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ABSTRACT In Advanced Metering Infrastructure (AMI) networks, Smart Meters (SMs), are installed
at consumers’ houses, provide electric utilities with fine-grained power consumption data necessary for
accurate billing, load monitoring, and energy management. However, utility companies are still subjected
to electricity theft cyber-attacks in which fraudulent consumers may manipulate their reported readings and
hence reduce their bills. Several ML-based electricity theft detectors have been proposed in the literature,
however, they either do not capture well the deeper periodicity and temporal features in energy consumption
data or violate consumers’ privacy by running these models over unencrypted power consumption data.
To address these challenges, we propose in this paper a Conv-LSTM-based detector that integrates a
2-D Convolutional Neural Network (CNN) model with a Long Short-Term Memory (LSTM) network to
significantly improve the model’s functionality and detection accuracy, specifically addressing the inherent
periodicity and temporal dependencies in electricity consumption data. Moreover, to run the proposed model
over encrypted 2D data and preserve consumers’ privacy, we designed a novel lightweight Inner Product
Functional Encryption (IPFE) scheme that allows SMs to send their encrypted power consumption data to
the Electric Utility (EU) which can securely compute the first feature map of the first convolutional layer
of the Conv-LSTM detector while preserving consumer privacy. Our analysis and experiments demonstrate
that our scheme is secure and efficiently detecting fraudulent consumers with minimal overhead. In specific,
our model achieves a Detection Rate (DR) of 92.95%, a False Alarm Rate (FAR) of 3.68%, and a High
Detection (HD) rate of 89.27%, resulting in an overall Accuracy (ACC) of 94.65%. Moreover, our scheme
achieves high Precision (PR) at 98.80% and a robust Area Under the Curve (AUC) value of 98.50%. These
results highlight the effectiveness of our approach in enhancing both detection accuracy and reliability all
while protecting consumers’ privacy.

INDEX TERMS Smart grid, privacy preservation, electricity theft cyber-attacks, Conv-LSTM neural
networks, functional encryption.
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FFN Feed Forward Neural Network.
RNN Recurrent Neural Network.
CNN Convolutional Neural Network.
LSTM Long Short-Term Memory.
IPFE Inner Product Functional Encryption.

I. INTRODUCTION
The power grid experiences electricity losses due to both
technical and non-technical factors [1]. Technical losses
typically arise during electricity transfer between electrical
installations due to several factors including but not limited
to conductor resistance, induction of electromagnetic fields,
harmonic distortion, and poor earthing. While these losses
are inevitable, their mitigation is possible through improved
installation practices [2]. On the other hand, predicting
or estimating non-technical losses, caused by malicious
manipulation of reported power consumption data, poses
a significant challenge. This results in inaccurate billing,
leading to huge financial and economic negative impacts
in many countries worldwide. For instance, recent reports
indicate that the annual financial loss due to non-technical
loss is about $6B, $173M, and $100M in the United
States, the United Kingdom, and Canada respectively [3].
Moreover, a recent study showed that electricity theft and
non-technical losses cost utilities $101.2 billion annually in
lost revenue across 138 countries [4]. Electricity theft not only
causes economic losses but also results in a disrupted and
unstable grid operation that may result in power outages [5].
Therefore, there is a necessity to make the power grid smarter
and immune to these attacks.

This necessity drives the evolution towards the Smart Grid
(SG), a modern iteration of the power grid that employs
cutting-edge technologies, equipment, and controls. This
innovation facilitates bidirectional communication among
the grid’s various grid components, thereby enhancing the
reliability of the power grid and enabling the realization of
optimal energy management. Figure 1 shows the conceptual
architecture of the SG. As shown in the figure, a major
component of the SG is Advanced Metering Infrastructure
(AMI) networks, where SmartMeters (SMs), installed at con-
sumers’ houses, provide utility companies with fine-grained
power consumption data. AMI networks not only empower
EU with the necessary data to ensure accurate billing and
analyze realtime energy consumption data, but also provide
consumers with a substantial degree of convenience in
managing their energy consumption [6].
However, integrating SMs into the SG system increases

its vulnerability to electricity theft cyber-attacks. Malicious
customers can exploit system weaknesses and execute
various cyber-attacks to manipulate meter readings. One
approach involves utilizing reverse engineering techniques to
manipulate the firmware and hardware components of smart
meters to report incorrect energy consumption readings for
reduction in electricity bills. An example of such an incident
occurred in 2014, when smart meters in Spain were hacked to

FIGURE 1. The smart grid conceptual architecture.

cut power bills [7]. This fraudulent behavior causes serious
financial losses. Beyond financial implications, malicious
readings may impact the accuracy of power consumption
readings used by the electric utility for grid management.
This can potentially lead to grid instability or even blackout
in severe cases. A key example is the Ukrainian power grid
attack in December 2015, which plunged the country in total
darkness during a harsh winter [8].

To detect such fraudulent activities and identify malicious
consumers, Machine Learning (ML)-based solutions have
been proposed. In these solutions, EUs train ML models
over consumers’ power consumption data to achieve high
detection accuracy of such attacks. However, allowing the EU
to continuously access consumers’ readings for Electricity
Theft Detection (ETD) creates serious privacy concerns.
For instance, these detailed readings can reveal consumers’
habits, such as whether they are at home or away, the number
of people in the household, and the appliances they are
using [9]. This information could be exploited to target homes
when occupants are absent or sold to insurance companies
to adjust plans based on consumer behavior. According to
the Electronic Privacy Information Center, the revelation of
personal behavior pattern is a significant privacy concern in
the SG, and thus power consumption data should be protected
from unauthorized access [10].

Several advanced methods have been proposed to
detect electricity theft while protecting consumer privacy.
Yao et al. [11] used Paillier encryption to secure data during
collection, ensuring privacy but suffering from low accuracy
and heavy computational demands. Similarly, Nabil et al. [8]
developed a scheme using secret sharing and secure
computation with a CNN model, which secures data but has
high computation and communication costs, limiting its use
in practice. Ibrahem et al. [12] addressed these issues with
functional encryption, simplifying theft detection without
interactive sessions, though at the cost of detection accuracy.
These methods rely on Feed Forward Neural Network (FFN)
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and 1-D CNN models, which fail to adequately capture the
temporal correlations and periodicity inherent in electricity
consumption data. As noted in previous studies [11], [13],
[14], leveraging consumers’ daily and weekly consumption
patterns using LSTM and CNN, effectively extracting rich
features, and capturing temporal dynamics.

To address the limitations to existing techniques, we pro-
pose an efficient and privacy-preserving ConvLSTM-based
detection of electricity theft cyber-attacks. The summary of
our contribution and novelty are described as follows:

• We developed a novel Conv-LSTM detector that inte-
grates a 2-D CNN model with an LSTM network.
This combination enhances the detection capability by
automatically extracting high-level periodic features
and the day-to-day power consumption data correlation
from the consumers’ electricity consumption patterns,
organized in a 2-D matrix format based on hours
and days. This approach significantly improves the
model’s functionality and detection accuracy, specifi-
cally addressing the inherent periodicity and temporal
dependencies in electricity consumption data.

• We have developed a general-purpose and lightweight
IPFE scheme based on secure inner product using linear
invertible matrices. To the best of our knowledge, there
exists, no such a secure and lightweight IPFE scheme in
the literature.

• We have integrated our proposed IPFE scheme with the
proposed ETD model to allow consumers to send their
encrypted power consumption data to the EU, which
then computes the resulting feature map of the first
convolutional layer of the ETDmodel without accessing
the raw power consumption readings, thus protecting
consumer privacy.

The remainder of this article is organized as follows.
section II presents the related works. The considered system
model, threat model, and design objectives are discussed in
section III. Preliminaries and background are presented in
section IV. In section V we give the details of the proposed
scheme and the detection model architecture. Discussions,
evaluations, and experiments are presented in section VI.
Finally, our conclusions are drawn in section VII.

II. RELATED WORKS
A. NON-PRIVACY-PRESERVING DETECTION
Various methods have been utilized in the literature to
detect electricity theft attacks in the SG, including hardware-
based approaches [18], game theory [19], matrix decom-
position [20], linear regression [21], state estimation [22]
and machine learning based methods [8], [11], [12], [13],
[16], [23], [24], [25], [26], [27], [28]. Hardware-based
solutions, involving additional equipment like wireless sen-
sors, distribution transformers, and smart meters incur a
high implementation cost. The game theory-based approach
formulates the electricity theft detection problem as a game
between the electric utility and fraudulent consumers, where

the difference in electricity consumption behavior determines
the game’s outcome. However, defining utility functions for
all players using statistical anomaly detection proves chal-
lenging. In other methods like matrix decomposition [20],
linear regression [21], and state estimation methods [22],
there are limitations related to handling large datasets
and vulnerability to false data injection [29]. The study
in [30] demonstrated how smart meters can be leveraged for
voltage monitoring and control, addressing last-mile voltage
stability issues in smart grids. This highlights the growing
importance of smart meters in grid management and stability.
Furthermore, the study [31] proposed a comprehensive smart
meter infrastructure for IoT applications in smart grids,
showcasing the potential of these devices to enable advanced
functionalities and improve overall grid performance. In the
context of energy theft, the authors in [32] provided an
in-depth analysis of smart metering in the European Union
and its relation to the energy theft problem. Their work
underscores the significance of addressing energy theft in
modern smart grid systems and the role of advanced metering
infrastructure in detection and prevention strategies.

ML methods are currently adopted for electricity theft
classification in the smart grid. These include traditional ML-
based approaches, such as support vector machines [24],
decision tree [26], linear regression [21] and gradient
boosting [27]. Additionally, Deep Learning (DL)-based
approaches, such as Recurrent Neural Network (RNN) [28],
[33], [34] and CNN [8], [11], [13], [14] are utilized. A hybrid
detector using a CNN-LSTM approach for electricity theft
detection is proposed in [35]. Our work is different in
the following aspects: first, [35] requires access to private
power consumption data, raising privacy concerns, whereas
our model operates on encrypted data, protecting consumer
privacy. Second, our model can utilize the day-to-day power
consumption correlation matrix as an input, enhancing
the ability to detect fraudulent use. Last, we employ the
ADASYN technique for synthetic data generation to address
class imbalance. Unlike SMOTE used in [35], ADASYN
accounts for the density of minority class examples, reducing
overfitting and improving generalization.

To sum up, despite the effectiveness ofML/DL approaches,
they inherently reveal sensitive information to unauthorized
individuals and trusted entities. This practice is sufficient to
build up many details of the user’s daily life such as electric
appliance usage, time householders leave or return home, and
the number of occupants in a house. This poses a threat to user
privacy. Therefore, integrating machine learning approaches
with data privacy preservation is essential to prevent the
exposure of sensitive data to entities within the grid.

B. PRIVACY-PRESERVING DETECTION
Privacy preservation scheme developed in [8], [12], and
[11] utilize DL methods for detecting electricity thefts while
preserving consumers’ privacy. In the scheme proposed by
Yao et al. [11], Paillier encryption is employed to protect user
privacy during data collection. However, their scheme suffers
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TABLE 1. Comparison of related works in the literature.

from low accuracy and high computation overheads imposed
by the aggregating entity. Nabil et al. [8] developed a privacy
preservation scheme for theft detection using deep learning
methods Their approach uses secret sharing techniques
to mask the fine-grained power consumption reported by
the SMs. The EU uses aggregated masked readings for
theft detection without learning the individual consumption
readings. This is achieved through a secure multiparty
computation protocol evaluated on a CNN model using
arithmetic and binary circuits. The CNN model’s evaluation
is done through an interactive/online session between the
individual smart meters and the EU. However, their scheme
has the following drawbacks. The proposed scheme requires
high computation and communication overhead because
the SMs and EU should execute the CNN model in an
online interactive way to detect theft while preserving
consumer privacy. Also, it takes a total time of 48 min and
exchanged data of 1900 MB for a single SM to be evaluated.
Further, another overhead occurs for using the secret sharing
technique to mask the consumption readings. The large
computation and communication overheads are impractical
to cost-effective devices with limited computation capability
and low bandwidth communications.

Ibrahem et al. [12] addressed these limitations in [8] by
offering a privacy-preserving power theft detection using
functional encryption. This approach encrypts each user’s
smart meter readings using secret keys from a trusted
authority and then decrypts the encrypted readings with the
help of a decryption key from the same entity. The smart
meters do not require an interactive session to evaluate the
power theft detector. Also, the result of detection result is only
known to the EU and no entity is allowed to learn the readings
of other consumers; hence the privacy of consumers is being
preserved. In addition, the scheme demonstrates satisfactory
communication and computation overheads. However, the
detection model exhibits low accuracy in electricity theft
classification.

The methods proposed in [8] and [12] utilize FFN and 1-D
CNN detection models, respectively, as they have shown to
be a better choice than other feature extraction in previous
publications. However, both FNN and 1-D CNN models
have limitations. One key limitation lies in their inability

FIGURE 2. System model.

to model the temporal correlation and periodicity inherent
in the time series nature of electricity consumption, which
affects their ability to capture the periodicity characteristic
of users’ electricity consumption patterns. This adversely
impacts the models’ functionality and detection accuracy.
To address this limitation, we introduce a novel approach
using a 2-D CNN-LSTM architecture for electricity theft
detection. The 2-D CNN automatically extracts high-level
features from users’ daily electricity consumption data
arranged in a 2-D matrix based on hours and days while the
LSTM network is designed to capture temporal and long-
term dependencies. Extensive research has demonstrated the
superior performance of 2-D CNN models for electricity
theft detection, as demonstrated in studies like [11], [13],
and [14]. Their performance evaluations indicate that 2-D
CNNoutperforms 1-DCNNmodels in detecting energy theft.
As a summary, Table 1 provides a comprehensive comparison
of various methods utilized in the literature for detecting
electricity theft. It categorizes each method based on its core
approach, data balancing, and performance, and evaluates
whether it includes privacy preservation measures.

III. SYSTEM MODEL
This section discusses the considered network and threat
models, along with the design goals of the proposed scheme.
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A. NETWORK MODEL
Our network model, as depicted in Figure 2, consists of three
core entities within the smart grid configuration: the electric
utility (EU), a set of smart meters (SMs) installed at the
consumers’ premises, and a Key Distribution Center (KDC).
The role of each entity is described as follows:

• Key Distribution Center: The KDC is responsible for
generating and distributing a unique encryption key for
each SM. Also, the KDC receives a set of kernels from
the EU and uses them to generate a set of functional
decryption kernels that are sent back to the EU. Key
generation and distribution is a one-time process that
runs only during the system’s initialization phase. After
that, the KDC does not actively participate in the
electricity theft detection process.

• Smart meters: SMs are key components of the AMI
network, designed specifically to measure and report
the flow of electricity from the power grid to consumer
premises. We consider a set of smart meters SM =

{SMi, 1 ≤ i ≤ |SM|} where each consumer house
is equipped with a SM that reports encrypted power
consumption data to the EU for data analysis, billing
purposes, and electricity theft detection.

• Electric Utility: The EU is responsible for processing
and analyzing data reported by SMs. The EU utilizes
the reported encrypted power consumption readings sent
by each SM and passes them to the proposed electricity
theft detection model. The EU relies on the outcomes of
the theft detection system to make informed decisions
regarding grid operations, ensuring grid stability, and
preventing potential disruptions.

B. THREAT MODEL AND DESIGN GOALS
The EU is considered an honest-but-curious entity, meaning
it adheres to the proposed protocol correctly but might
attempt to learn the individual power consumption patterns
of consumers from the encrypted power consumption data
reported by the smart meters. The customers’ power con-
sumption readings could reconstruct sensitive information
about consumer lifestyles, including details such as when
customers are at home or away, the types and quantities
of smart appliances in use, and the number of occupants
in a household. On the other hand, consumers may act
maliciously in two ways. First, a malicious consumer may
tamper with their SM and report false consumption readings
to the EU to illegally reduce their bills for financial gain. Such
malicious activity not only leads to financial losses for the
EU but also may impact the decisions taken by the EU to
manage the grid. Second, a consumer may try to use their
keys to learn the power consumption data of other consumers.
Furthermore, there exists a malicious external adversary who
eavesdrops on the communication between the smart meters
and the utility aiming to learn sensitive information about
consumers.

Based on the problem definition and the aforementioned
threat model, the design goals of our proposed scheme are as
follows.

• Privacy Preservation: The proposed scheme shall
ensure that individual consumer power consumption
data remains confidential and cannot be inferred by
either the EU in its honest-but-curious role or by
external adversaries through eavesdropping. This goal
aims to protect sensitive information about consumers’
lifestyles and habits derived from their power usage
patterns.

• Electricity Theft Detection: The proposed scheme shall
enable the EU to execute an electricity theft detection
model using the encrypted power consumption readings
to identify malicious consumers.

• Efficiency: The proposed scheme should be efficient
in terms of computation overhead. This ensures that
the system remains practical for use in real-time
applications and does not introduce significant delays
or costs in the processing and transmission of power
consumption data.

IV. PRELIMINARIES
A. FUNCTIONAL ENCRYPTION
Functional Encryption (FE) is an encryption paradigm
enabling an encryptor to encrypt a message m using a key
k , resulting in Enck (m). This setup allows a decryptor pos-
sessing a decryption key dk to learn only a specific function’s
output computed on the message, rather than the full plaintext
m. Formally, this is represented as Decdk (Enck (m)) = f (m)
[36]. Recently, there has been a growing emphasis on how to
design efficient FE schemes for limited classes of functions
or polynomials, such as linear [37], [38] or quadratic [39].
This work introduces a novel approach to inner product

functional encryption (IPFE), a subtype of FE that facilitates
calculating the inner product of two encrypted vectors.Within
the IPFE model, encryption of a vector r using key k , allows
a decryptor, who has functional decryption key dkw derived
from another vector w and k , to exclusively compute the dot
product (r ·w) upon decrypting r’s encrypted representation,
without access to r’s individual components. The IPFE
framework encompasses three primary algorithms described
below:

• Key Generation: This algorithm is executed by KDC
and it involves generating an encryption key k and
dispatching it to the encryptor. Concurrently, the KDC
acquires a vector w from the decryptor, utilizes w and k
to generate a functional decryption key dkw, and sends
it back to the decryptor.

• Encryption: This algorithm is executed by an encryptor
who employs the secret key k to encrypt the plaintext
vector r and forwards the resultant ciphertext vector ct
to the decryptor.

• Decryption: This algorithm is executed by the decryptor,
who uses the received ciphertext ct and the functional
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decryption key dkw obtained from the KDC to compute
and retrieve (r · w), without gaining access to the
individual components of r. The decryptor is obliged to
maintain non-collusion with the KDC.

B. SECURE INNER PRODUCT
Secure inner product (SIP) over encrypted data have found
widespread application in various domains like secure
keyword searching [40], [41], secure data collection and
aggregation for smart grid AMI networks [42], [43], and
privacy-preserving location-based applications [44], [44],
[45]. In this technique, data are represented in the form of
vectors where the main idea of the SIP technique is to enable
secure dot product computations between two data vectors
without revealing the content of the two vectors. In specific,
the vectors are encrypted using linear invertible matrices such
that when a dot product operation is computed between two
encrypted vectors, it would result in the dot product result of
the plaintext data vectors. In this paper, we developed a novel
IPFE scheme that utilizes the SIP algorithms allowing the EU
to generate the resulting feature map of the first convolutional
layer of a 2D Convolutional Neural Network (CNN) model.
This means the EU can compute the convolution result using
encrypted data without accessing the raw data.

C. CONVOLUTIONAL NEURAL NETWORK
CNN finds widespread use in domains such as speech
processing, image processing [25], models like VGG and
ResNet [11], and natural language processing (NLP) [16].
There exists a variant of CNNs, called 2-D CNN, for
processing 2-D matrices of data. The typical architecture
of 2-D CNN consists of an input layer, an output layer,
and multiple hidden layers, where the hidden layers consist
of three main parts: the convolutional layer, the pooling
layer, and the fully connected layer. The convolutional layer
consists of a group of parallel, learnable filters or kernels to
extract different features from the input data by convolving
the sliding window containing the filter’s weight with the
input data. During the forward pass, each filter traverses
the input data with a certain stride, allowing the filter’s
weights to engage in convolution operation with the input
data to produce a 2-D activation map. The size of the feature
map generated depends on the input data size and kernel
size. The 2-D activation map is a group of feature maps
corresponding to the group of filters. It is regarded as a
collection of feature maps, each of which corresponds to one
of the filters in the group. The feature maps are fed into
the pooling layer responsible for reducing the dimensionality
(spatial size) of the input. This dimensional reduction is
achieved through nonlinear down sampling to progressively
decrease the number of parameters, controlling overfitting
and computation complexity. After several convolution and
max pooling layers, the high-level reasoning in the network
is done via a fully connected layer. The fully connected layer
is used to generate the final output and neurons within the

fully connected layer have connections to all activations in
the previous layer. The final output fromCNN is encapsulated
into time-distributed layers [46] which helps in maintaining
the temporal information and enables the network to learn
from the sequential nature of the data. The extracted features
from the time-distributed layers are flattened for use in the
LSTM network. Importantly, in this work, LSTM is chosen
over pooling layers in CNN to reduce the loss of detailed
local information and capture long-term dependencies in
sequences [16].

D. LONG AND SHORT TERM MEMORY
LSTM network, a type of recurrent neural network (RNN),
is trained using time backpropagation [28]. Its architecture is
fundamentally different from traditional feedforward neural
networks and proves more efficient than other RNNs due to
its unique design that effectively addresses the challenges that
hinder the training and scalability of other RNN variants. The
key innovation of LSTMs lies in their architecture, which is
specifically designed to avoid the vanishing and exploding
gradient problems that often plague RNNs during training.
LSTMs are adept at processing sequential data, making
them ideal for applications such as language translation,
speech recognition, and time-series analysis. This capability
stems from their ability to maintain a form of memory that
incorporates previous information into the current context,
thereby understanding the temporal dynamics of data. At the
heart of the LSTM’s architecture is the memory cell, designed
to store information over extended periods. This memory
cell is regulated by three gates: the forget gate ft , which
filters out irrelevant historical data by deciding which parts
of the previous cell state, C(t−1) to retain and which are
discarded; the input gate It , which controls the addition of
new information to the cell state; and the output gate, which
decides the information from the cell state to be used in
computing the output. The output of the LSTM cell at a time
t, denoted as ht , is dependent not only on the current input xt
but also on the previous output h(t−1). In addition, the outputs
from the forget and the input gates are combined to update the
cell state, Ct . Finally, the output gate determines the parts of
the cell state to be propagated to the next LSTM cells. These
gates enable the LSTM to selectively update its memory by
learning what information is relevant to retain or discard,
thus capturing long-term dependencies without falling prey
to gradient-related issues.

Training LSTMs involves the use of Truncated Back-
propagation Through Time (TBPTT) [33], a modification of
the standard backpropagation technique suited for temporal
sequences. TBPTT limits the number of time steps over
which gradients are backpropagated, thereby simplifying the
computational process and mitigating the vanishing gradient
problem. In applications such as predicting the long-term
consumption patterns of residents, LSTMs can abstract and
retain essential information over long durations.

The classical LSTM equations [28] can be represented
as follows: the input gate Equation (1), the forget gate
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Equations (2), and the output gate Equation (4). In addition,
Equation (3) denotes the cell output of the LSTMnode at time
step t. Equation (5) shows the hidden state of the LSTM node
at time step t.

It = σ (WxI xt +WhI ht−1 + bI ) (1)

ft = σ (Wxf xt +Whf ht−1 + bf ) (2)

Ct = ft ◦ Ct−1 + It ◦ tanh(Wxcxt +Whcht−1 + bc) (3)

Ot = σ (Wxoxt +Whoht−1 + bo) (4)

ht = Ot ◦ tanh(Ct ) (5)

where σ denotes the sigmoid function, ◦ denotes the
Hadamard product, and b is the bias vector parameter.
WxI ,Wxf ,Wxc ,Wxo are weighted for the input xt of the input
gate, forget gate, cell state, and output gate, respectively.
WhI ,Whf ,Whc ,Who are weights for the previous output
ht−1. Parameters WxI ,Wxf ,Wxc ,Wco ,WhI ,Whf ,Whc ,Who
are learned during the training phase to control the memory
and forget of the LSTM.

TABLE 2. Main notations.

V. PROPOSED SCHEME
In this section, we give the details of our proposed scheme.
For ease of readability, we list in Table 2 the main
notations used in this section. Moreover, to differentiate
between vectors andmatrices, we use lowercase bold notation
for vectors and uppercase bold notation for matrices. For
example, r represents a vector whereasM represents amatrix.

A. OVERVIEW
Figure 3 shows an overview of the proposed scheme. During
the system initialization, the KDC generates a master secret
key MK that is used to derive a unique encryption key EKi
for each smart meter SMi. In addition, the EU sends the set
of the kernels of the first convolutional layer in our electricity
theft detection model to the KDC which uses them with the
master key MK to generate the set of functional decryption
keys where a functional decryption key dkwjk represents the

functional decryption key of a kernelWjk . The KDC send the
functional decryption keys back to the EU. After the system
initialization, the KDC is no longer involved in the regular
and repeated operation of electricity theft detection. Further
details about the system initialization will be provided in
subsubsection V-B.
In order to run the electricity theft model over encrypted

readings to ensure the confidentiality of the consumer’s
power consumption data, we developed a novel IPFE tech-
nique based on the secure element-wise product technique
proposed in our earlier work [47] as follows. First, SMi
encrypts the power consumption data of the reporting period
Ri using its encryption key EKi as will be explained
in subsubsection V-C and sends the generated ciphertext
cti to the EU. Then, EU will run the secure convolution
computation using the received ciphertexts and the set of
the functional decryption keys as will be explained in
subsubsection V-D to securely compute the resulting feature
map of the first convolutional layer without accessing the
individual power consumption readings to preserve the con-
sumer’s privacy. Finally, the output of the secure convolution
computation will be passed to the rest of the detection model
as shown in subsubsection V-E to conclude the detection
results.

B. SYSTEM INITIALIZATION
System initialization is carried out by the KDC and is
comprised of three phases: (1) generation of the master
key; (2) generation of the SMs’ encryption keys; and (3)
generation of the EU’s functional decryption keys.

1) GENERATION OF THE MASTER KEY
The KDC generates a random binary vector sv of size q
to be used as a splitting indicator for the SIP technique.
The KDC also generates a master key set MK =

{M1,M2,N1,N2,N3,N4} where each element in MK is a
square invertible random matrix of order q. MK is used to
derive both the encryption and functional decryption keys for
all the smart meters and EU respectively.

2) GENERATION OF SM’S ENCRYPTION KEYS
The KDC useMK to derive a unique encryption key denoted
by EKi for each SMi. EKi consists of 4 components as shown
in Equation (6) where Ai,Bi,Ci,Di, are square invertible
random matrices of order q such that Ai + Bi = M1 and
Ci + Di = M2. Finally, the KDC sends EKi to smart meter
SMi.

EKi =
[
AiN1 BiN2 CiN3 DiN4

]
(6)

3) GENERATION OF EU’S FUNCTIONAL DECRYPTION KEYS
As mentioned earlier, the EU sends the set of the kernels of
the first convolutional layer in the electricity theft detection
model to the KDC. Then, the KDC generates the set of
expanded kernels. To generate a functional decryption key
associated with an expanded kernel Wjk , the KDC first
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FIGURE 3. Illustration of the proposed scheme.

flattens the expanded kernel Wjk to wjk , i.e., reshaping the
matrix Wjk into a vector wjk . This is a necessary step as the
SIP technique works for vectors not for matrices.

The KDC uses the binary vector sv to split the vector wjk
into two random column vectors w′

jk and w′′
jk of same size.

The splitting method is described as follows. If the zth bit
of sv equals 1, then both w′

jk (z) and w′′
jk (z) are set similar to

wjk (z), while if zth bit of sv equals 0, then, w′
jk (z) and w′′

jk (z)
are set to two random numbers such that their sum is equal to
wjk (z). Following the splitting operation, the KDC generates
the functional decryption key dkwjk using w′

jk , w
′′
jk and MK

as

dkwjk =


N-1
1 M

-1
1 w

′
jk

N-1
2 M

-1
1 w

′
jk

N-1
3 M

-1
2 w

′′
jk

N-1
4 M

-1
2 w

′′
jk

 (7)

Finally, the KDC sends all the functional decryption keys
back to the EU.

C. REPORTING POWER CONSUMPTION READINGS
During the reporting period, each SMi uses EKi to encrypt its
power consumption dataRi. First,Ri is flattened into a vector
ri. Then, SMi uses the splitting vector sv to split the vector ri
into two random row vectors r′i and r

′′
i i. The splitting method

is the opposite of what was done to split wjk , i.e., if the zth

bit of sv equals 0, then both r′i(z) and r′′i (z) are set similar to
ri(z), while if zth bit of sv equals 1, then, r′i(z) and w′′

i (z) are
set to two random numbers such that their sum is equal to
ri(z). Finally, SMi uses his encryption key EKi to generate
the ciphertext cti as

cti =
{
r′iAiN1 r′iBiN2 r′′i CiN3 r′′i DiN4

}
(8)

After generating cti, SMi sends it to the EU to be used for
the electricity theft detection evaluation.

D. CONVOLUTION COMPUTATION OVER ENCRYPTED
READINGS
Figure 4 visualizes how the convolution operation can be
computed via a series of Hadamard products or element-wise
products denoted by ⊙. In order to compute F = R ∗ W,
the convolution kernel W should slide along the input data
R to generate a feature map F. This can be done as follows.
As shown in the figure, the first step is to use W to generate
a set of expanded kernels where each expanded kernel has
the same dimensions as R. These expanded kernels represent
all the possible positions of sliding of W over R. Then, the
element-wise product between R and each expanded kernel
would result in the corresponding element in F. For example,
f11 = R⊙W11. Note that, padding the data matrix R before
the convolution process only affects the size of the expanded
kernel, and computing convolution over padded data is still
possible using the element-wise product technique.

Using the aforementioned idea, the EU can securely
build the feature map of the first convolutional layer of the
detection model by utilizing both the received ciphertext
cti and the set of functional decryption keys. Note that,
the functional decryption key dkwjk was designed such that
when multiplied by cti it would result in the dot product
of the flattened vectors ri and wjk which is equivalent to
Hadamard product of the plaintext power consumption data
Ri and expanded kernel Wjk as illustrated above. The proof
of correctness of computing the feature fjk from the ciphertext
cti is

fjk = cti · dkwjk = r′iAiN1N-1
1 M

-1
1 w

′
jk

+ r′iBiN2N-1
2 M

-1
1 w

′
jk

+ r′′i CiN3N-1
3 M

-1
2 w

′′
jk

+ r′′i DiN4N-1
4 M

-1
2 w

′′
jk

= r′iAiM-1
1 w

′
jk + r′iBiM

-1
1 w

′
jk

+ r′′i CiM-1
2 w

′′
jk + r′′i DiM-1

2 w
′′
jk
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FIGURE 4. Visualizing convolution as an element-wise product between the data matrix R and the set of expanded kernels Wjk.

FIGURE 5. The proposed 2-D CNN LSTM architecture.

= r′i(Ai + Bi)M-1
1 w

′
jk

+ r′′i (Ci + Di)M-1
2 w

′′
jk

= r′iM1M-1
1 w

′
jk + r′′i M2M-1

2 w
′′
jk

= r′iw
′
jk + r′′i w

′′
jk

= ri · wjk = Ri ⊙Wjk

In this way, the EU can build the entire feature maps and
pass them to the subsequent layers of the detection model.

E. ELECTRICITY THEFT DETECTION
In our proposed architecture for electricity theft detection,
as depicted in Figure 5, we employ a sequence of lay-
ers designed to analyze electricity consumption data for
the identification of theft patterns. This architecture is
constructed to leverage the strengths of both spatial and
temporal data analysis through the integration of CNNs and
LSTM networks, further refined by dense layers leading

to the final output layer. The initial processing of the
electricity consumption data is performed by secure and
normal convolutional layers. These layers apply a series of
filters to the input data to extract significant spatial features.
The transformation at this stage can be represented as:

F2 = σ (Wc ∗ F1 + Bc) (9)

where F2 represents the feature maps produced by the convo-
lutional layers, Wc denotes the weights of the convolutional
filters, F1 is the input data matrix,Bc is the bias, ∗ denotes the
convolution operation, and σ is the activation function. After
spatial features are extracted by the convolutional layers,
a time-distributedwrapper is applied. This wrapper allows the
model to process each time step of the input data separately
but in parallel, preparing the data for sequential analysis by
the LSTM network. This process can be described as:

Ftd = τ (F2) (10)
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where Ftd represents the time-distributed features and τ

symbolizes the time-distribution operation over the con-
volutional feature maps F2. The LSTM network receives
the time-distributed features and performs temporal analysis
to capture long-term dependencies within the data. The
transformation by the LSTM layer can be encapsulated as:

Flstm = LSTM(Ftd ) (11)

where Flstm denotes the output feature vector from the LSTM
layer, capturing both spatial and temporal dynamics of the
electricity consumption data. Following the LSTM network,
one or more dense layers are employed to further process the
features. These layers perform high-level reasoning based on
the extracted features:

O = φ(Wd · Flstm + bd ) (12)

where O represents the final output indicating the detection
of electricity theft, Wd are the weights, bd is the bias, and φ

is the activation function of the dense layers.

VI. DISCUSSIONS AND EXPERIMENT
A. CONSUMERS’ PRIVACY PRESERVATION
As shown in subsubsection V-C, the power consumption data
represented in ri is split into two vectors r′i and r′′i that is
encrypted using the unique encryption key EKi to generate
cti. The security of this encryption algorithm has been proven
in the known ciphertext model [48]. Thus, r′i and r′′i cannot
be extracted from cti and hence ri is protected against the
EU or external adversaries. Moreover, each user receives a
unique secret encryption key from the KDC generated from
the master key set MK. Therefore, a smart meter SMj who
has an encryption key EKj cannot decrypt the ciphertext
generated by another smart meter SMi [49]. Finally, as shown
in subsubsection V-D, the proposed IPFE scheme allows
the EU to use the decryption key dkwjk to only extract
ri · wjk but not ri. Therefore, the proposed scheme ensures
the confidentiality of the individual power consumption data
against other consumers, the EU, and external adversaries and
hence preserves the consumers’ privacy.

B. EXPERIMENT SETUP
1) HARDWARE CONFIGURATION
The experiments were using an conducted on Intel(R)
Core(TM) i7-10700 CPU at 2.90GHz with 16.0 GB of RAM.
This configuration ensured adequate computational power to
handle the requirements of our cryptographic methods and
deep learning algorithms.

2) DATASET
We utilized a dataset from the Irish Smart Metering Trials,
which was compiled by Electric Ireland and the Sustainable
Energy Authority of Ireland (SEAI) in January 2012 [17].
This dataset includes electricity consumption data for more
than 4,000 smart meters over 536 days, spanning the years
2009 to 2010. Each smart meter in the dataset recorded a

total of 25,728 readings. For this study, we focused on a
subset of 2,000 smart meters (|SM| = 2000), with each meter
providing 48 readings per day.

3) ELECTRICITY THEFT ATTACKS
In the dataset, all consumption readings originate from
honest consumers, which poses a challenge for having
fraudulent readings from malicious smart meters. To address
this, we created a synthetic dataset to simulate conditions
of electricity theft, employing the methodologies outlined
in [24]. Table 3 presents a detailed overview of the simulated
attacks, which include three primary types: partial reduction,
bypass filters, and price-based load control. We denote the
jth electricity reading from SMi on day d as ri[t]. Each attack
function f (·) was specifically designed to modify the reported
energy consumption ri[t] to emulate various scenarios of
electricity theft. Each attack below is applied over specific
time frames defined as intervals. For instance, Attack f4(·)
targets a defined interval [ts, tf ], where no consumption is
reported, simulating a bypass. Other attacks, such as f2(·)
and f6(·), involve dynamic intervals that vary over time or
in response to external factors like tariff fluctuations. These
intervals are crucial for accurately simulating real-world
energy theft behaviors.

TABLE 3. Summary of simulated electricity theft attacks based on [24].

1) Attack f1(·): This attack involves reducing the reading
ri[t] by a constant factor α, where 0 < α < 1.
Uniformly applying this reduction simulates a simple
theft through consistent underreporting.

2) Attack f2(·): This dynamic attack modifies ri[t]
according to a time-dependent function β[t], where
0 < β[t] < 1. This simulates variability in theft,
reflecting real-world scenarios where consumption
reporting might be intermittently adjusted.

3) Attack f3(·): This attack reports a daily averaged
predicted value E[ri] for a fraudulent consumer’s con-
sumption, replacing actual readings with a consistent
mean value to mask individual spikes or reductions in
usage.

4) Attack f4(·): Known as a bypass attack, it involves
the fraudulent consumer reporting zero readings during
a defined interval [ts, tf ], while actual consumption
ri[t] is reported outside this interval. This simulates
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tampering with the meter to display no usage at certain
times.

5) Attack f5(·): Similar to attack f3(·), this attack utilizes a
predicted mean value E[ri] for the day’s consumption
reports. However, unlike f3(·), it varies the reported
value dynamically within the range specified by β[t]
throughout the day.

6) Attack f6(·): This attack aims at reducing the electricity
bill by reporting low energy consumption during
periods of high tariffs and vice versa without changing
actual consumption. This method illicitly takes advan-
tage of tariff fluctuations to reduce the overall expense.

4) DATA PRE-PROCESSING
To generate a malicious attack dataset, we initiated the
process by first defining the parameters of the electricity theft
attack functions. The parameters were set as follows:

1) For the functions f1(·), f2(·), and f6(·), as well as the
variables β[t] and α, we generated random values
uniformly distributed within the interval (0.1, 0.6),
in line with the methodologies described in [24].

2) For the bypass attack implemented in f4(·), the start
time ts was determined using a uniform distribution
over the interval (0, 42). The duration of the attack,
defined as tf − ts, was similarly generated as a uniform
random variable within the range (6, 48), ensuring the
attack’s end time tf could extend up to the maximum of
48.

Upon applying these configurations, the dataset for each
smart meter was augmented to include 1 × 25, 728 genuine
records and 6 fabricated attack samples for each day,
distributed across the original 25, 728 records. Consequently,
for 2, 000 smart meters, the dataset comprises 2, 000 ×

25, 728 honest samples alongside 12, 000×25, 728malicious
samples, resulting from 6 × 2, 000 smart meters subject to
simulated attacks.

TABLE 4. Optimal hyper-parameters of the neural network models.

5) DATA IMBALANCE
The dataset exhibits a significant imbalance, with mali-
cious samples outnumbering honest samples in a ratio
6:1. To mitigate the challenges posed by this imbalance,
we adopt the ADASYN method [50] aimed at equalizing the
distribution between the two classes within the dataset, which

encompasses 25, 728 honest energy consumption readings
for each smart meter. The ADASYN method initiates the
rebalancing process by calculating the ratio of the minority
class (honest samples) to the majority class (malicious
samples).

After implementing the ADASYN approach, the dataset
comprises 12, 000 records, each containing 25, 728 elec-
tricity consumption readings, balanced between honest and
malicious entries. The dataset was subsequently partitioned
into three sets: training, validation, and testing, using a
distribution ratio of 3:1:1.

6) FEATURE EXTRACTION WITH 2-D CNN AND LSTM
To prepare the data for analysis using our 2-D Convolu-
tional Neural Network (CNN) model, we transformed the
consumption readings into a matrix format optimized for
weekly analysis. For each customer, the data was reshaped
into a weekly record represented by a 7×48matrix, where the
7 rows correspond to the days of theweek, and the 48 columns
represent half-hourly consumption readings for each day.
Over a period of 536 days, we generated 77 weekly records
per customer. This matrix format enables the detection model
to analyze the weekly consumption patterns of each smart
meter (SMi).

Upon processing this input through the CNN, a feature
map with dimensions 77× 7× 64 is produced at the second
convolutional layer. This feature map is then input into an
LSTM network for further processing. Specifically, the 2-D
CNN outputs a feature map sizedM × N ×G (77× 7× 64)
after the second convolutional layer, with G representing
the number of convolutional maps in the final convolutional
layer. Using a time-distributed wrapper, the input to the
LSTM layer is reshaped to M × NG (77 × 448), reflecting
the temporal dimensionality of the data at each specific time
point t as illustrated in Figure 5. An LSTM layer is tasked
with extracting the M × NG-dimensional vectors, denoted
as Xt , at each time step t to enhance model performance.
These vectors, termed feature slices Xt , are processed by
the LSTM at each time step t to capture temporal dynamics
within the data. A detailed discussion of the temporal
mechanisms utilized by the LSTM layers is provided in
section IV.

C. MODEL HYPERPARAMETERS
Selecting the right model hyperparameters is essential for
optimizing the performance of our electricity theft detection
model. Table 4 outlines the optimal hyperparameters that
were determined through comparative analysis with other
architectures, highlighting the configurations that yielded
the best results. The chosen hyperparameters include the
number of hidden layers (L) = {1, 2, 3, 4, 5, 6}, the
optimizer (O) = {SGD, RMSprop, ADAM}, the dropout
rate (DH ) = {0.2, 0.4, 0.5}, the hidden activation function
(AH ) = {ReLU, tanh, linear, sigmoid}, the output activation
function (AO)= {softmax, sigmoid}, the learning rate (Lr)=
{softmax, sigmoid}, and the batch size (Bs) = {32, 64, 128}
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TABLE 5. Performance evaluation.

FIGURE 6. Accuracy and loss evaluation for the dataset.

Our model’s design includes two 2-D convolutional layers
and one LSTM layer, with the convolutional layers using the
ReLU activation function for faster training and increased
non-linearity. Following the first convolutional layer is a
dropout layer with a 40% rate to help prevent overfitting. All
weights are initialized using the Glorot method [51], which
ensures stable variance of activations and gradients across
layers for effective training.

The output layer of the model uses the sigmoid activation
function, suitable for binary classification tasks, where
0 denotes normal users and 1 indicates electricity theft. This
function is preferred for its output range between 0 and 1. The
model uses the Adam optimizer and a learning rate scheduler
to adjust the learning rate efficiently during training. To tune
the training epochs, the model has been trained with over
30 epochs with a batch size of 64 as depicted in Figure 6
using binary cross-entropy loss function. After 20 epochs,
the model’s performance on the training data continued to
improve slightly, but the performance on the testing data
plateaued indicating that the model had effectively learned
the underlying patterns.

D. PERFORMANCE METRICS
To evaluate our scheme’s performance, we conduct a
comprehensive evaluation using a wide range of metrics
derived from a confusion matrix. Relying solely on accuracy
and loss evaluation metrics is not dependable in measuring

the effectiveness of our detection model. The confusion
matrix provides insights into the following outcomes.

• True Positive (TP): A benign sample correctly identified
as benign.

• True Negative (TN): A malicious sample correctly
identified as malicious.

• False Positive (FP): A benign sample incorrectly identi-
fied as malicious.

• False Negative (FN): A malicious sample incorrectly
identified as benign.

In this study, we use several key performance indicators,
including the Detection Rate (DR), False Alarm Rate (FAR),
Highest Difference (HD), Accuracy (ACC), Precision-Recall
(PR), and Receiver Operating Characteristics (ROC) for
the evaluation of our detection model. DR measures the
percentage of fraudulent consumers correctly detected as
shown in Equation: (13). The FARmeasures the percentage of
honest consumers falsely recognized as dishonest, as depicted
in Equation: (13). The highest difference (HD) between DR
and FAR, as given in Equation: (14). Accuracy measures
the percentage of honest or fraudulent consumers correctly
identified, as shown in Equation (15). Optimal model
performance is achieved when DR, HD, and accuracy are
high, and FAR is low.

DR =
TP

TP+ FN
FA =

FP
TN + FP

(13)

HD = DR− FA (14)

ACC =
TN + TP

TN + FP+ TP+ FN
(15)

In addition, we have used the ROC curve to illustrate
each model detection performance by plotting the True
Positive Rate (TPR) against the False Positive Rate (FPR)
across different thresholds. The Area Under the Curve (AUC)
quantifies the model’s ability to differentiate between classes,
with a higher AUC indicating better performance. Lastly, the
PR curve shows the tradeoff between Precision and Recall
for different thresholds. The high AUC represents both high
Recall and high Precision, where high Precision relates to a
low False Positive Rate, and high Recall relates to a low False
Negative Rate.

E. PERFORMANCE EVALUATION
Table 5 presents the detection performance of various deep
learning-based classifiers, utilizing the optimal hyperparame-
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FIGURE 7. ROC curve of different schemes.

FIGURE 8. PR curve of different schemes.

ters. Our hybrid 2-D CNN-LSTM detector outperforms other
architectures in terms of key detection metrics.

Our proposed model demonstrates superior performance,
achieving an accuracy of 94.65%, a detection rate (DR) of
92.95%, and the lowest False Alarm Rate (FAR) of 3.68%.
In contrast, the FNN model registers an accuracy of 92.21%,
a DR of 91.30%, and a FAR of 6.83%. The 2-D CNN
models exhibit an accuracy of 89.02%, a DR of 90.66%,
and a FAR of 12.32%. Furthermore, the CONVLSTMmodel
shows an accuracy of 92.39%, with a DR of 89.22% and a
FAR of 4.06% over 30 epochs. Our detector demonstrates
improvements in accuracy (2.29 − 5.63%), DR (1.65 −

3.73%), FAR (0.38 − 8.64%), PR (0.8 − 1.9%) and AUC
(0.60− 2.5%).
The superior performance can be attributed to the

integration of 2-D CNN with LSTM, which effectively
captures periodic features and temporal correlations within
the time-series electricity consumption data. This hybrid
architecture ensures robust capabilities in detecting instances
of power theft. While some discrepancies between actual
and predicted results suggest minimal inaccuracies, these are
comparatively negligible when evaluated against the models
proposed in [11], [12], and [16]. Notably, the 2-D CNN’s
detection rate of 90.66% shows a marginal improvement of

1.44% over the CONVLSTM, though it records the highest
FAR due to its limitations in capturing sequential patterns in
the time-series data.

The ROC curve, illustrated in Figure 7, plots the True Pos-
itive Rate (TPR) against the False Positive Rate (FPR) across
various thresholds. Our model’s ROC curve, characterized
by a blue dashed line, achieves an AUC of 0.985, indicating
nearly perfect performance in distinguishing between classes.
Additionally, the Precision-Recall (PR) curve for our model,
shown in Figure 8, summarizes the model’s performance
across all thresholds. With higher PR values compared to
competing models, our scheme indicates better Precision and
Recall with an AUC of 0.988, reinforcing its effectiveness in
class discrimination.

F. COMPUTATION OVERHEAD
Computation overhead is defined as the processing time
required by each entity in the system, KDC, SMs, and EU to
run the system initialization, reading encryption, and securely
evaluating the first of the detection model respectively.
We implemented our scheme, and the proposed schemes
in [11] and [12] using the Python Charm cryptographic
library [52]. The confidentiality of the power consumption
readings in out of the scope of [16] and hence it is excluded
from this comparison.

Figure 9(a) shows the computation overhead required by
the KDC to run the KeyGen Algorithm vs the of number of
the readings to be encrypted in each electricity theft detection
period. As shown in the figure, [11] exhibits a fixed time to
generate the SM and EU keys. This is because their scheme
utilized the well-known Paillier cryptosystem to encrypt all
the readings such that only a single public/private key pair
is generated and this public key is broadcasted to all the
smart meters. On the other hand, our scheme and [12] are
constructed based on the principles of IPFE in which the
key size is dependent on the readings’ vector size. Our
scheme is more efficient when compared to [12] because our
scheme requires efficient arithmetic operations compared to
the computation expensive operations over G2 and Z2 used
in [12]. Moreover, the scheme in [12] requires the KDC to
generate a unique functional decryption key to be used by the
EU for each SM, unlike our scheme which utilizes a single
functional decryption key for all the users. This will not only
increase the linear complexity shown in Figure 9(a) into a
quadratic complexity, but also will require a storage overhead
at the EU side to store one key per each consumer which
seems an unscalable solution.

Figure 9(b) shows the computation cost required by
the SM to encrypt all the readings in a single detection
period. Our scheme that utilizes the SIP technique, and [12],
constructed based on [53] are extremely efficient when
compared with [11] since each reading in [11] is encrypted
using the Paillier cryptosystem.

The computation overhead at the utility side to evaluate
the output of the first layer in the detection model is shown
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FIGURE 9. Computation overheads comparison.

in Figure 9(c). This is the most important overhead since
the utility will continuously and repeatedly monitor a large
number of consumers at every detection period. Our scheme
is the most efficient because the evaluation of this process
requires a single dot product operation between the received
ciphertext vector cti and the stored functional decryption key
dkwjk unlike [11] that requires a single decryption operation
of the Paillier ciphertext for each reported reading. The
scheme in [12] is constructed based on [53] in which the
most computationally expensive operation requires solving
the discrete logarithmic problem to recover the output of
the first layer in the detection model [54]. It should be
noted that [11] has a weak threat model because it requires
a trusted node to decrypt every single reading and run the
detection model over the plaintext reading unlike our scheme
and [12] in which the EU runs the detection model using
the received encrypted data without violating consumer’s
privacy.

It should be noted that [11] uses an intermediate node
called server gateway which is assumed as trusted entity
that has access to all the individual power consumption
data. Therefore, [11] not only violates the consumers’
privacy protection, but also incurs an additional computation
overhead, not shown on the figures, that is added by the
intermediate node to decrypt each received reading, run the
detection model for each reading from each smart meter, and
aggregate the electricity theft detection results to send them
to the EU.

VII. CONCLUSION
In this paper, we developed a ConvLSTM-based detector
that integrates a 2-D privacy-preserving CNN with an LSTM
network. This innovative combination effectively extracts
high-level features and captures long-term dependencies
in power consumption patterns, significantly enhancing
detection accuracy. Our approach introduces a novel, general-
purpose, and lightweight inner-product functional encryption
scheme, based on the secure inner product using linear
invertible matrices. This scheme allows the secure compu-
tation of the convolution process over encrypted 2D data
without revealing the content of the data, hence ensuring data
confidentiality. Our security analysis demonstrates that the

proposed scheme can ensure the power consumption data
confidentiality and hence, ensure the consumer’s privacy.
Our scheme achieves a superior Detection Rate (DR) of
92.95%, a False Alarm Rate (FAR) of 3.68%, and a High
Detection (HD) rate of 89.27%, resulting in an overall
Accuracy (ACC) of 94.65%. In addition, our scheme achieves
high Precision (PR) at 98.80% and a robust Area Under the
Curve (AUC) value of 98.50%. Furthermore, the computation
costs incurred by our scheme are minimal, making it highly
suitable for real-time applications. These results demonstrate
that our scheme not only achieves high detection accuracy,
but also is extremely efficient for the secret key generation,
data encryption, and secure convolution computation which
makes it an efficient and practical solution in problems where
running CNN-based model over encrypted data is necessary.
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