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Abstract—Electric Vehicles (EVs) are being widely adopted
as a green alternative to fossil-based vehicles. However, the
current charging infrastructure for EVs is inadequate to meet the
growing charge demand. Vehicle-to-Vehicle (V2V) charging offers
a promising solution that enables a charge supplier EV to provide
charging services to a charge demander EV in a distributed
manner. Nevertheless, V2V matching and charge scheduling can
disclose sensitive location information about the drivers, such
as their whereabouts and driving patterns. In this paper, we
propose a privacy-preserving scheme for centralized optimal
matching of demander EVs with supplier EVs, while protecting
their sensitive information. In our scheme, charge demanders
report to a matching server their encrypted location information
and the requested energy quantities, whereas charge suppliers
report encrypted charge costs such that the matching server can
learn only the cost to match each demander to each supplier
without revealing any location information or the exchanged
charge amount. Then, the Hungarian algorithm is used to match
demanders to suppliers while minimizing the total cost. The
security analysis and simulation results show that our scheme can
achieve optimal V2V matching while preserving drivers’ privacy
with negligible computation overhead. Overall, our proposed
scheme provides an effective solution for V2V charging, while
maintaining privacy and confidentiality of sensitive drivers’
information.

I. INTRODUCTION

Due to the negative environmental impact of gas-powered or
internal combustion engine vehicles, Electric Vehicles (EVs)
have become a major focus for governments, the automotive
industry, and consumers. Several countries are not only em-
bracing EVs as a means of achieving zero-emission and all-
electric transportation systems [1], [2], but also implementing
strict regulations to mandate that all newly manufactured
vehicles be electric [3], [4]. A recent study predicts that EVs
will make up 60% of all vehicles sold worldwide by 2030,
indicating the widespread adoption of EVs [5].

One of the biggest obstacles hindering the widespread
adoption of EVs is the insufficient charging infrastructure,
particularly in suburban and rural areas [6]. Additionally,
long charging times and the need for frequent charging are
additional barriers faced by EV owners. As per a recent
study, there are approximately 16.5 million EVs globally,
whereas only about 1.8 million charging points are available

publicly [7]. With the current EV to Charging Stations (CS)
ratio standing at 11%, there is a pressing need for new and
innovative solutions that do not rely solely on public CS.

The limited availability of charging infrastructure has led to
an increased interest in Vehicle-to-Vehicle (V2V) charging as
a flexible and distributed alternative to traditional CS [8]. In
V2V charging, an EV with excess charge (the charge supplier)
can provide charging services to another EV in need of a
charge (the charge demander), regardless of location or time.
To effectively address the issue of inadequate CS, it is crucial
to develop optimal V2V charge coordination and scheduling
mechanisms [9].

However, to achieve optimal V2V charge coordination,
charge demanders and suppliers must disclose sensitive in-
formation, such as their location and the amount of energy
to be exchanged, to a scheduling server or other entity that
can compute the optimal demander-supplier match. Disclosing
such information raises serious privacy concerns that may
discourage both demanders and suppliers from participating
in the system [9]. As a result, it is essential to devise a
way to perform optimal demander-supplier matching while
safeguarding the privacy of all involved entities.

In this paper, we propose a novel privacy-preserving scheme
to achieve optimal V2V charge coordination. In our scheme,
each charge demander EV sends an encrypted charge request
containing encrypted location information and the requested
energy quantities to a matching server. Each charge supplier
EV, on the other hand, sends an encrypted charge offer that
includes the charging costs. By using these encrypted requests
and offers, the matching server can determine the cost to
match each demander to each supplier, without revealing
any sensitive information. The Hungarian algorithm [10] is
then used to obtain the optimal demander-supplier match that
minimizes the total cost.

The remaining sections of this paper are organized as
follows. Section II reviews related work in this research area.
Section IIT describes the system model and design goals. The
proposed scheme is presented in Section IV. The security anal-
ysis and performance evaluation are discussed in Section V.
Finally, Section VI concludes our work.
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3. Multiply the encrypted requests by encrypted costs to generate offset-based cost matrix
4. Run Hungarian algorithm
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Key Distribution
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Figure 1: System model
II. RELATED WORKS

Several V2V matching algorithms have been proposed in
[11]-[13]. In [11], [12] demanders and suppliers coopera-
tively provide a centralized matching server with sensitive
information such as location information and requested energy
amount. The server uses this information to build a demander-
supplier cost matrix and uses the Hungarian algorithm to find
the optimal demander-supplier match. Moreover, a compre-
hensive framework that considers cost optimization, system
energy efficiency, and user satisfaction is proposed in [13].
However, none of these works consider privacy protection of
sensitive information.

The authors in [14], [15] addressed the location pri-
vacy concerns by proposing Bichromatic Mutual Nearest
Neighbor (BMNN) assignments using partially homomorphic
encryption-based techniques in a decentralized network. The
Euclidean distance between a demander and a neighbor sup-
plier can be computed using the encrypted location informa-
tion and a distributed stable matching can be achieved in sev-
eral matching rounds. However, the assignment in [14], [15] is
determined based on the Euclidean distance between supplier
and demander only while neglecting other cost parameters
such as charge cost and amount of charge. Furthermore, the
coverage area for such a decentralized solution is limited to
neighboring suppliers. Extending the coverage area and of-
fering optimal V2V matching necessitate having a centralized
server that should find the optimum demander-supplier match.

Different from the existing literature, this paper proposes
a privacy-preserving centralized optimal demander-supplier
matching using realistic cost value while preventing any entity,
including the matching server, from learning any sensitive
information.

III. SYSTEM MODELS AND DESIGN GOALS

A. Network Model

As shown in Figure 1, the network model consists of a Key
Distribution Center (KDC), a Matching Server (MS), a group
of demanders, and a group of suppliers. The main notations
used in the paper are given in Table I. We use bold lowercase

Table I: Main notations

Notation  Description

k No. of demanders = No. for suppliers = k
DS Set of demander DS = {D;, 1< i<k}
SS Set of suppliers SS = {5, 1< j<k}

ME Set of master keys MK = {M1,M32,Ny,...,Ng}
DIC; Secret key set for demander D;
SK; Secret key set for supplier S;
cost; ; Cost to match D; to S;
Qi The quantity in KW that D; requests to charge
ed; Encrypted charge request vector of demander D;
ec; Encrypted charge offer vector of supplier S;
P; A supplier S; selling price per KW
m,n Number of rows and columns in the map, respectively
v Flattened map size=(n X m) + 1
d; Charge request vector of demander D;
loc; The location of D;
cj Charge offer vector of supplier S;
cost;.oci Cost for S; to travel to the location of D;
X, Y Components of the server’s key
sp Splitting vector used during the encryption

notation, e.g. d, for vectors and bold uppercase notation, e.g.
M, for matrices. The entities’ roles are described as follows:
« Demanders: A set of demanders DS = {D;,1 <14 < k}
represents EV owners who demand some energy quantity
for their EVs to be charged at a specific location.
 Suppliers: A set of suppliers SS = {5;,1< j<k}
consists of electric vehicles that offer charging as a
service.

« Key Distribution Center (KDC): The KDC is responsi-
ble for generating the master secret key set MK, a unique
demander secret key DK; for each demander D;, and a
unique supplier secret key SK; for each supplier S;. The
KDC is needed only for system setup and will not be
involved in the demander-supplier matching process.

« Matching Server (MS): The MS collects the demanders’
encrypted charging requests and the suppliers’ encrypted
charging offers. Using the encrypted collected data and
without leaking any sensitive information, the server can
derive a cost matrix where each value in the cost matrix
cost; ; represents the cost to match supplier S;’s offer to
demander D;’s request. Then, the MS runs the Hungarian
algorithm to find the optimal V2V matching result while
minimizing the total cost.

B. Threat models and Design Goals

We consider a semi-honest model in which the server,
demanders, and suppliers are considered “honest but curious”,
i.e., they do not disrupt the proposed scheme’s proper op-
eration, but any entity is curious to learn sensitive location
information of the users. Based on the network and threat
models, the following goals should be met.

1) Optimal and realistic demander-supplier matching:
The matching server should be able to compute an
optimal demander-supplier matching result considering a
realistic cost that includes not only the cost to service
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Figure 2: Overview of the data representation and information flow with a sample representation for 5 x 4 map

the requested energy quantity, but also the additional
cost needed for the supplier to travel to the demander’s
location.

2) Privacy protection of sensitive information: No entity
in the system should be able to extract the following sen-
sitive information: the demander’s location, the supplier’s
location, and the requested amount of energy.

Note that, during the V2V charging process, the demander
and supplier are physically located at the same location. With
the knowledge of the average V2V charge rate, revealing the
requested amount of energy would reveal not only the location
of the demander and supplier, but also the time period during
which both are physically located.

IV. THE PROPOSED SCHEME
A. Proposed Data Representation and Information flow

Figure 2 shows an overview of the proposed data repre-
sentation and secure information flow. First, a charge-as-a-
service area is divided into m X n cells where each cell has
a unique identifier, as shown in Figure 2a. All the demanders
and suppliers should represent their sensitive information in
the form of a vector of size v = m X n + 1, where the first
m X n elements in the vector represent the map cells.

As shown in Figure 2b,d, a demander D, builds a charge
request vector d; that represents his sensitive location informa-
tion by setting the element corresponding to his location loc;
to 1 and fill all the other elements by zeros. Additionally, D;
represents the requested charge amount (); in the last element
in the d; vector.

On the other hand, a supplier S; builds his charge offer
vector c; by reporting the price per unit charge P; at the last

element in c;, as shown in Figure 2e. Additionally, Figure 2c
depicts an additional cost that the supplier S; incurs to reach
every location in the map. For instance, cost]l represents an
additional cost by S; to reach cell (C'1) in the service area.

The dot product between d; and ¢; would result in a realistic
cost value cost; ; = Q;P; + cost;"c"', where cost; ; includes
the cost on D; to charge a quantity (); from S; plus the cost
required by S; to travel to D;’s location loc;.

Note that, the vectors d; and c; leak sensitive information
including the demander’s location, the supplier’s location, and
the requested charge quantity, which can reveal the charging
time during which both demander and supplier EVs will be at
the same location that violates users’ privacy. Therefore, both
D; and S; encrypt d; and c;, respectively before sending them
to the MS as shown in Figure 2f. In this way, the MS can use
the encrypted vectors to generate the cost matrix to match
each demander to each supplier while preventing the leakage
of sensitive information. The final step by the server is to run
the Hungarian Algorithm to generate the optimal demander-
supplier matching result and return the result to demanders
and suppliers.

B. System Setup

The KDC generates two invertible matrices of random
numbers, X and Y, and sets the server’s key as X 1Y ~1,
In addition, the KDC generates a master key set MK =
{M;,M;,Ny,...,Ng}, where X, Y, and each element in
MK is v X v invertible matrix of random numbers. The KDC
also generates a splitting vector sp of size 1 x v that is shared
with all the demanders and suppliers.
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The KDC uses MK, X, and Y to generate unique secret
keys for each demander/supplier in the system. For a demander
D;, the KDC generates DK; as:

pic - JANIX | AiNoX | BiN;X |, BNJX
7\ C;N;X , C;Ne¢X , D;N,X , D;NgX

, where A;,B;,C;, and D; are v x v matrices of random
numbers such that A; + B, = M; and C; + D; = Mo,.
Similarly, for each supplier S;, the KDC generates SK; as:

Sic, = YN;'E; , YN,'F,; , YN;'E; , YN,'F, ,

I LYN;'G;, YNG'H; , YN;'G; , YN 'H;
, where E;, F;, G;, and H; are v x v matrices of random
numbers, such that E; + F; = M;! and G; + H; = M, .
Note that, an EV owner who joins the system as a demander

and supplier receives a demander key DK and a supplier key
SK.

C. Demanders: Encrypted Charging Requests

A demander D;, requesting to charge his/her EV during an
assignment round r, should send the matching server a V2V
charging request that includes his encrypted location vector
ed;. D; can generate ed; as follows:

1) D; builds d;, as shown in Figure 2.

2) D; splits d; into two random vectors d} and d/ using the
splitting indicator sp. For the k-th element in d;, splitting
is done as follows:

di(k) = df (k) = di(k) if
di(k) = wi , di (k) = di(k) — di(k) if
, where wy, is a random number.

3) D; uses d}, d/ and his/her demander’s key DK; to

generate his/her encrypted location vector ed; as:

dA,N; X |, dJA;N.X |, d/B;N3;X ,
d;B,N,X , d/C;N;X , d/C;NgX |,
d/D;N;X , d/D;NgX

, where ed; is a row vector of size 1 x (8v).
4) D; sends ed; to the MS.

sp(k)
sp(k)

1
0

edi =

D. Suppliers: Encrypted Charging Offers

A supplier S, joining the same assignment round r should
send MS a V2V charge-sharing offer that includes the en-
crypted cost vector ec;. S; can generate ec; as follows:

1) S; builds the cost vector c;, as shown in Figure 2.

2) S; splits c; into two random vectors c; and ¢/ using the

splitting indicator sp. For the k-th element in c;, splitting
is done as follows:

ci(k) =cj(k) =c;(k) if

ci(k) =z, (k) =c;(k) —cj(k) if
, where zj, is a random number.

3) S uses c, ¢} and his/her supplier’s key SKC; to generate
his/her encrypted cost vector ec; as

sp(k)
sp(k)

0
1

YN B ), YNl YN By ]
ec; = |YN{'Fye)  YN;'Gye) . YN, 'Hyc] |
YN;'Gje/ , YNg'H;c/

, where es; is a column vector of size 1 x (8v).
4) S; sends ec; to the MS.

E. Server: Privacy-Preserving Assignment

The matching server performs the following steps to find
the best-matched demander-supplier pairs such that the cost
of the demanders’ EVs is minimized while preserving the
demanders’ and suppliers’ locations.

1) The server builds the cost matrix by computing the
matching cost between each D; and each §; as:

costy; = ed; Xt y-! ec; (1)

2) The server executes the Hungarian Algorithm, which

matches demanders and suppliers so that each individual
is satisfied by generating the optimal demander-supplier
assignment and returning the assignment results to the
demander and suppliers so that they can proceed with
the energy sharing process.
Note that, the Hungarian algorithm requires the existence
of the same number of charging offers and requests in
order to return the optimal matching result. To overcome
this limitation, we operate in a specific round r on
the minimum of the number of suppliers’ offers and
the number of demanders’ request. Let k; represents
the number of the received charging requests from the
demanders and k&, represents the number of the received
charging offers from the suppliers. In each assignment
round, the server will use k = min(kq, ks), and one of
the following three scenarios will happen:

a) If k; = ks, then a normal operation is achieved such
that all the &k, charging requests can be served by the
existing charging ks offers.

b) If kg < ks, then, & = kg and thus the firstly
submitted k& suppliers’ offers will be used to serve all
the submitted k; requests and the remaining ks — kg
charging offers will not be used.

c) If kg > ks, then k = k, which indicated that only kg
out of k4 requests can be served. In this case, the firstly
submitted k request will be served by the ks offers
and the remaining k; — ks charging requests cannot
be served during this assignment round and will be
considered in the next round.

V. DISCUSSION AND EVALUATIONS
A. Privacy Protection of Sensitive Information

As discussed in subsection IV-A, the sensitive information
represented in d; and c; should not be accessed by external
adversaries, the server, or any other user in the system. In
our scheme, we utilize a modified version of the encryption
scheme presented in [16], [17]. The security of this technique
has been formally proven in the known ciphertext model
[16]. Therefore, without the knowledge of the master key set
MUK, the sensitive information cannot be extracted from the
encrypted vectors by any entity in the system. In addition,
each user can join the system as a demander and supplier
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Table II: Demanders and suppliers execution time in seconds
with privacy scheme implemented

Map Size 400 900 1600 2500 3600 4900
Demander 0.006 0.028 0.088 0212 0440 0.820
Supplier 0.002 0.006 0.017 0.041 0.083 0.144

and receives a demander key DK and a supplier key SK.
A misbehaving user may eavesdrop a demander’s encrypted
vector and tries to use his supplier’s key to obtain the sensi-
tive information represented in the victim’s encrypted vector.
However, as shown in subsection IV-B, the mismatch between
X in DK and Y in SK would thwart this attack and thus, a
user cannot infer any sensitive information regarding any other
user.

B. Evaluation

This subsection presents the simulation results, which
demonstrate the effectiveness of our system and the negligi-
ble overhead added by implementing the privacy-preserving
scheme described in Section IV. In our simulations, we con-
sidered the number of users (demanders or suppliers) ranging
from 20 to 220 in a bipartite graph region divided into cells
ranging from 10 x 10 cells to 80 x 80 cells. The following
metrics are used in our evaluation:

1) Demander/Supplier Execution Time: The time it takes
each demander/supplier to encrypt their messages before
sending them to the server.

2) Server Execution Time with/without Privacy: The
time it takes the server to compute the cost to match
all demander-supplier pairs. This is composed of two
different times: (1) the time needed to extract the cost
value from the reported information, and (2) the time
needed to run the Hungarian algorithm to obtain the
optimal matching result. Note that with achieving privacy,
our scheme adds an overhead to the first component in
the server execution time.

3) Overhead percentage: The percentage increase in the
server’s execution time due to implementing the proposed
privacy-preserving scheme.

Table III: System execution times in seconds

Server Execution Time Overhead
No. Map  with without
Users  Size  Privacy Privacy Time Percentage
20 100 0.019 0.017 0.002 9.5%
1600 0.019 0.017 0.002 13.3%
6400 0.100 0.095 0.005 5.3%
100 100 2.988 2.950 0.038 1.3%
1600 2.135 2.082 0.053 2.6%
6400 1.610 1.496 0.114 7.6%
220 1600  14.933 14.659 0.274 1.9%
6400  19.049 18.468 0.581 3.1%

The experiments were carried out on a machine equipped
with an Intel core 17 processor running at 2.5 GHz and 16
GB of RAM. The experiment was repeated fifty times, and
average values were reported.

Table II depicts demanders’ and suppliers’ execution times
when the privacy-preserving scheme is implemented. Without
implementing our scheme, the time taken by the demanders
and suppliers to prepare the messages without considering
location privacy can be considered as zero. In this case, all
the sensitive information is reported to the server without any
processing time required for encryption. When the privacy-
preserving scheme is integrated, both the demander and the
supplier encrypt the sensitive information as illustrated in
subsection IV-C and subsection IV-D. The execution times in
Table II are in the range of milliseconds indicating that our
scheme can achieve the privacy protection of sensitive infor-
mation at a negligible computation overhead on the demander
and supplier sides.

Figure 3a depicts the server’s execution time with our
privacy scheme, Figure 3b presents the execution time without
privacy, and Figure 3c shows the time overhead percentage.
In addition, Table III shows some sample points from the
aforementioned figures. For a small number of users, although
the overhead percentage seems high (e.g., 13.3%), the actual
overhead to achieve privacy is extremely low (2 ms). For
larger number of users, e.g. 220, the overhead to achieve
privacy is around 500 ms which is negligible when compared
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to the server execution time of 18s (3% overhead). In fact, the
Hungarian Algorithm is the most time-consuming operation
by the server with a worst case run-time complexity of
O(k?), where k is the number of users. This is confirmed
by Figure 3c, which shows that for a large number of users,
the overhead percentage is around 3% to 5%, which is an
acceptable cost to achieve the privacy protection of user’s
sensitive information.

VI. CONCLUSIONS

In this paper, we proposed a novel privacy-preserving V2V
charging scheme for EVs that utilizes a centralized server to
match charge requests and offers while protecting users’ sensi-
tive information. The proposed scheme employs the Hungarian
algorithm based on a realistic cost function to ensure efficient
and secure matching, which can encourage wider participation
from EV owners and support the existing charging infras-
tructure. Our security analysis demonstrates that the proposed
scheme can effectively protect users’ privacy, requests, and
offers, even in cases of repeated requests or assignments.
Furthermore, our experiments show that the computational
overhead of the proposed scheme is negligible compared to
its benefits in preserving users’ privacy. Overall, our proposed
scheme provides an effective solution to the challenge of V2V
charging while safeguarding users’ privacy.
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