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Abstract—In federated learning (FL) based electricity theft
detection, detection nodes (DNs) locally train deep learning
models on consumers’ data and share only the local model
parameters with an aggregation server (AS) to generate a global
model shared by all nodes for better detection accuracy. However,
several privacy concerns should be addressed including mem-
bership and inference attacks. To mitigate these attacks, several
privacy-preserving aggregation schemes have been introduced.
Nevertheless, existing FL. detectors often overlook the threat of
poisoning attacks, in which certain DNs hold maliciously labeled,
i.e., poisoned, data during the training. This manipulated data
can subsequently be exploited to introduce backdoors into the
global model after its deployment. This paper introduces a novel
approach that enhances privacy and resilience against poisoning
attacks in FL-based electricity theft detection within smart
grids. Our approach enables encrypting local parameters before
sending them to the AS, thus safeguarding consumers’ privacy.
Additionally, it utilizes a cosine similarity test over encrypted data
to detect and mitigate poisoning attacks by filtering out malicious
local gradients from being considered in the global model
computation. Through extensive evaluations, we demonstrate the
effectiveness of our FL-based detector in substantially reducing
the poisoning attack success rate even when 50% of DNs train
their local models with malicious targeted power consumption
data, all while preserving consumers’ privacy.

Index Terms—Federated Learning, Poisoning Attack, Privacy
Preservation.

I. INTRODUCTION

Electricity theft is one of the major concerns in the current
power grids due to its negative financial impact. For instance,
recent reports indicate that the annual financial loss due to
electricity theft is about $6B, $173M, and $100M in the
United States, the United Kingdom, and Canada respectively
[1]. Electricity theft not only causes economic losses but also
results in a disrupted and unstable grid operation that may
result in power outages [2]. Therefore, there is a necessity to
make the power grid smarter and immune to these attacks.

The Smart Grid (SG) is a modernized power grid that uti-
lizes cutting-edge technologies, equipment, and controls that
offer two-way communication between various grid entities
to ensure efficient and reliable grid operation and energy

management [3]. A fundamental component of the smart grid
is Advanced Metering Infrastructure (AMI) networks in which
Smart Meters (SMs) are installed at consumer’s premises to
provide utility companies with extensive and high-frequency
electricity consumption data. Such data empower electric
utilities to analyze and process real-time energy consumption
data as well as providing consumers with a substantial degree
of convenience in managing their energy consumption [4].
Because SMs are embedded systems running software pro-
grams, they may expose the SG to cyber-attacks. Specifically,
malicious consumers may hack into their SMs to steal electric-
ity by manipulating their consumption data and hence reduce
their electricity bills. To overcome these cyber-attacks, Deep
Learning (DL)-based electricity theft detection has emerged
as the most effective approach for detecting electricity theft
[5]. This is primarily attributed to the ability of DL models
to learn and exploit correlations within consumption readings.
In a DL-based approach, a Detection Node (DN) trains a DL
model over its consumers’ energy consumption profiles.
Moreover, to develop a more accurate and robust en-
ergy theft detector, several DNs, which are typically
owned/operated by different utility companies, use Federated
Learning (FL) to collaboratively train a global model over a
more diverse and larger energy consumption datasets without
sharing their local consumers’ data to preserve consumers’ pri-
vacy [6]. In this scenario, an Aggregation Server (AS) collects
the local model’s parameters from each DN to compute the
global model parameters and send them back to DNs.
FL-based approaches are vulnerable to model inversion,
membership inference, and model poisoning attacks. For in-
stance, revealing local models’ parameters facilitates launching
model inversion and membership inference attacks and hence
leaks sensitive information about consumers’ consumption
profiles [7]. To address this critical issue, various privacy-
preserving FL approaches have been proposed to allow the
AS to train a global model using encrypted local parameters
while preventing adversaries from launching model inversion
and membership inference attacks [8], [9]. Nevertheless, the
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Figure 1: System model

aforementioned privacy-preserving FL-based approaches not
only remain vulnerable to model poisoning attacks but also
make it difficult for the AS to detect local model poisoning
since the local model parameters are encrypted [10], [11].

A. Related Works and Limitations

In [6], the authors introduced an FL-based electricity theft
detection framework with majority voting classifiers. However,
during the learning phase, DN sends raw weights to the AS,
posing a privacy risk as the training data may be inferred
using the local model’s weights. The authors in [8] addressed
this privacy concern by introducing the FedDetect framework,
where homomorphic encryption is used to encrypt the local
models’ parameters to preserve the customers’ privacy while
allowing the AS to build the global model securely. However,
FedDetect requires the existence of two non-colluding servers
to cooperate during the FL training process to achieve the
privacy preservation goals. In [9], the authors developed a
decentralized functional encryption scheme to mitigate mem-
bership and inference attacks in an FL-based electricity theft
detection.

However, none of these research works had addressed
targeted model poisoning attacks in the FL-based electricity
theft detection in which poisoned power consumption profiles
used during the FL training can create a backdoor for mali-
cious consumers to steal electricity while being undetected.
Although other research works [10], [11] address mitigating
model poisoning attacks in other settings and applications, they
rely on the impractical two non-colluding server assumption
that is not suitable in several FL scenarios.

B. Our Contributions

The research problem we address is how to enable DNs
to build a robust electricity theft detection model that is not
only immune to model inversion and membership inference

Benign Malicious Current Next
Updates Updates Global Weights ~ Global Weights
/A *T =
g g et i | et
—_—

Two poisoner introduced in FL Gradient Filtering not applied, Gradient Filtering applied,
atiterationt — 1 deviation of 6° at iteration ¢ convergence of 8¢ at iteration t

(a) (b) (c)

Figure 2: Impact of Poisoning attack on FL convergence

attacks but also mitigates the threats of model poisoning
attacks without learning the consumers’ training data or the
local models’ parameters to preserve consumers’ privacy.

The main contributions of this work are as follows:

o We propose novel secure and privacy-preserving schemes
that mitigate model poisoning attacks while preventing
model inversion and membership inference attacks. In
specific, our scheme allows an honest-but-curious aggre-
gation server to securely filter out the poisoned local
gradient updates submitted by the detection nodes by
computing the cosine similarity between the encrypted
local gradient updates and current global parameter with-
out revealing the local gradient updates to preserve the
consumers’ privacy during the FL training.

o Using a real energy consumption dataset, we conducted
extensive experiments and our results validate that (1)
a high poisoning attack success rate can be achieved
in the existing privacy-preserving FL-based electricity
theft detection solutions, and (2) our scheme can mitigate
model poisoning attacks by reducing the attack success
rate while achieving high overall model accuracy.

The remainder of this paper is organized as follows. Sec-
tion II describes the system model and design goals. The
proposed scheme is presented in Section III. The security anal-
ysis and performance evaluation are discussed in Section IV.
Finally, Section V concludes our work.

II. SYSTEM MODELS AND DESIGN GOALS
A. Network Model

o Aggregation Server (AS): In the FL training’s initial-
ization phase, the AS sends to all the DNs an initial
model with default parameters. In each FL training it-
eration, it receives encrypted local gradients from DN,
filters out malicious gradients using a privacy-preserving
cosine similarity test, and computes new global model
parameters from the remaining encrypted local gradi-
ents. Figure 2 shows the concept of filtering malicious
gradients from being included in the global parameters’
computation.

o Detection Node (DN): A set of DNs DN = {DN,, 1<
i<n} collaborates in a FL environment to construct a
robust electricity theft DL model. Each DN initially
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receives the detection model from the AS. In each FL
training iteration, a DN trains the model with its dataset
to generate new local model gradients. It then employs
the proposed masking and encryption technique to send
encrypted local training parameters to the AS.

o Key Distribution Center (KDC): KDC is a trusted and
independent entity that distributes and manages all the
public and private keys in the initialization setup phase.
The KDC will not be involved in any further process.

B. Threat Model and Design Goals

The DNs and AS are considered honest-but-curious; they
will follow the proper operation of the scheme without in-
terruption. However, they are curious to learn about other
DN’s power consumption profiles through model inversion
and membership inference attacks. Moreover, each DN cannot
ensure the trustworthiness of the power consumption profiles
used by other DN to train their local models. If some of these
power consumption profiles contain a backdoor, i.e., power
consumption profiles of electricity theft that are mislabeled as
benign profiles, then model poisoning attacks would become
successful and this backdoor would be exploited by malicious
consumers to steal electricity. Therefore, our design goals are:

1) Poisoning Attack Resistance: The proposed scheme
should mitigate model poisoning attacks by eliminating
the encrypted local gradient updates that are honestly
calculated using the local poisoned consumer profiles.

2) Privacy Preservation: The proposed scheme should re-
sist model inversion and membership inference attacks,
i.e., consumers’ power consumption data should not be
leaked to eavesdroppers, AS, or any other DN.

III. THE PROPOSED SCHEME

This section presents our scheme that is developed based
on, but not limited to, secure inner product (SIP) techniques
and ID-based cryptography (IBC). We constructed a variant
of our proposal at [12] that integrates lightweight one-time
masks generated in a non-interactive manner using IBC. This
would allow the AS to measure the cosine similarity between
the encrypted local gradient updates and the current global
model parameters such that the encrypted poisoned gradient
updates are filtered out in the ciphertext domain. Furthermore,
our scheme ensures privacy-preserving computation of global
parameters’ updates from the non-poisoned local updates with-
out revealing the individual local gradients to prevent model
inversion and membership inference attacks.

A. System Setup

The KDC generates the keys required for the SIP com-
putation as follows. It generates a master key set MK =
{Ml,Mg,Nl,NQ,N37N4}, such that all elements in M
are random invertible matrices of size (p + 1) x (p + 1)
where, p is the size of the DL model parameters and sets the
AS’s key as ASK = {M Ny ', My Ny ', MoN;H Mo Ny 1)
In addition, for every node DN,, the KDC generates a
unique key as DN'K; = { N1 A;, NaB;, N3C;, Ny D, } such that

Table I: Main notations

Notation Description
DN Set of Detection Nodes DN = {D;, 1< i<n}
p Size of deep learning model parameters
MK Master key set for SIP
MK = {Mi, M2, N1, Na, N3, Ns}
DNK; DAK = {NyAw Na By NoC, NaDy )
ASK Ag_g{egation Eelrver key_1 .
ASK = {M1N; *,MiN, ~,MaNg ", MaN, "}
sv Splitting vector used during encryption
{G1,G2,6, P, ID-based cryptography public parameters
7,Q, H}
Qi, X ID-based public/private key pair of DN;
H(K,m) Keyed hash function
K Shared key between DN; and DN
gt Local gradients of DN, at FL-iteration ¢
mvf Masking vector of DN; at FL-iteration ¢
ggm)t Masked local gradients of DN; at FL-iteration ¢
lgt] Encrypted local gradients of DN, at FL-iteration ¢
w? Global model at FL-iteration t
wt DN; Local model at FL-iteration t
0t Global aggregated gradients at FL-iteration t
cst Cosine similarity vector of al DNs at FL-iteration t
T Elimination threshold
DN* Set of DNs with poisoned gradients updates

Aj+B; = M " and C; +D; = My ' where A;, B;, C;, D; of
size (p+ 1) x (p+ 1). Finally, the KDC generates a splitting
binary vector sv of size (p + 1).

In order to empower all the DNs with the ability to
establish pairwise one-time masks, the KDC generates the
ID-based system parameters by choosing bilinear pairing-
based parameters{G1, Go, é, P, ¢}, a master secret s € Zy and
computes the corresponding public key as @@ = sP € G;. It
also chooses a cryptographic hash function H defined as H :
{0,1}* — G, and a keyed hash function (K, m) where K is
the key used to calculate the hash of an input m. Finally, it sets
the system public parameters to {Gy,Gs,é, P, q,Q, H, H}.
For each DN; with an identity ID;, the KDC generates
the DN’s ID-based secret key X;, public key @; as follow,
X; = sQ; where the Q; = H(ID;).

At the end of this phase, the AS receives its key ASK
and each DN, receives its key DNK; and the ID-based
public/private key pair Q;/X;. Finally, the AS constructs an
initial DL. model, generates the initial model parameters weight
W1, and distributes this parameter to all DN.

After each DN receives its keys and the public parameters,
each DN, can compute a pairwise symmetric key K to
be shared with every other DN; € DN in the system in
a non-interactive manner. DN; computes the key as K;; =
é(X;, Q1) = é(Qi, Q1)°, whereas DN, computes the same key
as K, = é(Q, X)) = é(Q;,Q;)°. This key will be used to
derive unique one-time masks used during every FL iteration
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as will be shown in the next subsection.

B. Local gradient encryption

At an FL-iteration ¢, each DN; learns its local gradient
vector ¢! using stochastic gradient descent over its local
electricity consumption profiles. Then it applies the proposed
scheme to generate an encrypted gradient [g!] to be sent to
the AS. The detailed process is as follows.

Local Gradients Masking: At iteration ¢, each DN, gen-
erates the ¢-th iteration p-dimensional masking vector mo!. In
specific, the z-th element in mvf is calculated as follow:

1<i |DNJ
Z H 1l;t||z - Z H zlatH )
1<l<|]D>N| 1<l<|JD>N\
Then, DN; normalizes g} as follow: ¢ = 157 V ¢ € g} and
masks the normalized ¢! to generate a masked gradient vector
(m)t _ ¢ t
9; =9; + mu;.

To ensure the correctness of the cosine similarity com-
putation over encrypted data, DN, appends to the masked
vector an additional mask cancelation scalar value mc! that
is computed as mct = (mof, w'=1), where w!~? is the global
weight at ¢ — 1 iteration.

Local Gradients Encryption: In this phase, DN; utilizes
its key DN'K; to encrypt gi(m)t as follows.

1) DN; uses the split vector sv to split the masked gradient
(M) into two Vectors g " and gf” such that, the

vector g;
z—th element in both gl and g! " is calculated as follow:
sv(z) =1

() =9g"()=g""(2) it
sv(z) =0

') =r., g =™ ) =, if

, where r, is a random number.

2) DN; uses its encryption key DNK; to generate its
encrypted local gradients components [[gl]] as

[9:] = [ NiAig! . NoBig! , N3Cigl" , NuDyg!']

Finally, DN; sends the encrypted local gradient vector [g!] to
the AS.

C. Poisoned Gradients’ Filtration

Upon receiving the encrypted local gradients [¢°] from all
DNs, AS runs the poisoned gradients’ filtration phase.

1) AS constructs an n-dimensional vector cs that holds
the cosine similarity values where the ¢-th element in
the vector is calculated by finding the cosine similarity
between the local gradient g¢ and the global weight w’~!
as

g

[lw! =197

Given that the received gradients are encrypted, an ad-
ditional set of operations is performed by the AS to
calculate the SIP between w'~! and [¢!] and hence com-
pute the cosine similarity between w’~! and g* without
revealing the content of ¢*. To calculate (w'~!, g!) using
[gt], the following steps are performed by the AS:

es(i) = (w

a) AS appends a value of (—1) to the vector w'~! to
ensure proper mask cancelation. Then it uses the split
vector sv to spht the updated w'~! into two vectors

=1 #=1" uch that, the 2-th element in both

w' and w
(=1 =1 is calculated as follow:

w; ~ and wy

/ 1"

w (2) = w'h (2) = w' T (2) if su(2)
w1 (2) = w'H(2)

, where g, is a random number.

’

wi™! (2) = y., —y, if sv(z)

b) AS uses its key ASK to generate its encrypted weight
components [w!~!] as
[wt1] = wt—l'MlNl—l wt—llMlNgl
w1t MyNg ', witt Mo Nt

c) AS calculates cs(i) as

[w' '] [of]

es(i) = i)

Note that g! is normalized and hence ||g}||=1.

2) After AS calculate the cs vector, AS performs a min-

max normalization to c¢s and then computes the poisoned
gradient filtration threshold 7" as T = mean(cs).
Subsequently, each element in c¢s is compared with 7.
Specifically, for each DN,, if c¢s; > T, then DN; will
be classified as a node with a poisoned model update and
its identifier will be added to DN¥, the set of DNs with
poisoned gradient updates.
At the end of this step, if the set DN™ is empty, then all the
received gradients are considered to be benign, and AS
moves forward to the aggregation phase. Otherwise, AS
sends the list DN* to all DN such that, subsection III-B
will be executed again by the benign DN to update the
masking vectors without including the pairwise masks
shared members of DN*. This step is necessary so that the
AS can retest updates sent by the set of benign nodes and
ensure mask cancelation during the aggregation phase.

D. Secure Aggregation

After the poisoned gradient filtration phase is successfully
executed with [DN*| = 0. AS will calculate the new global
gradient as 6° = L 3" ¢! 6" is calculated through the
following steps:

1) AS calculates the aggregated encrypted local gradients
[954,] as follow:

n ’ n ’
IIngg]] - ZIIQZ]] = Z:nl ! ’L:% !
i—1 > N3Cig;i , > NuDyg;
i=1 i=1
Such that, gflgg consists of four components
{[[gfzgg,l]]’ IIngg,Z]]’ [[g:;ggﬁ]]? [[gz,ggA]]} where each

components is a row vector of size p.
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2) the AS uses its ASK to recover gfllgg and gfl;g as follows.

Ghgg = MiNy [t g 1]+ MiN gt o] = > of

n
/// _1 t _1 t 1//
g:;gg - M2N3 [[gtfzggﬁ]] + M2N4 [[gzgggA]] = zjlgz
i=
3) AS utilize the sv to merge gggg and gfl;g into g!,, such
that, the z-th element in gig g is calculated as follows.

Ghgg(2) = ghog(z) if  sv(2) =1
Ghga(2) = glog(2) + glug(2) if  sv(2) =0

4) AS calculate new global update vector 0* = L g . and
broadcast ¢ to all DN.

By the end of this phase, DN will update their local weights
using the received global update 6! as w! ™! = w!—n'G" where
n! is the learning rate for the ¢ iteration. After the local weight
update, another iteration in FL. will begin. FL will halt when it
finishes a preset number of iterations or the model converges

to a predefined accuracy.

IV. DISCUSSION AND EVALUATIONS
A. Privacy Preservation of Consumers’ Power Profiles

The local gradient g! should not be accessed to external
adversaries, the AS, or any other DN in the system to prevent
model inversion and membership inference attacks that leak
sensitive information about consumers’ power profiles [9].

1) In our scheme, we employ a refined variant of the
encryption scheme outlined in our prior work [12]. The
security guarantees of this approach have been formally
proved within the known ciphertext model [13]. Without
access to the master key set MK, external adversaries
as well as curious DNs cannot decipher the sensitive
information contained in the local encrypted gradients.

2) A curious AS can exploit the SIP technique that enables
inner product functionality over encrypted vectors as
follows. AS can construct a malicious extraction vector
[1,0,...,0], encrypts it using its key ASK, and multiply
the encrypted malicious vector by [g!]. As a result,
AS can reconstruct the first element from encrypted
gradient [g!]. To prevent this attack, we introduce the
pairwise one-time masking technique based on IBC. This
means that the AS can recover the masked element
gt(0) + mw(0). For AS to eliminate the mask mwv(0),
AS needs to collude with all the n — 1 DN, which is not
feasible. In [14], the authors provide a formal security
proof demonstrating that the protection of masked power
data is upheld when suitable mask sizes are chosen,
and when the masks are generated using a pseudo-
random function. Consequently, our scheme is shown to
be effective in resisting collusion between AS and DN.

B. Validation of Mitigating Model Poisoning Attacks

This section provides an overview of our experiments,
including the dataset, attack generation, model architecture,
and performance metrics to validate that our scheme can
mitigate the impact of model poisoning attacks. We detail

our targeted poisoning attack methodology and evaluate the
effectiveness of our privacy-preserving aggregation defense
mechanism against different attack percentages.

Dataset Description. We utilized an authentic Smart Meter
(SM) dataset produced from the Irish Smart Energy Trials [15].
We utilized a subset of 300 users from the dataset, where
each SM device recorded electricity consumption readings at
30-minute intervals. To prepare the data for our classifier,
we performed dimension reshaping. As a result, we obtained
321,315 sample data, with each sample consisting of a 1-
day smart meter reading. All the data readings contained
within the dataset represent authentic and legitimate consumer
reports. The dataset is randomly split into training, testing,
and validation with ratios 60%, 20%, and 20% respectively.
In a FL setting, we have 30 DN, with the samples evenly
distributed among them. As a result, each DN holds 10,710
training samples.

1) Malicious record generation. To address the difficulty of
obtaining falsified readings from fraudulent consumers,
we employ a reduction function, denoted as f., on
the power consumption readings of each distribution
node DN to generate a malicious dataset. The function
fr(pw; ;) = Bljlpw; ; aims at reducing the power con-
sumption reading pw; by applying dynamically reducing
the reading pw;[j] by a value controlled by the time 3[j],
where 0 < 3[j] < 1.

2) Target attack set TAR Generation (Model Poisoning
Attack). A set of malicious (SM ™) belongs to different
DN colludes with each other to report a malicious tar-
geted power consumption set TAR, which is a set of row
malicious power consumption’s data, with the intention
of introducing a backdoor into the global model to cause
misclassifications. For instance, when Att,,:;, 1S set to
10% this means that 10% of DN contains the T'A R within
its power consumption records labeled as benign since it
is received from connected SM.

Temporal Convolutional Network (TCN) Model [8]. TCN
is a time series CNN-based deep learning model that shows
an advantage in energy theft detection. After an extensive
hyperparameter tuning process, we use the TCN model with
the initial learning rate set to {7 = 0.1 for both DN and AS.
The local batch size was fixed at 512, with local iterations
equal to 1, and a total of 150 training iterations for FL.

Performance Metrics. Two performance metrics are used
to evaluate the performance of our model.
1) ACC": Denotes the test accuracy achieved with TCN-
based detector, calculated as
TP+ TN
TP+TN+ FP+ FN
where TP, TN, FP, and F'N represent the true posi-

tives, true negatives, false positives, and false negatives,
respectively.

ACC =

a) ACCyey: Denotes the test accuracy achieved with our
proposed privacy-preserving defense mechanism
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Figure 3: Impact of different attack ratio att,q;;, on the ASR on TAR in presence and absence of our defense scheme

b) ACC)0—qey: Denotes the test accuracy achieved with-
out any defense (baseline model).

2) Attack Success Rate (ASR): The percentage of targeted
examples within TAR that are incorrectly classified under
the label desired by the colluding SM’s (non-theft label).

Experimental Results. To evaluate the proposed privacy-
preserving aggregation defense, we study the Attgqi 0 pa-
rameter, which represents the percentage of injected DN*
from DN. We employed various attack ratios att,qior, rang-
ing from the lower bound att,q;, = 10% to the upper
bound of all defense schemes att,qiio = 50%. We assessed
our proposed scheme at different attack ratios, specifically
att,qio € {10,20,30,40,45,50}, and studied the impact of
these attacks on the overall model accuracy and ASR.

Table II: Evaluating Overall Accuracy in the Presence and
Absence of Privacy-Preserving Defensive Mechanisms

Attack % 10%  20%  30%  40%  45%  50%
ACCles 0934 0932 0925 0924 0925 0919
ACChrogey 0933 0922 0911 0896 0893 0.890

Table II shows the TNN model’s overall accuracy with
and without our proposed scheme. With our scheme, we con-
sistently maintain high stability and accuracy across various
attack ratios. Even at the upper limit (att, qt0 = 50%), we
achieve an impressive accuracy of 0.934%, thanks to the inte-
gration of cosine similarity filtering in our privacy-preserving
aggregation scheme. In contrast, without our scheme, there is
a noticeable impact on accuracy when Att,.,4;, is within the
range of 40% to 50%. This is due to a high number of DN*
training over injected data TAR, which affects the convergence
of the global model. However, there is no dramatic loss of
accuracy, as ACCy,o—ge s reaches 0.890 at att,q+io=50%. This

indicates that successful targeted attacks are still possible
without significantly degrading overall accuracy.

In Figure 3, we examine the influence of different att,q+i0
values on the Attack Success Rate (ASR). With our scheme,
we consistently observe low ASR, even at a high att,q0
=50%. This highlights the effectiveness of our scheme in
countering backdoor attacks. Conversely, in the absence of our
scheme, the ASR remains relatively low at att, ., values
of 10%, 20%, and 30%, this is because benign distribution
nodes (DN ¢ DN™) computing local gradients over benign
samples contribute to mitigating backdoor effects during the
local updates aggregation phase. However, as the att,qtio
increases, particularly at 40%, 45%, and 50%, the ASR tends
to significantly rise with each iteration, as the number of
DN* approaches the majority. This illustrates that in scenarios
with high attack ratios, the global model starts to classify a
significant portion of malicious power consumption in TAR
as benign, which is indicative of a targeted attack.

V. CONCLUSIONS

In this paper, we proposed a novel scheme to empower Fed-
erated Learning based electricity theft detection with several
security features including (1) preserving consumers’ power
consumption profiles through preventing model inversion and
membership inference attacks in FL-based electricity theft
detection and (2) mitigating model poisoning attacks where
poisoned power consumption profiles may be falsely labeled
as benign to create backdoors for electricity theft detection.
Comprehensive assessments demonstrate that the proposed
scheme can successfully achieve the desired security goals
and achieves a substantial reduction in the success rates of
poisoning attacks, even in scenarios where 50% of detection
nodes train their local models with poisoned data, all while
preserving customer privacy. Our method holds great promise
for enhancing the security and trustworthiness of collaborative
electricity theft detection systems in smart grids.
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