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Expectation Distance-Based Distributional Clustering
for Noise-Robustness

Rahmat Adesunkanmi , Student Member, IEEE, and Ratnesh Kumar , Fellow, IEEE

Abstract—This paper presents a clustering technique that re-
duces the susceptibility to data noise by learning and clustering
the data-distribution and then assigning the data to the cluster of
its distribution. In the process, it reduces the impact of noise on
clustering results. This method involves introducing a new distance
among distributions, namely the expectation distance (denoted,
ED), that goes beyond the state-of-art distribution distance of
optimal mass transport, also called 2-Wasserstein (denoted, W2):
The latter essentially depends only on the marginal distributions
while the former also employs the information about the joint distri-
butions, making it more powerful. Using the ED, the paper extends
the classical K-means and K-medoids clustering to those over
data-distributions (rather than raw-data) and further introduces
K-medoids using W2. The paper also presents the closed-form
expressions of the W2 and ED distance measures. The implemen-
tation results of the proposed ED and the W2 distance measures
to cluster real-world weather data as well as stock data are also
presented, which involves efficiently extracting and using the un-
derlying data distributions—Gaussians for weather data versus
lognormals for stock data. The results show striking performance
improvement over classical clustering of raw-data, with higher
accuracy realized for ED. Also, not only does the distribution-based
clustering offer higher accuracy, but it also lowers the computation
time due to reduced time-complexity.

Index Terms—Clustering algorithms, expectation distance,
Wasserstein distance, uncertain data.

I. INTRODUCTION

C
LUSTERING, a widely studied unsupervised learning
technique, is commonly used in many fields for data

analysis to make valuable inferences by observing what group
each data point falls into. Classical clustering methods of K-
means and K-medoids iteratively group raw-data into “similar-
ity classes” depending on their relative distances or similarities.
Classical K-means and K-medoids clusterings aim to group
the data points into clusters so that the data’s total distance to
their assigned cluster centers is minimized [1]. The classical
clustering algorithms work with raw-data and are not designed
to be robust to uncertain/noisy data. However, data is naturally
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Fig. 1. Data distribution of each of the four seasons for the Avondale station.

Fig. 2. Data clustering into seasons for the Avondale station.

and inherently affected by the random nature of the physical
generation process and measurement inaccuracies, sampling dis-
crepancy, outdated data sources, or other errors, making it prone
to noise/uncertainty [2], [3], [4]. As an application, consider
a weather station that monitors and measures daily variables
like temperature, humidity, and vapor pressure. The data is
naturally noisy due to physical measurement equipment (that
introduces thermal noise) and variations resulting from other
natural sources such as lightning and solar flares. While the daily
weather conditions are expected to be within specific predicted
ranges for certain seasons, there can be days when those will
vary. A tangible illustration can be drawn from weather data
obtained from Colorado State University CoAgMET Raw Data
Access, as plotted in Fig. 1 for the 4 respective seasons. Their
union is shown in Fig. 2(a), which reveals significant overlap
across the seasons. Applying classicalK-means andK-medoids
algorithms for a 4−way clustering yields only 53.1250% and
53.0574% accuracy, respectively, for grouping weather data in
seasons, as depicted in Fig. 2(b)–(c), highlighting the challenge
of accurately clustering such noisy and overlapping data. Our
analysis of distributions-based clustering reported in the paper
shows striking improvement in clustering results, as can be seen
in Section IV.

Clustering uncertain data has been well-recognized as a chal-
lenge in the data mining fields [5], having applications in diverse
fields such as weather forecasting, medical diagnosis, image
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processing, and many more. Addressing the uncertainties in
data can significantly improve the accuracy and robustness of
clustering results. In the presence of data uncertainty, accounting
for noise distribution and its impact on data values toward data
clustering is meaningful, and so, one viable way to reduce the
impact of uncertainty in data clustering is to extract and utilize
its probability distribution whenever feasible. Accordingly, [5],
[6], [7], [8] cluster the data-distributions, estimated from datasets
belonging to the same random variables, and assign raw-data to
its distribution cluster. The motivation for extending classic K-
means and K-medoids is to enhance clustering accuracy in the
presence of noise. As demonstrated visually with real weather
data from the Avondale, Colorado weather station across four
seasons (Fig. 1), classical clustering exhibits limited accuracy
due to the data overlap caused by random weather variability.
Thus, motivating advanced modifications, such as clustering
over probability distributions, are aimed at mitigating such
limitations and improving clustering accuracy, as exemplified
in Fig. 2. By clustering over the probability distributions of the
data rather than the raw data, this approach avoids erroneous
clustering of the data that appear as outliers due to the noise.
Raw-data is assigned to the cluster of its distribution.

A. Our Contributions

This paper studies the clustering of uncertain/noisy data,
making the following contributions:
� For clustering data distributions, we propose a new distance

measure among distributions, namely Expectation Dis-
tance (ED), which extends the widely used 2-Wasserstein
(W2) distance by factoring in the correlation information
ignored by W2. We formally show that ED meets all the
required criteria of being a metric.

� The proposed ED measure can also be utilized as a similar-
ity measure in other machine learning applications (not just
clustering), such as implementing a Self-organizing map
(SOM) that optimizes a distributional measure distance as
a dissimilarity measure to compare distributional data [9],
learning invariant features in images by way of using a
distributional distance to measure the dissimilarity among
the feature distributions [10] and for anomaly detection
by examining the change in the probability distribution
of variables by measuring the dissimilarities between the
baseline data and the observed data [11].

� We provide a closed-form formula for the W2 and ED
distances in terms of the means and covariances of the
distributions and provide those parameters for Gaussian
and lognormal distributions.

� Using the proposed ED distance, we extend the classical
clustering techniques of K-means and K-medoids to clus-
ter over the data-distributions. We denote the correspond-
ing K-means and K-medoids as EKM and EKMd, respec-
tively. The corresponding W2-distance-based versions are
termed WKM and WKMd, respectively.

� We show that the Barycenter is the cluster-center in both
WKM and EKM. In contrast, we show that the same is not

true for WKMd versus EKMd, which generally can have
different cluster-center.

� We provide time-complexity for clustering based on raw-
data versus the distributions. It is shown that the latter is of
lower complexity and yet offers higher accuracy.

� We implement and compare the results of all six clustering
algorithms: Classical K-means and K-medoids for raw-
data versus W2-based versus ED-based clustering of data
distributions, by applying to real-world noisy weather data
with Gaussian characteristic and real-world stocks data
having lognormal distribution.

B. Related Works

Recent advancements have introduced variants of clustering
methods to enhance their accuracy/robustness. Authors in [12]
introduce an adaptive weighting to mitigate the influence of
outliers, while researchers in [13], [14], [15] leveraged kernel
methods to embed data into higher-dimensional space through
nonlinear mapping, potentially facilitating better separation of
clusters. Furthermore, FC (fixed-centered)-K-means [16], a
method utilizing K-means clustering, weighted fuzzy logical
relations, and probabilistic fuzzy sets, address limitations in han-
dling non-spherical or non-convex data distributions. To tackle
scalability, [17], [18] employ MapReduce to distribute compu-
tations, while [19] harnesses Apache Spark for parallelization
for accelerated processing. Additionally, the classical K-means
and K-medoids clustering methods have been integrated with
various machine learning techniques to improve their perfor-
mance further. These include integration with dimensionality
reduction using feature selection results for improved com-
putational speed [20], combination with Deep Convolutional
Neural Networks (DCNN) for feature learning and subsequent
clustering [21], and integration with Latent Dirichlet Allocation
(LDA) to enhance identifying topics within text documents more
effectively [22].

The task of distribution clustering requires distance metrics
among the distributions. The Maximum Mean Discrepancy
(MMD) distance [23] measures the difference between the mean
of the probability distributions, while the Integral Probability
Metrics (IPMs) [24] measures the distance based on the integrals
of a discrepancy function. MMD is restrictive by being limited to
only the mean values, and IPMs are generally computationally
expensive. The KL divergence measure misses the important
property of symmetry, while the Bhattacharyya distance violates
the triangular inequality. Optimal mass transport (OMT) is a
commonly used metric that seeks to find the least costly way
of transforming one distribution of mass to another relative to a
given transport cost [25]. The OMT has been increasingly used
in recent years in various applied fields such as economics [26],
image processing [27], machine learning [28], data science [29],
among others. W2-distance or 2-Wasserstein distance [30] uses
the OMT concept where the cost of transportation is the expec-
tation of the Euclidean distance. W2-distance has been used in
clustering algorithms, such as Wasserstein K-means [31], [32],
[33], and also as a Wasserstein auto-encoder [34]. However, the
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Wasserstein distance only considers the pairwise marginal distri-
bution information and ignores the true correlation information.
This paper proposes a new distance metric, the Expectation
Distance (ED), that can account for the uncertainty and factor
in the correlation information.

Classical clustering algorithms often require complete data.
Several techniques have been proposed to handle missing data
in clustering: Imputation-based methods [35], [36] fill the miss-
ing values with estimated values, while subspace-based meth-
ods [37], [38] identify subspaces with no missing values and
cluster the data in those subspaces. A probabilistic method
in [39] models the distribution of missing values and uses that
model to generate the missing data.

C. Clustering Definition

Consider a set, S, that needs to be clustered into K clusters.
The clustering problem requires finding a function, C : S −→
[1,K], to map elements of S to one of the K clusters in some
optimal sense. Then for each i ∈ [1,K], the ith cluster set under
the clustering C is given by,

SC(i) := {s ∈ S|C(s) = i}, (1)

with its cluster-center being the minimizer of the distance to the
cluster members

s̄C(i) := arg

⎧

⎨

⎩

min
s

∑

s′∈SC(i)

‖s− s′‖2

⎫

⎬

⎭

, ∀i ∈ [1,K], (2)

where the notation |.| measures the size of its argument set. The
cluster-center turns out to be the center-of-mass, also called the
Barycenter, of the cluster members

s̄C(i) :=

∑

s∈SC(i) s

|SC(i)|
, ∀i ∈ [1,K]. (3)

The goal of clustering is to find an optimal K-cluster that
minimizes the aggregate distances of each of the data to their
respective cluster-centers, i.e.,

min
C

K
∑

i=1

∑

s′∈SC(i)

‖s̄C(i)− s′‖2

= min
C

K
∑

i=1

∑

s′∈SC(i)

∥

∥

∥

∥

∥

∑

s∈SC(i) s

|SC(i)|
−s′

∥

∥

∥

∥

∥

2

. (4)

The corresponding optimal cluster is called K-means.
For K-means, a cluster-center is a Barycenter and may not

coincide with any of the data points. If we require the cluster-
center be one of the data points, then the resulting clustering
is called K-medoids, for which the objective function can be
written as

min
C

K
∑

i=1

⎧

⎨

⎩

min
s∈SC(i)

⎛

⎝

∑

s′∈SC(i)

‖s− s′‖2

⎞

⎠

⎫

⎬

⎭

. (5)

Here, the inner optimization minimizes the distance between one
data point in a cluster to all other data points within the same

cluster to determine a cluster-center

ŝC(i) := arg

⎧

⎨

⎩

min
s∈SC(i)

∑

s′∈SC(i)

‖s− s′‖2

⎫

⎬

⎭

, ∀i ∈ [1,K]. (6)

One popular heuristic to find a locally optimal clustering in-
volves starting with an arbitrary initial clustering, C0, and iter-
atively finding a better clustering Cn+1 from a prior clustering
Cn, (n ≥ 0), until this process converges, i.e., untilCn+1 = Cn.
The heuristic finds the ith cluster of the (n+ 1)th iteration as the
set of those elements that are nearest to the ith cluster-center of
the nth iteration. The exact iterative computation for K-means
can be used to find K-medoids with the change that the cluster-
center is restricted to a data point.

II. CLUSTERING USING DATA-DISTRIBUTIONS FOR

NOISE-ROBUSTNESS

One approach to extend the K-Means and K-medoids and
make them robust to noise-led outliers is to perform clustering
over the data-distributions and then assign each raw-data to the
cluster of its distribution. This way, the effect of outliers is re-
duced, making the clustering more robust. Clustering over data-
distributions requires measuring distances between distribution
pairs. For this, we present a new “Expectation Distance” (ED)
and also utilize the commonly used Optimal Mass Transport
(OMT) distance, also called W2 distance, for comparison.

A. Optimal Mass Transport/W2-Distance

OMT computes the distance between two random variables
X and Y having distributions fX and fY , respectively, by
associating cost to “transport” the probability mass from the
starting distribution fX to the destination distribution fY , while
minimizing that cost among all possible transports. Letting
T : R

n → R
n denote a transport map, OMT minimizes the

associated cost of transport

min
T

∫

Rn

c(x, T (x))fX(dx), (7)

where c(·, ·) is a user-specified cost function of transport. Kan-
torovich proposed the cost to be Euclidean distance and min-
imized the transport cost over the joint distributions fXY so
that the marginals along the two coordinate directions coincide
with fX and fY , respectively, resulting in the 2-Wasserstein or
W2-distance [30]

W 2
2 (X,Y ) := inf

fXY :

EX(Y |X) = fY ,

EY (X|Y ) = fX

∫

Rn×Rn

‖x− y‖22 fXY (x, y)dxdy.

(8)
1) Formula for W2: For a random variable X , we let μX :=

E(X) denote the mean of X , similarly for another random
variable Y , μY := E(Y ) is its mean, and their covariance is
denotedΣXY := E[(X − μX)(Y − μY )

T ]. The variances ofX
and Y are denoted ΣX := ΣXX and ΣY := ΣY Y respectively.
To compute W2(X,Y ), consider the term in (8) that needs to be
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minimized
∫

Rn×Rn

‖x− y‖22 fXY (x, y)dxdy

= E[‖X − Y ‖22]

= E[‖(X − μX + μX)−(Y − μY + μY )‖
2
2]

= E[‖(X − μX)− (Y − μY )‖
2
2]+‖μX−μY ‖

2
2

= trace(ΣX +ΣY − 2ΣXY )+‖μX−μY ‖
2
2 . (9)

Note that E[‖X − Y ‖22] only depends on the first two
moments—This is because the 2-norm is used for measuring
the distance. If instead p-norm, p > 2, is used, higher-order
moments will be required.

For computing W2(X,Y ), we need to minimize (9) with
respect to those joint distributions fXY that possess the
marginals fX and fY . Fixing the marginals fX and fY fixes
μX , μY ,ΣX ,ΣY , leaving ΣXY to be the only variable of opti-
mization. Since (9) is a decreasing function of ΣXY , it is then
obvious that the minimization will be achieved whenΣXY is the
largest, i.e., X and Y are the most correlated. Mathematically,
we need to solve the following semidefinite program:

min
ΣXY

[

trace(ΣX +ΣY − 2ΣXY ) + ‖μX − μY ‖
2
2

]

s.t.

[

ΣX ΣXY

ΣT
XY ΣY

]

≥ 0. (10)

The minimum in (10) is achieved at

ΣXY =
(

Σ
1/2
X ΣY Σ

1/2
X

)1/2

. (11)

Thus, the W2 distance has the closed-form formula

W 2
2 (X,Y ) = ‖μX − μY ‖

2
2

+ trace

[

ΣX +ΣY − 2
(

Σ
1

2

XΣY Σ
1

2

X

)
1

2

]

.

(12)

Several numerical methods have been developed to compute
the Wasserstein distance efficiently, such as the Sinkhorn algo-
rithm [40] and the Entropic Regularization of Optimal Transport
(EROT) [41].

2) Cluster-Center UnderW2: The cluster-center for a cluster
setS of distributions in the case ofW2-basedK-means, denoted
WKM, is given by

argmin
X ′

∑

X∈S

W 2
2 (X

′, X). (13)

The cluster-center turns out to be the Barycenter [31]

1

|S|

∑

X∈S

X. (14)

In contrast, in the case of the W2-based K-medoids, denoted
WKMd, a cluster-center is restricted to be chosen from one of
the data points and may differ from the Barycenter

arg min
X ′∈S

∑

X∈S

W 2
2 (X

′, X). (15)

For distributions {Xi, 1 ≤ i ≤ n}, with E(Xi) = μi,
V ar(Xi) = Σi, the Barycenter distribution’s mean μ and
covariance Σ are given by

μ =
1

n

n
∑

i=1

μi, and Σ =
1

n

n
∑

i=1

(Σ
1

2ΣiΣ
1

2 )
1

2 . (16)

(16) provides Σ in an implicit form, and its computation is a
fixed point of the following iteration [42]:

Σn+1 = Σ
− 1

2

n

(

1

N

N
∑

i=1

(Σ
1

2

nΣiΣ
1

2

n )
1

2

)2

Σ
− 1

2

n . (17)

B. Expectation Distance

While W2-based distance measure is popular, it ignores
the true correlation information: The minimization in (10) is
achieved when the two given marginals are most correlated,
which may not be the case. Recognizing this limitation of W2

distance, we hereby propose a new and more general distance
measure between any two probability distributions that also ac-
counts for their joint distributions (and not just their marginals);
it is simply the expectation distance (ED) of the given random
variables X and Y

d2X,Y := E[‖X − Y ‖22] =

∫

Rn×Rn

‖x− y‖22 fXY (x, y)dxdy.

(18)
The following result establishes that the above definition

provides a metric over the distributions.
Theorem 1: dX,Y = [E[‖X − Y ‖22]]

1

2 in definition (18)
meets all the required criteria of being a distance measure
(namely, positivity, symmetry, zero if and only if equal, and
triangular inequality).

Proof: The proof below takes into consideration some com-
mon properties of expected value and the fact that ‖x− y‖ is a
metric in itself (and satisfies the said four properties).

Positivity (dX,Y ≥ 0):
If a random variable p is non-negative, its expected value is
also non-negative, i.e.,p ≥ 0 ⇐⇒ E(p) ≥ 0. Then sincep :=
‖x− y‖22 ≥ 0, it holds that d2X,Y ≥ 0 ⇐⇒ dX,Y ≥ 0 (dX,Y

being the positive square root of d2X,Y ).
Symmetry (dX,Y = dY,X ):

We have px,y := ‖x− y‖22 = ‖y − x‖22 =: py,x. Then
px,y = py,x ⇒ E[px,y] = E[py,x] ⇒ d2X,Y = d2Y,X ⇒
dX,Y = dY,X .

Zero iff equal (dX,Y = 0 ⇒ X = Y ):
The non-degeneracy property of an expected value asserts that
p = 0 ⇔ E[p] = 0 for equivalence classes of almost surely
equal variables. Then X = Y ⇔ X − Y = 0 ⇔ p := ‖x−
y‖22 = 0 ⇔ E[p] = 0 ⇔ d2X,Y = 0 ⇔ dX,Y = 0.

Triangle Inequality (dX,Z ≤ dX,Y + dY,Z):
By Minkowski inequality in LP spaces:
dX,Z = [E[‖X − Z‖22]]

1

2

≤ [E[‖X − Y ‖2 + ‖Y − Z‖2]
2]

1

2

≤ [E[‖X − Y ‖2]
2]

1

2 + [E[‖Y − Z‖2]
2]

1

2

= dX,Y + dY,Z .
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These properties conclude that the ED proposed in (18) is a
distance measure over distributions. �

1) Formula for ED: Given random variables X,Y, it follows
from the definition (18) and equality (9) that their ED is given
by

d2X,Y = E‖X − Y ‖22

= trace(ΣX +ΣY − 2ΣXY ) + ‖μX − μY ‖
2
2 . (19)

It can be noted that whenever the correlation ΣXY of the two
random variables is the same as the one given in (11), the ED
distance coincides with the W2 distance. However, in general,
ED is of a higher value: To attain the minimization of (10), which
is a decreasing function of ΣXY , its largest possible value (i.e.,
most correlated) gets picked, but in reality, ΣXY may be smaller
(i.e., less correlated), leading to ED being larger than W2.

Remark 1: From (19), it is clear that ED depends on the 2nd

moment of the joint distribution but not on the higher moments.
This is because the ED uses the 2-norm to define the distribution
distance. It is possible to generalize ED to utilize the p-norm
(p ≥ 1) so that it also depends on the higher order moments

d̂pX,Y := E[‖X − Y ‖pp] =

∫

Rn×Rn

‖x− y‖pp fXY (x, y)dxdy.

(20)
2) Cluster-Center Under ED: Theorem 2: The cluster-

center for EKM (ED-based K-means) is the Barycenter of the
cluster-set (as in the case of W2-based K-means).

Proof: Under the ED measure, the cluster-center in case of
K-means for a cluster-set S = {X1, . . . , X|S|} of distributions
is given by the following expression that optimizes the total dis-
tance between a candidate cluster-center distribution and each of
the distributions in S, with respect to all possible choices for the
cluster-center candidate distribution X , along with all possible
choices for the joint distribution candidates between the candi-
date cluster-center and the elements of the cluster, {fX ′Xi

, 1 ≤
i ≤ |S|} with ∀i : EX ′(Xi|X ′) = Xi, EXi

(X ′|Xi) = X ′

arg min
X ′

inf
fX′Xi

,1 ≤ i ≤ |S| :

EX′ (Xi|X ′) = Xi,

EXi
(X ′|Xi) = X ′

∑

1≤i≤|S|

E ‖X ′ −Xi‖
2
2 . (21)

Since the joint distributions (fX ′Xi
versus fX ′Xj

, 1 ≤ i �= j ≤
|S|) can be chosen independent of each other, and the minimiza-
tion is of the sum of positive entries, the operations in (21) can
be rearranged to obtain

arg min
X ′

∑

1≤i≤|S|

inf
fX′Xi

,1 ≤ i ≤ |S| :

EX′ (Xi|X ′) = Xi,

EXi
(X ′|Xi) = X ′

E ‖X ′ −Xi‖
2
2 ,

= argmin
X ′

∑

1≤i≤|S|

W 2
2 (X

′, Xi),

where the last equality follows from the definition of W2-
distance. It can then be seen that the last expression is the same
as that of W2-based distance in (13), and hence, the resulting

cluster-center in the case of EKM is again the Barycenter of
(14). �

In the case of K-medoids using ED distance, denoted EKMd,
a cluster-center is chosen to be one of the data points, so their
joint distribution, as already estimated from the dataset, is known
and used to perform the optimization

arg min
X ′∈S

∑

X∈S

E ‖X ′ −X‖
2
2 . (22)

C. Covariances With Cluster-Centers

In the case of WKMd or EKMd, the cluster-center is one of the
data points, so its joint distribution with any other data point, and
hence the corresponding covariance, is already known. However,
in the case of WKM or EKM, a cluster-center is the Barycenter of
the cluster-set. We can compute its covariance with the other data
points within its cluster-set, say, {X1, X2, . . . , Xn} as follows.
The covariance between a data point Xi and a cluster-center
X = X1+X2+...+Xn

n is

ΣXiX = Cov

⎛

⎝Xi,
1

n

n
∑

j=1

Xj

⎞

⎠

=
1

n

n
∑

j=1

ΣXiXj
. (23)

Eq. (23) provides the closed-form expression to compute the
covariance of the joint distribution between a data point and
its cluster center in the case of WKM or EKM. In the case of
EKM, since the pairwise joint distributions appearing in (23)
are already known and fixed, those pairwise covariances are also
known and fixed, and so for the case of EKM, (23) provides the
final answer. However, in the case of WKM, (11) provides the
optimum covariance between a pair of distributions, and hence,
for the case of WKM, the covariance between a cluster-element
and its cluster-center is given by

ΣXiX =
1

n

n
∑

j=1

(

Σ
1/2
Xi

ΣXj
Σ

1/2
Xi

)1/2

.

D. W2 and ED for Lognormals

From the definition of the lognormal distribution, it is known
that if X ∼ lognorm(θX ,ΔX) and Y ∼ lognorm(θY ,ΔY )
are multivariate lognormal random variables with parame-
ters (θX ,ΔX) and (θY ,ΔY ), respectively, then A = [A(i) :=
ln(X(i))]n×1 and B = [B(i) := ln(Y (i))]n×1, are multivari-
ate normal random variables with A ∼ N (θX ,ΔX), B ∼
N (θY ,ΔY ). Then, the means and covariances of the two log-
normal random variables are as given

μX = E[X] = [exp(θX(i) + 0.5ΔX(ii))]n×1

μY = E[Y ] = [exp(θY (i) + 0.5ΔY (ii))]n×1

E[XY T ] = E[Y XT ] = [exp(θX(i) + θY (j)

+ 0.5(ΔX(ii) + ΔY (jj) + 2ΔXY (ij)))]n×n

ΣXY = E(XY T )− E(X)E(Y )T
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Algorithm 1: Distributional K-Means Using W2 (WKM).

Require: N distributions, fi ∼ f1, f2, . . . , fN
1: Choose K initial cluster-centers fc1 , fc2 , . . . , fck from

the given set of N distribution data.
2: for i = 1 to N(=total number of distributions) do

3: Solve

ki = arg

{

min
1≤k≤K

W 2
2 (fi, fck)

}

4: Assign fi to cluster ki
5: end for

This creates a disjoint partition of

the data into subsets f1, f2, . . . , fK.
6: for k = 1 to K(=total number of clusters) do

7: Update center fck = Barycenter(fk)
8: end for

Repeat steps 2 to 8 using new ck’s
until convergence.

9: Group data points using the final distribution groups in
f1, f2, . . . , fK

Algorithm 2: Distributional K-Means Using ED (EKM).

Require: N distributions, fi ∼ f1, f2, . . . , fN
Steps same as Algorithm 1, with the following
changed: step 3:

3: ki = arg

{

min
1≤k≤K

d2fi,fck

}

.

=[(exp(θX(i)+.5ΔX(ii))×((exp(θY (j) + .5ΔY (jj))

× (exp(ΔXY (ij))− 1)]n×n

ΣX := ΣXX ; ΣY := ΣY Y .

To compute the W2 and ED measures for lognormal distribu-
tions, we can plug the above parameters for the lognormals into
the formulas for W2 (12) and ED (19) respectively, to get the
two respective distances.

III. W2- & ED-BASED DISTRIBUTION CLUSTERING

Here, we extend the classicalK-means andK-medoids-based
clustering methods to clustering over the data-distributions (as
opposed to raw-data). The distance measures considered in clus-
tering over the data-distributions are the above-mentioned W2

and ED distances. The corresponding WKM and EKM cluster-
ing algorithms are presented in Algorithms 1 and 2, respectively,
and the corresponding WKMd and EKMd clustering algorithms
are presented in Algorithms 3 and 4 respectively. Each algorithm
starts with an initial guess of K cluster-centers, iteratively
assigns data to its nearest cluster-center, then recomputes the
cluster-centers and repeats until convergence.

A. Computational Complexity and Scalability

In general, the computational complexity of K-means
clustering is O(nNKT ) and that of K-medoids O(nN2KT ),
where n is the data dimension, N is the number of data

Algorithm 3: Distributional K-Medoids Using W2

(WKMd).
Require: N distributions, fi ∼ f1, f2, . . . , fN

Steps same as Algorithm 1, with the following,
changed: step 7:

7: Update medoid

fck = arg

⎧

⎨

⎩

min
f∈fk

∑

f ′∈fk

W 2
2 (f, f

′)

⎫

⎬

⎭

Algorithm 4: Distributional K-Medoids Using ED
(EKMd).

Require: N distributions, fi ∼ f1, f2, . . . , fN
Steps same as Algorithm 1, with the following,
changed: steps 3 and 7:

3: ki = arg

{

min
1≤k≤K

d2fi,fck

}

7: fck = arg

⎧

⎨

⎩

min
f∈fk

∑

f ′∈fk

d2f,f ′

⎫

⎬

⎭

elements to be clustered, K is the number of clusters, and
T is the number of iterations employed. (T in the worst
case can be exponential, leading to worst-case complexity
of nO(nK) [43].) Additionally, there is O(nN2) complexity
of finding pairwise distances. In the case of distributional
clustering, there is the added task of estimating the distribution
parameters, whose complexity is O(nm2 M), where m is
the number of data points per distribution, and M is the
number of distributions (implying a total of N = mM data
points). Thus the complexities of K-means and K-medoids
for raw-data clustering are O(nmMKT ) +O(nm2 M2)
and O(nm2 M2KT ) +O(nm2 M2) respectively, and those
for distributional clustering are O(nMKT ) +O(n2 M) +
O(nM2) and O(nM2KT ) +O(nm2 M) +O(nM2)
respectively. These quadratic computational complexities
suggest their scalability. Also, since O(nMKT ) +
O(nm2 M) +O(nM2) < O(nmMKT ) +O(nm2 M2) and
similarly since O(nM2KT ) +O(nm2 M) +O(nM2) <
O(nm2 M2KT ) +O(nm2 M2), it follows that the
distributional clustering has a lower time-complexity for
both K-means and K-medoids compared to the raw-data
clustering. Nevertheless, we show below that the accuracy
of distributional clustering is higher than that of raw-data
clustering.

IV. RESULTS AND DISCUSSION

We implemented the distributional clustering algorithms to
cluster synthetic and real-world noisy data—weather and stock
data. First, the data is cleaned by removing unwanted attributes
and ensuring an equal number of remaining attributes with
no missing attribute values. We then extract the underlying
distributions by estimating from data from the same random
variable its distributions parameters—means and covariances
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for Gaussians (weather data) and the means of covariances of
the natural logarithms for the lognormals (stock data). For the
case of the real-world weather data, we treat each season of each
year to be a Gaussian distribution, and accordingly, we have 4
distributions per year. For the case of the real-life stocks data,
we model each stock to be a lognormal distribution, consid-
ering 77 total stocks picked from the Nasdaq top-100 for the
years 2018-19. The performance of the six different clustering
algorithms—the classical versions of K-means and K-medoids
and theirW2 and ED-based extensions, namely, WKM, WKMd,
EKM, EKMd—are compared using the measures of Accuracy,
NMI, and ARI as described next. All simulations were executed
using Matlab R2022 A on a Windows 10 operating system.
The in-built K-medoids and K-means functions were used to
run KM and KMd. Matlab’s K-medoids function accepts user-
defined distance functions for WKMd and EKMd, whereas we
implemented WKM and EKM from scratch. The running times
of our algorithms have been reported in tables for respective
datasets presented in the following sections.

A. Performance Metrics

The accuracy of the six clustering techniques: classical K-
means (KM), W2 K-means (WKM), ED K-means (EKM),
classical K-medoids (KMd), W2 K-medoids (WKMd), and
ED K-medoids (EKMd), are compared using the following
defined three commonly used performance metrics of Accuracy,
NMI (normalized mutual information), and ARI (adjusted rand
index). They all assume the existence of the ground truth clus-
tering, denoted C∗, to compare against the computed clustering,
C, and compute a normalized score within the unit interval, with
1 being the maximum accuracy score. Given S, a set of N data
points, and its two K-sized cluster partitions, the computed one
C and the ground truth C∗

C = {SC(1), . . . , SC(K)}; C∗ = {SC∗(1), . . . , SC∗(K∗)},

define nij := |SC(i) ∩ SC∗(j)|, ai :=
∑K∗

j=1 nij , bj =
∑K

i=1 nij . Note nij denotes the number of data points common
between the clusters XC(i) and XC∗(j).

1) accuracy is simply the ratio of the correctly clustered data
points to the total number of data points

Accuracy =
1

N

min{K,K∗}
∑

i=1

nii.

2) Normalized Mutual Information (NMI) [44] The mu-
tual information I(C∗;C) between the two clusterings
is used to compute the two normalized indices I(C∗;C)

H(C∗)

and I(C∗;C)
H(C) , respectively, whose harmonic mean gives the

desired index

NMI = 2
I(C∗;C)

H(C∗) +H(C)
;

I(C∗;C) = H(C∗)−H(C∗|C)

=−
∑

c∗∈C∗

pC∗(c∗) log2 pC∗(c∗)

−
∑

c∈C

pC(c)H(C∗|C=c)

= −
K∗
∑

j=1

bj
n

log2
bj
n

−
K
∑

i=1

ai
n

K∗
∑

j=1

nij

ai
log2

nij

ai
.

3) Adjusted Rand Index (ARI) [45] The Rand Index (RI)
computes a similarity measure between two clustering by
counting samples in all pairs of cells taken from the two
clusters. The ARI score is then the adjusted version of RI,
“corrected-for-chance,” and normalized

ARI =
RI− Expected(RI)

Max(RI)− Expected(RI)

=

∑

ij

(

nij

2

)

−

⎛

⎜

⎝

∑K
i=1 (

ai
2
)

K∗∑

j
(bj

2
)

(n2)

⎞

⎟

⎠

1
2

(

∑K
i

(

ai

2

)

+
∑K∗

j

(

bj
2

)

)

−

(∑K
i (ai

2
)
∑K∗

j (bj
2
)

(n2)

) .

B. Synthetic Gaussian Data With Unbalanced Clusters

Clusters are termed unbalanced if their sizes are disparate.
Traditional clustering methods face difficulty handling unbal-
anced data effectively [46]. To demonstrate the robustness of our
algorithm in clustering unbalanced data with noise, we generated
a synthetic dataset comprising 3,000 2D-samples from 3 groups
of normal distributions of sizes n1 = 100, n2 = n3 = 25, total-
ing 150, by generating 20 2D-samples from each of the 150
2D-distributions. To start, we created three random matrices,
Ci, i = 1, 2, 3, of sizes 2ni × 2ni, with each entry in Ci being
a random number uniformly distributed between 0 and 1. The
covariance matrices for the three groups of random variables
were generated using Ci, i = 1, 2, 3 as follows:

Σi :=

⎡

⎢

⎢

⎣

Ci(1,1)
sc(i) . . . Ci(2ni, 1)

...
. . .

...

Ci(2ni, 1) . . . Ci(2ni,2ni)
sci

⎤

⎥

⎥

⎦

×

⎡

⎢

⎢

⎣

Ci(1,1)
co(i) . . . Ci(2ni, 1)

...
. . .

...

Ci(2ni, 1) . . . Ci(2ni,2ni

sci

⎤

⎥

⎥

⎦

�

.

Essentially, three symmetric square matrices Σi, i = 1, 2, 3
were created where for each i = 1, 2, 3 and k, j ≤ ni, Σi(2×
k − 1 : 2× k, 2× j − 1 : 2× j) represents the covariance of
the kth and jth random-variables of the ith group. Simi-
larly, the means μi of sizes (2, ni), i = 1, 2, 3 were gener-
ated as random numbers between 0 and 1. The Matlab com-
mand mvnrnd(μi,Σi), i = 1, 2, 3 was next used to gener-
ate data, 20 per group, yielding a total of 2n1 × 20 + 2n2 ×
20 + 2n3 × 20 = 2× 150× 20 = 2× 3000 samples. The co-
variance among the pairs of random variables from different
groups was then numerically computed using these samples.

The synthetic 3000 2D-samples were next clustered into
three groups using classical versus W2-based versus ED-based
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Fig. 3. Synthetic Gaussian data result: Plots of data clusters (dots) using (a)
KM, (b) WKM, (c) EKM, (d) KMd, (e) WKMd, (f) EKMd.

TABLE I
TABLE OF EVALUATION MEASURES FOR SYNTHETIC GAUSSIAN DATA

methods. The clustering results from six algorithms are visually
depicted in Fig. 3 and evaluated in Table I. Classical K-means
(KM) andK-medoids (KMd) failed to produce accurate clusters
(accuracy of 38.47% for KM and 38.37% for KMd). In contrast,
the accuracy ofW2-based methods were 98% and 96.67%, while
the ED-based method yielded an accuracy of 100%, showcasing
the robustness of ED-based clustering for correlated unbalanced
clusters.

C. Synthetic Lognormal Data

To demonstrate the algorithm’s versatility across various dis-
tributions, we generated synthetic lognormal distributions using
parameters constructed similarly to the Gaussian distributions
described in Section IV-B. In this setup, the randomly generated
data entries inCi, i = 1, 2, 3 ranged from 0 to 0.06, and the three
groups were of balanced sizes with n1 = n2 = n3 = 150. The
lognormal parameters were estimated following the procedure
outlined in Section II-D. Generating 20 samples per distribution,
we obtained 3000 2D-samples. These were then clustered into
K = 3 groups. The results obtained from the six clustering
algorithms are visually shown in Fig. 4, while the performance
is reported in Table II, along with the run-times. The accuracies
of KM, WKM, and EKM were 0.3843, 0.8467, and 1.0000
respectively, whereas the accuracies of the corresponding K-
medoids versions were 0.3860, 0.7200, and 1.0000 respectively.
The NMIs were: 0.0234, 0.6407, 1.0000 and 0.0242, 0.5241,
1.0000, whereas the ARIs were: 0.5521, 0.8388, 1.0000 and
0.5536, 0.7699, 1.0000. Like the synthetic Gaussian distribution

Fig. 4. Synthetic data result: Plots of data clusters (dots) using (a) KM, (b)
WKM, (c) EKM, (d) KMd, (e) WKMd, (f) EKMd.

TABLE II
TABLE OF EVALUATION MEASURES FOR SYNTHETIC LOGNORMAL DATA

TABLE III
WEATHER DATA DETAILS

clustering, it follows that the distribution-based clustering also
outperforms the classical ones in the case of synthetic lognormal
data.

D. Real-World Weather Data

To demonstrate the performance of the explained cluster-
ing algorithms and show that the distribution-based algorithms
work better in the case of uncertain data, we applied them to
real-life weather data sourced from Colorado State University
CoAgMET Raw Data Access, that were collected from five
weather stations listed in Table III. For an even computation
of data-distributions, we kept only 28 entries from each month,
and accordingly, the data lengths, based on the number of years,
are as listed in Table III.

Data in the same meteorological seasons in the USA were
considered to be in the same cluster: Spring: 03/01 - 05-31; Sum-
mer: 06/01 - 08/31; Fall: 09/01 - 11/30; Winter: 12/01- 02/28.
Thus, we have 4 clusters in total, and the ground truth cluster
for each measurement was acquired based on the date and the
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Fig. 5. 3-D Weather data result: Plots of data clusters (dots) using (a) KM, (b)
WKM, (c) EKM, (d) KMd, (e) WKMd, (f) EKMd.

TABLE IV
EVALUATION MEASURES FOR 3-D WEATHER DATA

corresponding season for each entry. For each weather station,
the data for the same year’s season, with each season containing
84 days (28 days/month for 3 months in a season) worth of data,
was treated as a random variable, thereby producing 4× #Station
× #Years = 4× 5× 21 = 420 of total random variables to be
clustered into 4 seasons, with each random variable supported
by 84 days of data. Thus, there were a total of 420× 84 = 35820
data points. It was reasonably assumed that the weather within
a season of a year at a location follows Gaussian distribution.
This is shown in Fig. 1 where the data-distribution of each of
the four seasons for the Avondale station for temperature and
precipitation are plotted. The outliers can also be visualized.

1) 3-Dimensional Weather Data Analysis: In this part of the
study, we analyzed 3-dimensional weather data consisting of
three features: maximum daily temperature (◦C), precipitation

(mm), and vapor pressure (kPa), extracted from the weather data
from five stations: Avondale, Ault, Dove Creek, Fort Collins,
and Kirk, between 1992 and 2021. As noted above, there are
420 random variables, with each random variable having 84
days/season of 3D-data, implying a data set of 35, 280× 3
entries. In the preprocessing stage, we computed 420 numbers
of 3D means and 3× 3 variances, and 4202 3× 3 covariances,
which took 1.9194 sec.

We used distributional clustering algorithms to analyze the
data, and the performances and compute times of the clustering
algorithms are shown in Fig. 5 and Table IV. The accuracies
of KM, WKM, and EKM were 0.5649, 0.8429, and 1.0000
respectively, whereas the accuracies of the corresponding K-
medoids versions were 0.5637, 0.8500, and 0.9976 respectively.
The NMIs were: 0.3148, 0.7755, 1.0000 and 0.3141, 0.7799,

Fig. 6. 7-d weather data result: Plots of data clusters (dots) using (a) KM, (b)
WKM, (c) EKM, (d) KMd, (e) WKMd, (f) EKMd.

TABLE V
EVALUATION MEASURES FOR 7-D WEATHER DATA

0.9903, whereas the ARIs were: 0.7052, 0.8922, 1.0000 and
0.7047, 0.8950, 0.9976.

The results show that the distribution-based K-means and
K-medoids algorithms outperform the corresponding classical
versions. The ED-based distance measurement offers higher
accuracy, NMI, and ARI values over the W2-based ones, which
performs better than the classical ones. These indicate that the
algorithms are more robust to real-life noisy weather data, and
the overall computational time of distributional clustering is less

compared to the classical ones that operate on raw-data, yet the

accuracy of our algorithms remains higher.

In summary, this study provides an efficient and accurate
approach to analyzing three-dimensional weather data, which
can be useful in various weather-related applications.

2) Clustering of 7-Dimensional Weather Data and Compar-

ison of Computation Times: To compare the time complexity as
the data size grows, we increased the measurement parameters
of daily weather data from 3 to 7 to include the following
features: mean, maximum, and minimum temperature (◦ C),

vapor pressure (kPa), maximum and minimum relative humidity

(Fraction), and precipitation (mm). The resulting data entries are
larger compared to our previous experiment, having increased
7-dimensions for the means, variances, and covariances. During
preprocessing, computing the means, variance, and covariance
for the data of 7-dimensions took 2.1818 seconds; that is only a
13% increase, although the data size has increased by 133%.

The clustering results for 7-dimensional weather data with
their compute-time are depicted in Fig. 6 and Table V. The
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summary results show that distribution-based K-means and K-
medoids under both distance measures significantly outperform
the corresponding classical versions. The accuracies of KM,
WKM, and EKM are 0.5596, 0.8595, and 1.0000, respectively,
while the accuracies of the corresponding K-medoids versions
are 0.5578, 0.8548, and 1.0000, respectively. The correspond-
ing NMIs are 0.7014, 0.7778, 1.0000, 0.2911, 0.7745, and
1.0000, and the corresponding ARIs are 0.6836, 0.8977, 1.0000,
0.7005, 0.8956, 1.0000. The performance progression (classical
< W2 < ED) is consistent across all clustering methods. The
ED-based clustering results offer higher accuracy, NMI, and
ARI values than the W2 based ones, plus the compute-time is
smaller. As shown in Table V, the overall computational time of
our algorithm is less compared to the classical ones that operate
on raw data as well as the W2-based ones, yet, the accuracy
of our algorithms remains higher. This significant performance
gain results from the use of distributional clustering, where ED
outperforms W2, and both outperform the classical methods in
terms of accuracy and computation time.

E. Real-World Stocks Data

To demonstrate the effectiveness of our clustering algorithms
for also the non-Gaussian distributions, we applied our methods
to the stocks market price data, which are commonly modeled
as lognormal distributions [47]: Letting Xt denote the price of
a stock X on day t, the data Xt/Xt−1 is assumed to follow
a lognormal distribution with fixed parameters (that are the
mean and variance of ln(Xt/Xt−1), that is taken to be normally
distributed). Manually analyzing and grouping large numbers
of stocks with copious data is nearly impossible, yet that is
necessary for stock analysis. Automating clustering methods to
group stocks based on their returns is helpful in this regard. In
this study, we used data from 77 of the top 100 Nasdaq stocks
from 2018 to 2019, consisting of 504 daily adjusted closing
prices over the said period of 2 years for each stock.

We considered each stock as its own random variable, with
504 days worth of adjusted closing prices as the supporting
dataset. The data size thus equals 77× 504 = 38808 entries,
each of one dimension. For each stock X , we examined its
ln(Xt/Xt−1) values spanning 504 days, and estimated the
lognormal parameters described in Section II-D by finding the
mean and variance of {ln(Xt/Xt−1); 1 ≤ t ≤ 504}. We also
estimated the covariance of each pair of stocks X,Y by using
the data {ln(Xt/Xt−1), ln(Yt/Yt−1); 1 ≤ t ≤ 504}.

To be able to evaluate the performance (accuracy, NMI, ARI),
we created ground truth cluster labels by grouping stocks based
on their yearly rate of returns: Low return (LR), Moderate
return (MR), High return (HR), Low volatility (LV), Moder-
ate volatility (MV), and High volatility (HV), as documented
in Table VI and clustered in Fig. 7. We used six clustering
algorithms, including the classical K-means and K-medoids
and their distribution-based algorithms employing W2 and ED
measures. We evaluated the clustering performance using the
accuracy, normalized mutual information (NMI), and adjusted
Rand index (ARI) metrics.

TABLE VI
GROUND TRUTH STOCK CLUSTERS FROM 2018-19 RETURNS

Fig. 7. Stock data ground clusters.

Fig. 8. Stock data result: Plots of data clusters (dots) using (a) KM, (b) WKM,
(c) EKM, (d) KMd, (e) WKMd, and (f) EKMd.

The clustering results for stock datasets based on their lognor-
mal distributions are shown in Fig. 8 and Table VII. We found
the same progression of performance (classical < W2 < ED)
of the clustering algorithms in terms of accuracy, NMI, ARI,
and compute-time. The accuracies of KM, WKM, and EKM are
0.3766, 0.4675, and 0.5195 respectively, while the accuracies
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TABLE VII
EVALUATION MEASURES FOR STOCKS DATA

of the corresponding K-medoids versions are 0.3766, 0.4935,
and 0.5325 respectively. The corresponding NMIs for K-means
are: 0.1399, 0.4336, 0.4384, and those for K-medoids: 0.1362,
0.4571, 0.4651; and the corresponding ARIs for K-means are:
0.6391, 0.7468, 0.7488, and those for K-medoids are 0.6343,
0.7478, 0.7869. These demonstrate that ED-based clustering
results offer the highest accuracy, NMI, and ARI values while
taking less time to compute as compared to the classical de-
terministic ones (.1533 sec versus. 523 sec for K-means and.
0358 sec versus 1015 sec for K-medoids).

In summary, we demonstrated the effectiveness of the clus-
tering algorithms for non-Gaussian distributions using the stock
market price data, which is commonly modeled as a lognormal
distribution.

V. CONCLUSION

The paper introduced a new distance measure over distribu-
tions, called Expectation Distance (ED), and used it to develop
noise-robust clustering algorithms, K-means, and K-medoids.
A mathematical derivation proved that the proposed distance is a
metric, satisfying the required properties of positivity, symmetry,
zero if and only if equal, and triangle inequality. The presented
distribution-based K-means and K-medoids methods cluster
the data distributions first and then assign to each raw-data
the cluster of its distribution. The ED-based K-means and
K-medoids and W2-distance-based K-medoids clustering were
introduced for the first time. For both W2 and ED, closed-form
expressions for distribution distances were derived in terms of
means and covariances, and those values were provided for the
case of Gaussian and lognormal distributions. The paper also
highlighted that the W2-distance depends only on the marginal
distributions, ignoring the correlation information. In contrast,
the proposed ED overcomes this limitation by factoring in the
correlation information and, in the process, yields higher noise-
robust results. We also noted that while the cluster-centers of
the distribution-based K-means are independent of the distance
measure used, the same is not true of K-medoids. We imple-
mented these noise-robust distance-based clustering algorithms
and applied them to cluster noisy real-world weather and stock
data by efficiently extracting and using the underlying uncer-
tainty information (in terms of parameters of the distributions—
Gaussian in case of weather data and lognormal in case of the
stocks data). The real-life weather data results showed strik-
ing performance improvement for W2-distance and ED-based
K-means and K-medoids. Higher accuracy was observed for
ED in both K-means and K-medoids: For a 35,280 entries

of 3-D weather data spanning 4 seasons over 21 years and 5
stations, the accuracies of classical K-means, W2 K-means,
and ED K-means were found to be 0.5649, 0.8429, and 1.0000
respectively, whereas the accuracies of the corresponding K-
medoids versions were 0.5637, 0.8500, and 0.9976 respectively.
A similar performance progression was also obtained for stock
data, demonstrating the method’s effectiveness for non-Gaussian
distributions. This performance validates the noise-robustness of
the distribution-data-based clustering schemes and the benefits
of factoring in the marginal distributions along with the joint
distributions. It was also shown that while the distribution-
implied clustering offers higher accuracy than the direct clus-
tering of raw-data, strikingly, the former also has a lower time-
complexity. Future research can explore applications to other
distribution types, such as Gaussian mixtures.
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