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Abstract—In federated learning (FL) based electricity theft
detection, detection nodes (DNs) locally train deep learning
models on consumers’ data and share only the local model
parameters with an aggregation server (AS) to generate a global
model shared by all nodes for better detection accuracy. However,
several privacy concerns should be addressed including mem-
bership and inference attacks. To mitigate these attacks, several
privacy-preserving aggregation schemes have been introduced.
Nevertheless, existing FL detectors often overlook the threat of
poisoning attacks, in which certain DNs hold maliciously labeled,
i.e., poisoned, data during the training. This manipulated data
can subsequently be exploited to introduce backdoors into the
global model after its deployment. This paper introduces a novel
approach that enhances privacy and resilience against poisoning
attacks in FL-based electricity theft detection within smart
grids. Our approach enables encrypting local parameters before
sending them to the AS, thus safeguarding consumers’ privacy.
Additionally, it utilizes a cosine similarity test over encrypted data
to detect and mitigate poisoning attacks by filtering out malicious
local gradients from being considered in the global model
computation. Through extensive evaluations, we demonstrate the
effectiveness of our FL-based detector in substantially reducing
the poisoning attack success rate even when 50% of DNs train
their local models with malicious targeted power consumption
data, all while preserving consumers’ privacy.

Index Terms—Federated Learning, Poisoning Attack, Privacy
Preservation.

I. INTRODUCTION

Electricity theft is one of the major concerns in the current

power grids due to its negative financial impact. For instance,

recent reports indicate that the annual financial loss due to

electricity theft is about $6B, $173M, and $100M in the

United States, the United Kingdom, and Canada respectively

[1]. Electricity theft not only causes economic losses but also

results in a disrupted and unstable grid operation that may

result in power outages [2]. Therefore, there is a necessity to

make the power grid smarter and immune to these attacks.
The Smart Grid (SG) is a modernized power grid that uti-

lizes cutting-edge technologies, equipment, and controls that

offer two-way communication between various grid entities

to ensure efficient and reliable grid operation and energy

management [3]. A fundamental component of the smart grid

is Advanced Metering Infrastructure (AMI) networks in which

Smart Meters (SMs) are installed at consumer’s premises to

provide utility companies with extensive and high-frequency

electricity consumption data. Such data empower electric

utilities to analyze and process real-time energy consumption

data as well as providing consumers with a substantial degree

of convenience in managing their energy consumption [4].

Because SMs are embedded systems running software pro-

grams, they may expose the SG to cyber-attacks. Specifically,

malicious consumers may hack into their SMs to steal electric-

ity by manipulating their consumption data and hence reduce

their electricity bills. To overcome these cyber-attacks, Deep

Learning (DL)-based electricity theft detection has emerged

as the most effective approach for detecting electricity theft

[5]. This is primarily attributed to the ability of DL models

to learn and exploit correlations within consumption readings.

In a DL-based approach, a Detection Node (DN) trains a DL

model over its consumers’ energy consumption profiles.

Moreover, to develop a more accurate and robust en-

ergy theft detector, several DNs, which are typically

owned/operated by different utility companies, use Federated

Learning (FL) to collaboratively train a global model over a

more diverse and larger energy consumption datasets without

sharing their local consumers’ data to preserve consumers’ pri-

vacy [6]. In this scenario, an Aggregation Server (AS) collects

the local model’s parameters from each DN to compute the

global model parameters and send them back to DNs.

FL-based approaches are vulnerable to model inversion,

membership inference, and model poisoning attacks. For in-

stance, revealing local models’ parameters facilitates launching

model inversion and membership inference attacks and hence

leaks sensitive information about consumers’ consumption

profiles [7]. To address this critical issue, various privacy-

preserving FL approaches have been proposed to allow the

AS to train a global model using encrypted local parameters

while preventing adversaries from launching model inversion

and membership inference attacks [8], [9]. Nevertheless, the
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Figure 1: System model

aforementioned privacy-preserving FL-based approaches not

only remain vulnerable to model poisoning attacks but also

make it difficult for the AS to detect local model poisoning

since the local model parameters are encrypted [10], [11].

A. Related Works and Limitations

In [6], the authors introduced an FL-based electricity theft

detection framework with majority voting classifiers. However,

during the learning phase, DN sends raw weights to the AS,

posing a privacy risk as the training data may be inferred

using the local model’s weights. The authors in [8] addressed

this privacy concern by introducing the FedDetect framework,

where homomorphic encryption is used to encrypt the local

models’ parameters to preserve the customers’ privacy while

allowing the AS to build the global model securely. However,

FedDetect requires the existence of two non-colluding servers

to cooperate during the FL training process to achieve the

privacy preservation goals. In [9], the authors developed a

decentralized functional encryption scheme to mitigate mem-

bership and inference attacks in an FL-based electricity theft

detection.

However, none of these research works had addressed

targeted model poisoning attacks in the FL-based electricity

theft detection in which poisoned power consumption profiles

used during the FL training can create a backdoor for mali-

cious consumers to steal electricity while being undetected.

Although other research works [10], [11] address mitigating

model poisoning attacks in other settings and applications, they

rely on the impractical two non-colluding server assumption

that is not suitable in several FL scenarios.

B. Our Contributions

The research problem we address is how to enable DNs

to build a robust electricity theft detection model that is not

only immune to model inversion and membership inference

Figure 2: Impact of Poisoning attack on FL convergence

attacks but also mitigates the threats of model poisoning

attacks without learning the consumers’ training data or the

local models’ parameters to preserve consumers’ privacy.

The main contributions of this work are as follows:

• We propose novel secure and privacy-preserving schemes

that mitigate model poisoning attacks while preventing

model inversion and membership inference attacks. In

specific, our scheme allows an honest-but-curious aggre-

gation server to securely filter out the poisoned local

gradient updates submitted by the detection nodes by

computing the cosine similarity between the encrypted

local gradient updates and current global parameter with-

out revealing the local gradient updates to preserve the

consumers’ privacy during the FL training.

• Using a real energy consumption dataset, we conducted

extensive experiments and our results validate that (1)

a high poisoning attack success rate can be achieved

in the existing privacy-preserving FL-based electricity

theft detection solutions, and (2) our scheme can mitigate

model poisoning attacks by reducing the attack success

rate while achieving high overall model accuracy.

The remainder of this paper is organized as follows. Sec-

tion II describes the system model and design goals. The

proposed scheme is presented in Section III. The security anal-

ysis and performance evaluation are discussed in Section IV.

Finally, Section V concludes our work.

II. SYSTEM MODELS AND DESIGN GOALS

A. Network Model

• Aggregation Server (AS): In the FL training’s initial-

ization phase, the AS sends to all the DNs an initial

model with default parameters. In each FL training it-

eration, it receives encrypted local gradients from DNs,

filters out malicious gradients using a privacy-preserving

cosine similarity test, and computes new global model

parameters from the remaining encrypted local gradi-

ents. Figure 2 shows the concept of filtering malicious

gradients from being included in the global parameters’

computation.

• Detection Node (DN): A set of DNs DN = {DNi, 1≤
i≤n} collaborates in a FL environment to construct a

robust electricity theft DL model. Each DN initially
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receives the detection model from the AS. In each FL

training iteration, a DN trains the model with its dataset

to generate new local model gradients. It then employs

the proposed masking and encryption technique to send

encrypted local training parameters to the AS.

• Key Distribution Center (KDC): KDC is a trusted and

independent entity that distributes and manages all the

public and private keys in the initialization setup phase.

The KDC will not be involved in any further process.

B. Threat Model and Design Goals

The DNs and AS are considered honest-but-curious; they

will follow the proper operation of the scheme without in-

terruption. However, they are curious to learn about other

DN’s power consumption profiles through model inversion

and membership inference attacks. Moreover, each DN cannot

ensure the trustworthiness of the power consumption profiles

used by other DNs to train their local models. If some of these

power consumption profiles contain a backdoor, i.e., power

consumption profiles of electricity theft that are mislabeled as

benign profiles, then model poisoning attacks would become

successful and this backdoor would be exploited by malicious

consumers to steal electricity. Therefore, our design goals are:

1) Poisoning Attack Resistance: The proposed scheme

should mitigate model poisoning attacks by eliminating

the encrypted local gradient updates that are honestly

calculated using the local poisoned consumer profiles.

2) Privacy Preservation: The proposed scheme should re-

sist model inversion and membership inference attacks,

i.e., consumers’ power consumption data should not be

leaked to eavesdroppers, AS, or any other DN.

III. THE PROPOSED SCHEME

This section presents our scheme that is developed based

on, but not limited to, secure inner product (SIP) techniques

and ID-based cryptography (IBC). We constructed a variant

of our proposal at [12] that integrates lightweight one-time

masks generated in a non-interactive manner using IBC. This

would allow the AS to measure the cosine similarity between

the encrypted local gradient updates and the current global

model parameters such that the encrypted poisoned gradient

updates are filtered out in the ciphertext domain. Furthermore,

our scheme ensures privacy-preserving computation of global

parameters’ updates from the non-poisoned local updates with-

out revealing the individual local gradients to prevent model

inversion and membership inference attacks.

A. System Setup

The KDC generates the keys required for the SIP com-

putation as follows. It generates a master key set MK =
{M1,M2, N1, N2, N3, N4}, such that all elements in MK
are random invertible matrices of size (p + 1) × (p + 1)
where, p is the size of the DL model parameters and sets the

AS’s key as ASK = {M1N
−1
1 ,M1N

−1
2 ,M2N

−1
3 ,M2N

−1
4 }.

In addition, for every node DNi, the KDC generates a

unique key as DNKi = {N1Ai, N2Bi, N3Ci, N4Di} such that

Table I: Main notations

Notation Description

DN Set of Detection Nodes DN = {Di, 1≤ i≤n}
p Size of deep learning model parameters

MK Master key set for SIP

MK = {M1,M2, N1, N2, N3, N4}
DNKi

DNi key
DNKi = {N1Ai, N2Bi, N3Ci, N4Di}

ASK Aggregation server key

ASK = {M1N
−1
1 ,M1N

−1
2 ,M2N

−1
3 ,M2N

−1
4 }

sv Splitting vector used during encryption

{G1,G2, ê, P,
q,Q,H} ID-based cryptography public parameters

Qi, Xi ID-based public/private key pair of DNi

H(K,m) Keyed hash function

Kij Shared key between DNi and DNj

gti Local gradients of DNi at FL-iteration t

mvti Masking vector of DNi at FL-iteration t

g
(m)t
i Masked local gradients of DNi at FL-iteration t

[[gti ]] Encrypted local gradients of DNi at FL-iteration t

wt Global model at FL-iteration t

wt
i DNi Local model at FL-iteration t

θt Global aggregated gradients at FL-iteration t

cst Cosine similarity vector of al DNs at FL-iteration t

T Elimination threshold

DN
∗ Set of DNs with poisoned gradients updates

Ai+Bi = M−1
1 and Ci+Di = M−1

2 where Ai, Bi, Ci, Di of

size (p+ 1)× (p+ 1). Finally, the KDC generates a splitting

binary vector sv of size (p+ 1).

In order to empower all the DNs with the ability to

establish pairwise one-time masks, the KDC generates the

ID-based system parameters by choosing bilinear pairing-

based parameters{G1,G2, ê, P, q}, a master secret s ∈ Z
∗
q and

computes the corresponding public key as Q = sP ∈ G1. It

also chooses a cryptographic hash function H defined as H :
{0, 1}∗ → G1 and a keyed hash function H(K,m) where K is

the key used to calculate the hash of an input m. Finally, it sets

the system public parameters to {G1,G2, ê, P, q,Q,H,H}.

For each DNi with an identity IDi, the KDC generates

the DN’s ID-based secret key Xi, public key Qi as follow,

Xi = sQi where the Qi = H(IDi).

At the end of this phase, the AS receives its key ASK
and each DNi receives its key DNKi and the ID-based

public/private key pair Qi/Xi. Finally, the AS constructs an

initial DL model, generates the initial model parameters weight

W 1, and distributes this parameter to all DN.

After each DN receives its keys and the public parameters,

each DNi can compute a pairwise symmetric key Kil to

be shared with every other DNl ∈ DN in the system in

a non-interactive manner. DNi computes the key as Kil =
ê(Xi, Ql) = ê(Qi, Ql)

s, whereas DNl computes the same key

as Kil = ê(Qi, Xl) = ê(Qi, Ql)
s. This key will be used to

derive unique one-time masks used during every FL iteration
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as will be shown in the next subsection.

B. Local gradient encryption

At an FL-iteration t, each DNi learns its local gradient

vector gti using stochastic gradient descent over its local

electricity consumption profiles. Then it applies the proposed

scheme to generate an encrypted gradient [[gti ]] to be sent to

the AS. The detailed process is as follows.

Local Gradients Masking: At iteration t, each DNi gen-

erates the t-th iteration p-dimensional masking vector mvti . In

specific, the z-th element in mvti is calculated as follow:

mvti(z) =

l<i∑
l=1

1≤l≤|DN|

H(Kil, t||z) −
|DN|∑
l>i

1≤l≤|DN|

H(Kil, t||z)

Then, DNi normalizes gti as follow: c = c
||gt

i || ∀ c ∈ gti and

masks the normalized gti to generate a masked gradient vector

g
(m)t
i = gti +mvti .

To ensure the correctness of the cosine similarity com-

putation over encrypted data, DNi appends to the masked

vector an additional mask cancelation scalar value mcti that

is computed as mcti = 〈mvti , w
t−1〉, where wt−1 is the global

weight at t− 1 iteration.

Local Gradients Encryption: In this phase, DNi utilizes

its key DNKi to encrypt g
(m)t
i as follows.

1) DNi uses the split vector sv to split the masked gradient

vector g
(m)t
i into two vectors gt

′
i and gt

′′
i such that, the

z−th element in both gt
′
i and gt

′′
i is calculated as follow:

gt
′
i (z) = gt

′′
i (z) = g

(m)t
i (z) if sv(z) = 1

gt
′
i (z) = rz, g

t′′
i = g

(m)t
i (z)− rz if sv(z) = 0

, where rz is a random number.

2) DNi uses its encryption key DNKi to generate its

encrypted local gradients components [[gti ]] as

[[gti ]] =
[
N1Aig

t′
i , N2Big

t′
i , N3Cig

t′′
i , N4Dig

t′′
i

]
Finally, DNi sends the encrypted local gradient vector [[gti ]] to

the AS.

C. Poisoned Gradients’ Filtration

Upon receiving the encrypted local gradients [[gt]] from all

DNs, AS runs the poisoned gradients’ filtration phase.

1) AS constructs an n-dimensional vector cs that holds

the cosine similarity values where the i-th element in

the vector is calculated by finding the cosine similarity

between the local gradient gti and the global weight wt−1

as

cs(i) =
〈wt−1, gti〉

||wt−1||.||gti ||
Given that the received gradients are encrypted, an ad-

ditional set of operations is performed by the AS to

calculate the SIP between wt−1 and [[gti ]] and hence com-

pute the cosine similarity between wt−1 and gt without

revealing the content of gt. To calculate 〈wt−1, gti〉 using

[[gti ]], the following steps are performed by the AS:

a) AS appends a value of (−1) to the vector wt−1 to

ensure proper mask cancelation. Then it uses the split

vector sv to split the updated wt−1 into two vectors

wt−1
′

and wt−1
′′

such that, the z-th element in both

wt−1
′

i and wt−1
′′

i is calculated as follow:

wt−1
′
(z) = wt−1

′′
(z) = wt−1(z) if sv(z) = 0

wt−1
′
(z) = yz, w

t−1
′′
(z) = wt−1(z)− yz if sv(z) = 1

, where yz is a random number.

b) AS uses its key ASK to generate its encrypted weight

components [[wt−1]] as

[[wt−1]] =

[
wt−1

′
M1N

−1
1 , wt−1

′
M1N

−1
2

wt−1
′′
M2N

−1
3 , wt−1

′′
M2N

−1
4

]T

c) AS calculates cs(i) as

cs(i) =
[[wt−1]] · [[gti ]]

||wt−1||
Note that gti is normalized and hence ||gti ||=1.

2) After AS calculate the cs vector, AS performs a min-

max normalization to cs and then computes the poisoned

gradient filtration threshold T as T = mean(cs).
Subsequently, each element in cs is compared with T .

Specifically, for each DNi, if csi > T , then DNi will

be classified as a node with a poisoned model update and

its identifier will be added to DN
∗, the set of DNs with

poisoned gradient updates.

At the end of this step, if the set DN∗ is empty, then all the

received gradients are considered to be benign, and AS

moves forward to the aggregation phase. Otherwise, AS

sends the list DN∗ to all DN such that, subsection III-B

will be executed again by the benign DN to update the

masking vectors without including the pairwise masks

shared members of DN∗. This step is necessary so that the

AS can retest updates sent by the set of benign nodes and

ensure mask cancelation during the aggregation phase.

D. Secure Aggregation

After the poisoned gradient filtration phase is successfully

executed with |DN∗| = 0. AS will calculate the new global

gradient as θt = 1
n

∑n
i=1 g

t
i , θt is calculated through the

following steps:

1) AS calculates the aggregated encrypted local gradients

[[gtagg]] as follow:

[[gtagg]] =

n∑
i=1

[[gti ]] =

⎡
⎢⎢⎣

n∑
i=1

N1Aig
t′
i ,

n∑
i=1

N2Big
t′
i

n∑
i=1

N3Cig
t′′
i ,

n∑
i=1

N4Dig
t′′
i

⎤
⎥⎥⎦

Such that, gtagg consists of four components

{[[gtagg,1]], [[gtagg,2]], [[gtagg,3]], [[gtagg,4]]} where each

components is a row vector of size p.
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2) the AS uses its ASK to recover gt
′
agg and gt

′′
agg as follows.

gt
′
agg = M1N

−1
1 [[gtagg,1]] +M1N

−1
2 [[gtagg,2]] =

n∑
i=1

gt
′
i

gt
′′
agg = M2N

−1
3 [[gtagg,3]] +M2N

−1
4 [[gtagg,4]] =

n∑
i=1

gt
′′
i

3) AS utilize the sv to merge gt
′
agg and gt

′′
agg into gtagg such

that, the z-th element in gtagg is calculated as follows.

gtagg(z) = gt
′
agg(z) if sv(z) = 1

gtagg(z) = gt
′
agg(z) + gt

′′
agg(z) if sv(z) = 0

4) AS calculate new global update vector θt = 1
n gtagg , and

broadcast θt to all DN.

By the end of this phase, DN will update their local weights

using the received global update θt as wt+1
i = wt

i−ηtθt where

ηt is the learning rate for the t iteration. After the local weight

update, another iteration in FL will begin. FL will halt when it

finishes a preset number of iterations or the model converges

to a predefined accuracy.

IV. DISCUSSION AND EVALUATIONS

A. Privacy Preservation of Consumers’ Power Profiles

The local gradient gti should not be accessed to external

adversaries, the AS, or any other DN in the system to prevent

model inversion and membership inference attacks that leak

sensitive information about consumers’ power profiles [9].

1) In our scheme, we employ a refined variant of the

encryption scheme outlined in our prior work [12]. The

security guarantees of this approach have been formally

proved within the known ciphertext model [13]. Without

access to the master key set MK, external adversaries

as well as curious DNs cannot decipher the sensitive

information contained in the local encrypted gradients.

2) A curious AS can exploit the SIP technique that enables

inner product functionality over encrypted vectors as

follows. AS can construct a malicious extraction vector

[1, 0, ..., 0], encrypts it using its key ASK, and multiply

the encrypted malicious vector by [[gti ]]. As a result,

AS can reconstruct the first element from encrypted

gradient [[gti ]]. To prevent this attack, we introduce the

pairwise one-time masking technique based on IBC. This

means that the AS can recover the masked element

gti(0) + mv(0). For AS to eliminate the mask mv(0),
AS needs to collude with all the n− 1 DN, which is not

feasible. In [14], the authors provide a formal security

proof demonstrating that the protection of masked power

data is upheld when suitable mask sizes are chosen,

and when the masks are generated using a pseudo-

random function. Consequently, our scheme is shown to

be effective in resisting collusion between AS and DN.

B. Validation of Mitigating Model Poisoning Attacks

This section provides an overview of our experiments,

including the dataset, attack generation, model architecture,

and performance metrics to validate that our scheme can

mitigate the impact of model poisoning attacks. We detail

our targeted poisoning attack methodology and evaluate the

effectiveness of our privacy-preserving aggregation defense

mechanism against different attack percentages.

Dataset Description. We utilized an authentic Smart Meter

(SM) dataset produced from the Irish Smart Energy Trials [15].

We utilized a subset of 300 users from the dataset, where

each SM device recorded electricity consumption readings at

30-minute intervals. To prepare the data for our classifier,

we performed dimension reshaping. As a result, we obtained

321,315 sample data, with each sample consisting of a 1-

day smart meter reading. All the data readings contained

within the dataset represent authentic and legitimate consumer

reports. The dataset is randomly split into training, testing,

and validation with ratios 60%, 20%, and 20% respectively.

In a FL setting, we have 30 DN, with the samples evenly

distributed among them. As a result, each DN holds 10,710

training samples.

1) Malicious record generation. To address the difficulty of

obtaining falsified readings from fraudulent consumers,

we employ a reduction function, denoted as fr, on

the power consumption readings of each distribution

node DN to generate a malicious dataset. The function

fr(pwi,j) = β[j]pwi,j aims at reducing the power con-

sumption reading pwi by applying dynamically reducing

the reading pwi[j] by a value controlled by the time β[j],
where 0 < β[j] < 1.

2) Target attack set TAR Generation (Model Poisoning
Attack). A set of malicious (SM∗) belongs to different

DN colludes with each other to report a malicious tar-

geted power consumption set TAR, which is a set of row

malicious power consumption’s data, with the intention

of introducing a backdoor into the global model to cause

misclassifications. For instance, when Attratio is set to

10% this means that 10% of DN contains the TAR within

its power consumption records labeled as benign since it

is received from connected SM.

Temporal Convolutional Network (TCN) Model [8]. TCN

is a time series CNN-based deep learning model that shows

an advantage in energy theft detection. After an extensive

hyperparameter tuning process, we use the TCN model with

the initial learning rate set to lr = 0.1 for both DN and AS.

The local batch size was fixed at 512, with local iterations

equal to 1, and a total of 150 training iterations for FL.

Performance Metrics. Two performance metrics are used

to evaluate the performance of our model.

1) ACC: Denotes the test accuracy achieved with TCN-

based detector, calculated as

ACC =
TP + TN

TP + TN + FP + FN

where TP , TN , FP , and FN represent the true posi-

tives, true negatives, false positives, and false negatives,

respectively.

a) ACCdef : Denotes the test accuracy achieved with our

proposed privacy-preserving defense mechanism
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Figure 3: Impact of different attack ratio attratio on the ASR on TAR in presence and absence of our defense scheme

b) ACCno−def : Denotes the test accuracy achieved with-

out any defense (baseline model).

2) Attack Success Rate (ASR): The percentage of targeted

examples within TAR that are incorrectly classified under

the label desired by the colluding SM’s (non-theft label).

Experimental Results. To evaluate the proposed privacy-

preserving aggregation defense, we study the AttRatio pa-

rameter, which represents the percentage of injected DN∗

from DN. We employed various attack ratios attratior, rang-

ing from the lower bound attratio = 10% to the upper

bound of all defense schemes attratio = 50%. We assessed

our proposed scheme at different attack ratios, specifically

attratio ∈ {10, 20, 30, 40, 45, 50}, and studied the impact of

these attacks on the overall model accuracy and ASR.

Table II: Evaluating Overall Accuracy in the Presence and

Absence of Privacy-Preserving Defensive Mechanisms

Attack % 10% 20% 30% 40% 45% 50%

ACCdef 0.934 0.932 0.925 0.924 0.925 0.919

ACCno−def 0.933 0.922 0.911 0.896 0.893 0.890

Table II shows the TNN model’s overall accuracy with

and without our proposed scheme. With our scheme, we con-

sistently maintain high stability and accuracy across various

attack ratios. Even at the upper limit (attratio = 50%), we

achieve an impressive accuracy of 0.934%, thanks to the inte-

gration of cosine similarity filtering in our privacy-preserving

aggregation scheme. In contrast, without our scheme, there is

a noticeable impact on accuracy when Attratio is within the

range of 40% to 50%. This is due to a high number of DN
∗

training over injected data TAR, which affects the convergence

of the global model. However, there is no dramatic loss of

accuracy, as ACCno−def reaches 0.890 at attratio=50%. This

indicates that successful targeted attacks are still possible

without significantly degrading overall accuracy.

In Figure 3, we examine the influence of different attratio
values on the Attack Success Rate (ASR). With our scheme,

we consistently observe low ASR, even at a high attratio
=50%. This highlights the effectiveness of our scheme in

countering backdoor attacks. Conversely, in the absence of our

scheme, the ASR remains relatively low at attratio values

of 10%, 20%, and 30%, this is because benign distribution

nodes (DN /∈ DN
∗) computing local gradients over benign

samples contribute to mitigating backdoor effects during the

local updates aggregation phase. However, as the attratio
increases, particularly at 40%, 45%, and 50%, the ASR tends

to significantly rise with each iteration, as the number of

DN∗ approaches the majority. This illustrates that in scenarios

with high attack ratios, the global model starts to classify a

significant portion of malicious power consumption in TAR

as benign, which is indicative of a targeted attack.

V. CONCLUSIONS

In this paper, we proposed a novel scheme to empower Fed-

erated Learning based electricity theft detection with several

security features including (1) preserving consumers’ power

consumption profiles through preventing model inversion and

membership inference attacks in FL-based electricity theft

detection and (2) mitigating model poisoning attacks where

poisoned power consumption profiles may be falsely labeled

as benign to create backdoors for electricity theft detection.

Comprehensive assessments demonstrate that the proposed

scheme can successfully achieve the desired security goals

and achieves a substantial reduction in the success rates of

poisoning attacks, even in scenarios where 50% of detection

nodes train their local models with poisoned data, all while

preserving customer privacy. Our method holds great promise

for enhancing the security and trustworthiness of collaborative

electricity theft detection systems in smart grids.
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