(b)

∩M−1
2 M2(DK2(h+1)+2,0

(b))

= ∅.

For the events a′ and b′, we have DK2(h+1)+2,0
(a′) = ∅ and

DK2(h+1)+2,0
(b′) = ∅. For the event c, we have

DK2(h+1)+2,0
(c) = d

(

h+1
∑

j=0

((ab′)ja+ (ba′)jb)

)

+ e

(

h+2
∑

j=0

((ab′)j + (ba′)j)

)

EK2(h+1)+2,0
(c) = d

(

h+2
∑

j=0

((ab′)j + (ba′)j)

)

+ e

(

h+1
∑

j=0

((ab′)ja+ (ba′)jb)

)

.

Since

M1(DK2(h+1)+2,0
(c)) = d

(

h+1
∑

j=0

(aja+ (a′)j)

)

+ e

(

h+2
∑

j=0

(aj + (a′)j)

)

M2(DK2(h+1)+2,0
(c)) = d

(

h+1
∑

j=0

((b′)j + bjb)

)

+ e

(

h+2
∑

j=0

((b′)j + bj)

)

M1(EK2(h+1)+2,0
(c)) = d

(

h+2
∑

j=0

(aj + (a′)j)

)

+ e

(

h+1
∑

j=0

(aja+ (a′)j)

)

M2(EK2(h+1)+2,0
(c)) = d

(

h+2
∑

j=0

((b′)j + bj)

)

+ e

(

h+1
∑

j=0

((b′)j + bjb)

)

we have

DK2(h+1)+2,1
(c) = DK2(h+1)+2,0

(c)

∩

⎛

⎝

⋂

i∈{1,2}

M−1
i Mi(EK2(h+1)+2,0

(c))

⎞

⎠

= d

(

h+1
∑

j=0

((ab′)ja+ (ba′)jb)

)

+ e

(

h+1
∑

j=0

((ab′)j + (ba′)j)

)

= DK2(h+1)+1,0
(c)

EK2(h+1)+2,1
(c) = EK2(h+1)+2,0

(c)

∩

⎛

⎝

⋂

i∈{1,2}

M−1
i Mi(DK2(h+1)+2,0

(c))

⎞

⎠

= d

(

h+1
∑

j=0

((ab′)j + (ba′)j)

)

+ e

(

h+1
∑

j=0

((ab′)ja+ (ba′)jb)

)

= EK2(h+1)+1,0
(c).

Then, for any N ∈ N with N ≥ 1, we have

DK2(h+1)+2,N
(c) = DK2(h+1)+1,N−1(c)

EK2(h+1)+2,N
(c) = EK2(h+1)+1,N−1(c).

Since K2(h+1)+1 is (2(h+ 1) + 1)-inference-observable but not

2(h+ 1)-inference-observable, we can conclude that K2(h+1)+2

is (2(h+ 1) + 2)-inference-observable but not (2(h+ 1) + 1)-
inference-observable. �
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Fig. 4. Automata G and GK for proof of Theorem 3. (a) G. (b) GK .

V. NONEXISTENCE OF UPPER BOUND TO

INFERENCE-OBSERVABILITY

Checking the inference-observability property of a language K ⊆
L(G) requires checking the existence of N ∈ N such that for any

σ ∈ Σc, DK,N+1(σ) = ∅ or EK,N+1(σ) = ∅. When the specification

language is N -inference-observable for some N ∈ N, the iterative

computation of (DK,h(σ), EK,h(σ)) converges in a finite number of

steps, i.e., N + 1 steps. The following theorem shows that a finite-step

convergence of this iterative computation is not guaranteed even if the

plant and specification languages are regular and there are only two

local supervisors.

Theorem 3: For a nonempty language K ⊆ L(G) and a control-

lable event σ ∈ Σc, in general there does not exist N ∈ N such that

DK,N (σ) = DK,N+1(σ) and EK,N (σ) = EK,N+1(σ).
Proof: We consider the finite automaton G shown in Fig. 4(a). Let

n = 2, Σc = Σ1c = Σ2c = {c}, Δ1 = {a}, Δ2 = {b}, and

M1(σ) =

{

σ, if σ = a
ε, otherwise

M2(σ) =

{

σ, if σ = b
ε, otherwise.

Also, let K ⊆ L(G) be a language marked by the finite automaton GK

shown in Fig. 4(b).

First, we show by induction on h ∈ N that

DK,2h(c) = (ab)h(ab)∗

EK,2h(c) = a(ba)h(ba)∗.

By the definitions, we have DK,0(c) = (ab)∗ and EK,0(c) = a(ba)∗.
This establishes the base step where h = 0.

For the induction step, we suppose that DK,2h(c) = (ab)h(ab)∗ and

EK,2h(c) = a(ba)h(ba)∗ for some h ∈ N. Since

M1(DK,2h(c)) = aha∗

M2(DK,2h(c)) = bhb∗

M1(EK,2h(c)) = ah+1a∗

M2(EK,2h(c)) = bhb∗

we have

DK,2h+1(c) = DK,2h(c) ∩

⎛

⎝

⋂

i∈{1,2}

M−1
i Mi(EK,2h(c))

⎞

⎠

= (ab)h+1(ab)∗

EK,2h+1(c) = EK,2h(c) ∩

⎛

⎝

⋂

i∈{1,2}

M−1
i Mi(DK,2h(c))

⎞

⎠

= a(ba)h(ba)∗.

Furthermore, since

M1(DK,2h+1(c)) = ah+1a∗

M2(DK,2h+1(c)) = bh+1b∗

M1(EK,2h+1(c)) = ah+1a∗

M2(EK,2h+1(c)) = bhb∗

we have

DK,2(h+1)(c) = DK,2h+1(c)

∩

⎛

⎝

⋂

i∈{1,2}

M−1
i Mi(EK,2h+1(c))

⎞

⎠

= (ab)h+1(ab)∗

EK,2(h+1)(c) = EK,2h+1(c)

∩

⎛

⎝

⋂

i∈{1,2}

M−1
i Mi(DK,2h+1(c))

⎞

⎠

= a(ba)h+1(ba)∗.

This completes the induction step.

Thus, we have DK,2(h+1)(c) ⊂ DK,2h(c) and EK,2(h+1)(c) ⊂
EK,2h(c) for any h ∈ N. For the sake of contradiction, we sup-

pose that there exists N ∈ N such that DK,N (σ) = DK,N+1(σ) and

EK,N (σ) = EK,N+1(σ). Then, we have DK,N (σ) = DK,N+l(σ)
and EK,N (σ) = EK,N+l(σ) for any l ≥ 0, which is a contradiction

to the first statement of the paragraph. �

VI. CONCLUSION

This article settles an open problem of inference-based decentralized

control by showing that, in general, there does not exist an upper bound

on the number of levels of inferencing required to arrive at a correct

control decision as the iterative computation used to arrive at the control

decision need not terminate in general. From a design perspective,

this suggests that such a number N should be decided as a design

parameter based on the available computing resource, and a sensor

selection algorithm should be developed for ensuring N -inference-

observability (e.g., by extending the work in [1]) or the specification

should be relaxed/constrained to a computed N -inference-observable

super/sublanguage as in [9] and [10]. The nonexistence of an upper

bound to inference-observability suggests that in general there may

not exist a finite-time procedure to check for inference-observability

(like the property of joint observability [13] and the solvability of

the distributed supervisor synthesis problem [5], which are known to

be undecidable). Identifying a special case where verifying inference-

observability is decidable is a topic of future research.
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