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Abstract

The oocyte expresses certain genes during folliculogenesis to regulate the acquisition of
oocyte competence. Oocyte competence, or oocyte quality, is directly related to the ability of the
oocyte to result in a successful pregnancy following fertilization. Presently, approximately 40% of
bovine embryos will develop to the blastocyst stage in vitro. Characterization of factors regulating
these processes is crucial to improve the efficiency of bovine in vitro embryo production. We
demonstrated that the secreted protein, agouti-signaling protein (ASIP) is highly abundant in the
bovine oocyte and aimed to characterize its spatiotemporal expression profile in the ovary and
throughout early embryonic development. In addition to oocyte expression, ASI/P was detected in
granulosa, cumulus, and theca cells isolated from antral follicles. Both gene expression data and
immunofluorescent staining indicated ASIP declines with oocyte maturation which may indicate
a potential role for ASIP in the attainment of oocyte competence. Microinjection of zygotes using
small interfering RNA targeting ASIP led to a 13% reduction in the rate of development to the
blastocyst stage. Additionally, we examined potential ASIP signaling mechanisms through which
ASIP may function to establish oocyte developmental competence. The expression of
melanocortin receptor 3 and 4 and the coreceptor attractin was detected in the oocyte and follicular
cells. The addition of cortisol during in vitro maturation was found to increase significantly oocyte
ASIP levels. In conclusion, these results support a functional role for ASIP in promoting oocyte
maturation and subsequent embryonic development, potentially through signaling mechanisms

involving cortisol.

Keywords: Agouti-signaling protein, embryo, ovary, early embryonic development
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Introduction

The development and optimization of reproductive biotechnologies, specifically in vitro
fertilization (IVF), over the past few decades have enabled the beef and dairy industries to improve
the genetics and productivity of cattle substantially. /n vitro maturation (IVM) of bovine oocytes
has approximately 90% rate of maturation to the metaphase II (MII) stage. However, only 20 to
40% of presumptive zygotes will reach the blastocyst stage in vitro (Lonergan et al., 2016).
Additionally, in vitro-produced (IVP) embryos are of reduced developmental potential in
comparison to in vivo-derived (IVD) embryos (Ealy et al., 2019). Factors limiting the further
optimization of bovine IVF culture systems include the current lack of knowledge of molecular

factors imperative to oocyte quality and subsequent early embryonic development.

Oocyte competence, or the ability of an oocyte to successfully resume meiosis, cleave
following fertilization, promote embryonic development, and result in a full-term, healthy
pregnancy, is a limiting factor of reproductive success (Aguila et al., 2020; Hussein et al., 2006).
Numerous physical markers of oocyte competence have been described, such as an antral follicle
size of 6 to 10 mm, large oocyte diameter, and the presence of ovarian structures indicative of
estrous cyclicity (Aguila et al., 2020). Maternal-derived oocyte factors, including mRNAs and
proteins, contribute to the establishment of oocyte competence. Before activating the embryonic
genome at the 8- to 16-cell stage in cattle, the early embryo relies on oocyte-derived transcripts
and proteins for development. Various proteins highly expressed by the bovine oocyte have been
characterized as indicators of oocyte competence (Lee et al., 2009), including follistatin (FST)
(Lee et al., 2009), JY-1 (Bettegowda et al., 2007a), KPNA7 (Tejomurtula et al., 2009), and ZNFO

(Hand et al., 2017).
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Agouti-signaling protein (ASIP) is a 132 amino acid secreted protein expressed in various
tissues in humans and cows, such as adipose, heart, liver, kidney, and the ovary (Albrecht et al.,
2012; Kwon et al., 1994; Wilson et al., 1995; Xie et al., 2022). Agouti, the ASIP homolog in mice,
was first characterized as a regulator of pigmentation as it functions as an antagonist for
melanocortin 1 receptor (MC1R) signaling, which causes a shift from eumelanin to pheomelanin
(Dinulescu and Cone, 2000; Lu et al., 1994). In addition to various members of the MCR family,
ASIP also binds the attractin (ATRN) receptor with low affinity and is believed to function as a
coreceptor for MCR signaling (He et al., 2001). Murine agouti is only expressed within the hair
follicle under normal physiological conditions. Interestingly, mice with a structural alternation in
the agouti promoter region were found to express agouti ubiquitously and exhibit a diabetes
mellitus phenotype accompanied by obesity (Dolinoy et al., 2006). Alternatively, human adipocyte
ASIP expression is associated with lipid metabolism as supplementation of ASIP to human
adipocytes in vitro was found to increase expression of fatty acid synthase (FAS), a critical

lipogenic gene (Claycombe et al., 2000).

Further, increased ASIP, regulated by elevated cortisol levels, increased both the
proliferation and differentiation of adipocytes. Patients with type Il diabetes were also found to
have elevated adipocyte ASIP levels (Smith et al., 2003). A recent study by Xie and others (2022)
demonstrated that ASIP plays a crucial role in regulating lipid metabolism in cattle. Knockout of
the ASIP gene in bovine mammary epithelial cells led to the downregulation of genes regulating

the synthesis of fatty acids, such as FAS, and altered the cellular fatty acid profile (Xie et al., 2022).

Despite reports of ovarian ASIP expression, there are no reports of further characterization
of ASIP in mammalian reproduction. Further, the role of ASIP within the ovarian follicle and early

embryo has not been elucidated. Therefore, this work aimed to provide a detailed description of
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the expression and localization of ASIP throughout folliculogenesis and early embryonic
development in cattle. The effect of ASIP ablation during early embryogenesis was examined by
conducting small interfering RNA (siRNA) mediated knockdown at the zygote stage. In addition,
the expression of potential ovarian ASIP receptors was investigated to gain insight into signaling
mechanisms through which ASIP exerts its action within the ovary. Data obtained from this
research could lead to the better optimization of embryo culture systems to increase the number of
transferable embryos and blastocyst quality. An increased understanding of the role of oocyte-
expressed genes in early embryonic development is vital to a comprehensive understanding of the
factors that limit fertility in vivo and may ultimately lead to the development of potential genetic

and pharmacological approaches to enhance fertility.

Materials and Methods
Sample collection and in vitro embryo production

Luteal-stage ovaries from Bos taurus cows were obtained at an abattoir (JBS Beef Plant,
Souderton, PA) and transported to the laboratory in 0.9% saline solution. Ovaries were either
utilized for follicular cell collection or cumulus-oocyte complex (COC) aspiration. Upon return,
ovaries were washed in 0.9% saline, and COCs were aspirated from 2-7 mm visible follicles using
an 18-gauge needle. The follicular aspirate was then washed 3 X using Boviplus oocyte wash
medium containing BSA (Minitube USA, Inc., Verona, WI). After sedimentation, the COCs with
more than four compact layers of cumulus cells and homogeneous cytoplasm were individually
selected and washed. For germinal vesicle (GV) stage oocyte samples, cumulus cells were
removed via hyaluronidase (0.1%) digestion and were vortexed for 5 min. Denuded GV oocytes
were then stored with minimal volume at -80 °C. For MII oocyte samples, COCs were matured in

groups of 50 in BO-IVM medium (IVF Bioscience, Falmouth, United Kingdom) for 21-24 h at
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38.5°C in 5% CO; in humidified air. Following IVM, cumulus cells were removed from the

metaphase II (MII) oocytes, which were then stored in the same manner as previously stated.

Following IVM, additional oocytes underwent in vitro fertilization (IVF) to generate embryo
samples. Bovine spermatozoa from a frozen-thawed semen straw were washed twice using 4 mL
of BO-Semen Prep medium (IVF Bioscience), centrifuged at 328 X g for 5 minutes, and
resuspended in approximately 350 pL of BO-Semen Prep medium. Expanded COCs were washed
in 50 pL drop of BO-IVF medium and transferred to 4 well plates containing BO-IVF medium.
Matured COCs and sperm (2.0 x 10° sperm/mL) were co-incubated for 12 h in wells containing
500 puL of BO-IVF medium at 38.5°C in 6.5% CO, in humidified air. Following 12 h post
insemination, presumptive zygotes were then denuded as stated previously and placed in groups
of 50 in 500 pL of BO-IVC medium. Embryo culture was performed in humidified air at 38.5°C
in 5% CO; and 5% O,. Stages of embryonic development were collected at the following times:
2-cell embryos were collected 33 h post insemination (hpi), 4-cell embryos 44 h hpi, 8-cell
embryos 52 h hpi, 16-cell embryos 72 hpi, morula 5 days pi, and blastocyst-stage embryos 8 days
pi. All embryo samples for gene expression analysis were stored at -80°C in minimal volume until

analysis.

Additional follicles were dissected for granulosa cell (GC) and theca cell (TC) collection
according to previously published methods with minor modifications (Amweg et al., 2011; Sudo
et al., 2007). Briefly, antral follicles were measured, dissected using dissecting scissors, snap-
frozen individually, and stored at -80°C until further analysis. At the time of RNA isolation,
follicles were placed in 1 X PBS for GC and TC collection. Using a scalpel with a blunt sterile
spatula, GC was scraped away from the follicular wall. Following rinsing the follicle with PBS,

the cell suspension was searched under a microscope for COC removal and centrifuged at 400 X
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g for 10 mins. The supernatant was discarded, and the GC pellet was placed on ice for RNA
isolation. The remaining follicular wall was rinsed with PBS to remove residual GC, and a portion

of the surrounding stroma was removed to isolate the TC layer.

Further, to determine the effect of antral follicle size on intrafollicular AS/P expression,
additional abattoir-derived ovaries were obtained. Antral follicles of either small (3-5 mm; SF) or
large (8-18 mm; LF) were dissected from ovaries and processed as previously mentioned.
Additionally, COCs from small and large follicles were cultured to determine the effect of follicle

size and maturation status on COC 4SIP expression.

Quantification of ASIP in the ovarian follicular cells, oocytes, and early embryos

To characterize levels of ASIP and its putative receptors in the ovarian follicle during oocyte
maturation, and throughout early embryonic development in cattle, quantitative real-time PCR
(RT-gPCR) analysis was performed. RNA was isolated from all samples using the RNAqueous-
Micro Total RNA Isolation Kit (Invitrogen, Waltham, MA). Embryo panel samples were spiked
with 250 fg of synthetic GFP RNA (polyadenlylated) during RNA isolation, which was used for
normalization. DNase-treated RNA was then reverse transcribed into cDNA using the High-
Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Waltham, MA). Gene expression
was analyzed via RT-qPCR using Power-Up SYBR Green Master Mix (Applied Biosystems) and
the CFX96 Real-Time PCR machine (Bio-Rad Laboratories, Hercules, CA). Thermocycling
conditions consisted of 50°C for 2 min, 95°C for 2 min, followed by 40 cycles of 95°C for 15 sec
and 60°C for 1 min. A disassociation analysis was included for each primer set, and the presence
of a single, sharp peak was confirmed. Gene expression is relative to either RPL/9 or exogenous

GFP expression. Relative mRNA abundance was calculated using the standard curve method. As
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the ATRN gene encodes both a membrane-bound and secreted protein isoform, primers were

designed to amplify specifically the membrane-bound transcript for ATRN.

To examine the ASIP expression throughout various organs, a panel of bovine tissues were
collected from a local abattoir, and RNA was isolated as previously described from samples
including bovine fetal ovary, adult ovary, fetal testis, adult testis, adrenal, brain, intestine, heart,
kidney, liver, lung, muscle, pituitary, stomach, and thymus and utilized for RT-PCR (Hand et al.,
2017). Tri-reagent (Ambion, Inc., Austin, TX) was utilized to extract RNA. The RNA was treated
with Turbo DNase I (Ambion) prior to cDNA synthesis using SuperScript III reverse transcriptase
(Invitrogen, Carlsbad, CA) with Oligo (dT);g primers. RNA concentration was determined prior
to cDNA synthesis using a Nanodrop at the absorbance of 260 nm and 280 nm. The resulting
cDNA samples were used as the template for PCR reactions to amplify ASIP and RPL19. Primer
utilized are listed in Table 1. The PCR reaction was performed as follows: 95°C for 30s, 60°C for
30s, and 72°C for 90s, and a final extension at 72°C for 10 min. Amplified PCR products were
then separated using a 1% agarose gel containing GelRed Nucleic Acid Gel Stain (Biotium,

Fremont, CA).

Immunofluorescent ASIP localization

Immunofluorescent staining was utilized according to previously published procedures
(Silva et al., 2003) with modifications to determine the localization of ASIP in the oocyte and
during early embryonic development. Polyclonal antiserum against ASIP peptide was obtained
from GenScript Corporation (Piscataway, NJ) by immunizing rabbits with a 15-amino acid
synthetic peptide (APEEKPRDERNLKNC) of the predicted amino acid sequence of ASIP. Prior
to fixing, the zona pellucida was enzymatically removed from oocyte and embryo samples using

pre-warmed 0.5% pronase. Samples were then fixed in 4% paraformaldehyde in PBS for at least
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30 min at room temperature (RT). To permeabilize, oocytes and embryos were washed in
PBS/PVP and placed in 0.25% Triton X for 20 mins at RT. Samples were then washed and placed
in 10% horse serum for 1 h at RT. Following washing 2 X , samples were placed in 100 pL drops
of either a primary antibody targeting bovine ASIP (10 pg/mL in PBS/PVP) or rabbit pre-immune
serum (IgG control) at the same concentration. Overnight incubation was performed in a
humidified chamber at 4°C. The next day, samples were washed 4 X and were then placed in 100
uL of donkey anti-rabbit IgG FITC (Invitrogen, Waltham, MA) diluted 1:200. Following a 1 h
incubation at RT in a dark, humidified chamber, samples were once again washed 4 X , and then
were placed on a slide with ProLong Gold Antifade with DAPI (Invitrogen) and a coverslip. Slides

were imaged following 24 h using a Zeiss MI microscope using Axiovision software version 4.8.2.

Cortisol supplementation during oocyte maturation

To determine the effect of cortisol supplementation on the expression of AS/P throughout
oocyte maturation, COCs underwent IVM either in the absence or presence of 0.1 pg/mL of
cortisol (Sigma-Aldrich) which was previously reported to be beneficial for bovine oocyte
maturation and the development of oocyte competence (da Costa et al., 2016). Following 22-24 h,
MII oocytes were removed from the culture medium, denuded, and stored in pools of 10 (n = 10

per treatment) at -80°C until further analysis.

Presumptive zygote microinjection

Microinjection of ASTP siRNA into zygotes and subsequent embryo culture was conducted
using procedures described previously (Lee et al., 2014). The custom dicer-substrate siRNA
(DsiRNA) design tool (Integrated DNA Technologies, Coralville, [A) was used to design a siRNA
species targeting the ORF of bovine AS/P mRNA. The siRNA was interrogated by BLAST

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) search against the bovine transcriptome and genomic
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database to rule out homology to any bovine sequences. The ASIP siRNA species was generated
commercially (Integrated DNA Technologies, Coralville, IA). Presumptive zygotes (n = 30-
38/treatment) were collected 12-16 hpi for microinjection, which was performed using M2
medium (Medium 199 containing HEPES supplemented with 2% FBS). Zygotes were injected
individually with approximately 15 pl of either ASIP siRNA (25 uM), negative control siRNA (25
uM, universal control species 1; Ambion Inc., Austin, TX), or remained as noninjected controls.
The percent development of zygotes reaching the blastocyst stage was determined on day 8. To
validate ASIP knockdown, 4-cell embryos (n = 4 pools of 10) were collected and the expression

of ASIP was determined via RT-qPCR.

Statistical Analysis

Differences in gene expression were determined using either a Student’s #-test or One-way
ANOVA using JMP statistical software version 15.2 (SAS Institute, Cary, NC). Individual mean
comparisons were performed using Tukey’s HSD. Differences were considered statistically
significant at a probability value of P <0.05. Statistical analysis of microinjection data was

conducted using a contrast to analyze the difference between blastocyst development.

Results
Tissue distribution of ASIP transcript

A previous study analyzing bovine oocyte transcriptome using RNA-Seq (Wang et al.,
2020) revealed that ASIP transcript is highly abundant in bovine oocyte. As shown in Figure 1A,
the ASIP transcript level (expressed as FPKM) is notably higher than several previously
established oocyte-expressed genes known to be critical for early embryonic development,
including KPNA7 (Tejomurtula et al., 2009), NPM2 (Lingenfelter et al., 2011), NLRP9 (Romar et

al., 2011), and ZAR1 (Wu et al., 2003).

10
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To characterize ASIP expression in other tissues, a panel of tissues including bovine fetal
ovary, adult ovary, fetal testis, adult testis, adrenal, brain, intestine, heart, kidney, liver, lung,
muscle, pituitary, stomach, and thymus were examined via RT-PCR. Expression of ASIP was
detected in both the fetal and adult ovary while the fetal testis band exhibited a faint band indicating
low ASIP expression (Figure 1B). Additionally, ASIP was detected in heart, kidney, liver, pituitary,

and thymus tissue samples as indicated by the RT-PCR gel image present in Figure 1B.

Characterization of the embryo and ovarian ASIP expression profile

To characterize ASIP expression throughout early embryonic development, pools of 20
oocytes (GV and MII) and embryos ranging from the 2-cell stage to the blastocyst stage of early
embryonic development were collected. Mature oocytes and embryo samples were generated via
IVM and IVP, respectively. Data validated the RNA-Seq results as the GV and MII oocyte highly
express ASIP (Figure 2A). There was a significant effect of embryonic stage as ASIP expression
was slightly reduced following oocyte maturation and remained at constant low levels until
following the completion of the embryonic genome activation at the 16-cell stage (P <0.05; Figure

2A). Meanwhile, blastocysts displayed very high levels of ASIP transcript.

To characterize ASIP expression within the ovarian follicle, cumulus, granulosa, and theca
cell samples were collected, and transcript abundance was analyzed via RT-qPCR. Expression of
ASIP was detected in all follicular cell types isolated from antral follicles (Figure 2B; n = 12-16).
Significantly higher levels of ASIP were detected in granulosa and theca in comparison to cumulus

cells (P <0.001; Figure 2B).

The effect of follicle size on intrafollicular ASIP levels
There was no effect of follicle size or cell type on ASIP expression in granulosa or theca

cells (P > 0.10). Oocytes isolated from large antral follicles highly express ASIP as there was a

11
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significant effect of cell type when comparing ASIP expression in oocytes from small and large

antral follicles (P < 0.0001; Figure 3).

Expression of putative ASIP receptors in oocyte and follicular cells

To characterize putative ASIP receptor expression within the ovarian follicle, cumulus,
granulosa, and theca cell samples were collected and transcript abundance was analyzed via RT-
qPCR. The expression of MCRI, 2, 3, 4, and 5 and ATRN were analyzed as they are known
receptors for ASIP. ATRN was found to be highly expressed in both GV and MII stage oocytes.
Out of all MCRs examined, only expression of MC3R and MC4R was detected in oocytes—both
being present in GV and MII oocytes (Figure 4A; n =4). Maturation status did not affect expression
of ATRN, MC3R, or MC4R. Further, ATRN was detected in granulosa, theca, and cumulus cells.
Data indicate low cumulus, granulosa, and theca cell expression of both MC3R and MC4R isolated
from antral follicles (Figure 4B; n = 12-16). There was not a statistical difference between

follicular cell type and putative ASIP receptor expression.

Localization of ASIP protein in oocyte and embryo

Immunofluorescent staining was performed to localize ASIP in the GV and MII oocyte using
either 10 pg/mL of a custom bovine ASIP polyclonal antibody (Figure 5D-F; J-L) targeting a 15
amino acid peptide or the same concentration of rabbit IgG (Figure 5A-C; G-I) as an isotype
control. Oocytes were counterstained using DAPI to localize DNA. Representative images of
immunofluorescent localization of ASIP throughout oocyte maturation are presented in Figure 5.
Levels of oocyte ASIP appear to decrease following oocyte maturation as previously indicated via
RT-gPCR (Figure 2A). Results indicate both nuclear and cytoplasmic ASIP localization within the

GV oocyte (Figure 5D-F).

12
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Further, ASIP protein levels and localization were examined in the 4-cell and blastocyst
stage embryo via immunofluorescent staining. Embryos at the 4-cell (Figure 6A-F) and day 8
blastocyst (Figure 6G-L) were incubated with either 10 pg/mL of a custom bovine ASIP polyclonal
antibody (Figure 6D-F; J-L) or rabbit IgG (Figure 6A-C; G-I). Results support that ASIP is present

in the 4-cell and blastocyst at low levels.

The effect of cortisol on oocyte ASIP levels

In order to determine if cortisol impacts oocyte ASIP levels, cortisol was supplemented
during IVM and then oocyte ASIP expression was examined. COCs were placed in IVM medium
containing either 0 (control) or 0.1 pg/mL of cortisol and incubated for 22-24 h (n = 10 pools of
10 oocytes/treatment). MII oocyte expression of ASIP via RT-qPCR revealed cortisol

supplementation significantly increased ASIP expression (P = 0.0018; Figure 7).

The effect of ASIP ablation via siRNA knockdown on early embryonic development

Data support the expression of ASIP throughout early embryonic development; therefore,
we addressed the effects of ASIP knockdown on the rate of blastocyst development. Presumptive
zygotes (n = 30-37 zygotes/treatment) were collected 12-16 h post-fertilization and injected with
approximately 15 pl of either ASIP siRNA (25 uM), negative siRNA (25 uM), or remained as
uninjected controls. On day 8§, blastocyst rates were examined. There was no difference in
blastocyst rates between the uninjected (45% =+ 2.98) and negative siRNA injected (45% = 3.8)
controls. Statistical analysis using a contrast revealed blastocyst development was significantly
decreased by 13% in embryos injected with ASIP siRNA (29% + 2.98), as shown in Figure 8 (P =

0.024).

13
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Discussion

To date, studies have reported the human (Wilson et al., 1995) and bovine (Albrecht et al.,
2012; Girardot et al., 2006) total ovary tissue expression of ASIP. However, this is the first report
of characterization of the expression pattern of AS/P within the ovary and early embryo. Our
findings support that ASIP is highly abundant in the GV oocyte, and then upon resumption of
meiosis, ASIP levels decline. Using IF, the same pattern of ASIP abundance was shown from the
GV to MII transition. These data suggest ASIP may be important for the attainment of meiotic
competence as the oocyte acquires transcripts and proteins that are required for the resumption of
meiosis during the oocyte growth (Hyttel et al., 1997). Following maturation, ASIP expression
remained at a low but constant level until the completion of the embryonic genome activation
following the 8-16 cell stage. Interestingly, our RT-qPCR data indicated a dramatic increase in
ASIP transcript abundance in the blastocyst. Meanwhile, we were unable to exhibit the localization
of ASIP using IF in the blastocyst. We hypothesize that there may be an inhibitory mechanism
present at this stage of embryonic development preventing the translation of ASIP, such as a
microRNA (miRNA). During blastocyst formation, miRNAs play an important role in the post-

transcriptional regulation of pluripotency and cell lineage differentiation (Goossens et al., 2013).

Following the knockdown of ASIP at the zygote stage, a slight decrease of 13% was observed
in the rate of blastocyst development. In the future, additional siRNA species targeting bovine
ASIP will be developed to determine if a higher rate of effectiveness in knocking down AISP can
be achieved. However, expression of ASIP during the early cleavage stages of embryonic
development has been shown to be relatively low, with notably higher levels in the oocyte and the
blastocyst. Manipulation of ASIP expression during the process of oocyte maturation may be more

informative into the role of ASIP in oocyte competence and early embryonic development. A study
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by Lee et al. (2014) exhibited that authors were able to successfully microinject cumulus-enclosed
GV oocytes with siRNA to knock down gene expression during oocyte maturation. Following the
knockdown of JY-1, rates of both oocyte maturation and early embryonic development
significantly declined as oocyte competence was diminished in JY-1 knockdown oocytes (Lee et

al., 2014).

In addition to expression in the oocyte, we determined that ASIP is also expressed by
follicular cells, including cumulus, granulosa, and theca cells. The oocyte and surrounding
follicular cells secrete specific proteins which act on either the oocyte or follicular cells in a
paracrine manner in order to establish oocyte competence (Bettegowda et al., 2007b; Gilchrist et
al., 2008; Hussein et al., 2006). Previous research has identified various oocyte-secreted proteins
which exert signals on the surrounding cumulus and granulosa cells to contribute to cumulus
expansion and granulosa action in preparation for ovulation (Gilchrist et al., 2008). Specifically,
the bovine oocyte-secreted protein JY-1 acts upon granulosa cells to induce a shift from estradiol
to primarily progesterone production (Bettegowda et al., 2007b). Depletion of oocyte JY-/ via
siRNA microinjection of cumulus-enclosed oocytes resulted in a reduction of cumulus cell
expansion, the rate of progression to the metaphase II stage, and the subsequent rate of embryonic
development.

Therefore, we aimed to examine the expression of potential receptors through which
follicular ASIP may function to indicate the potential role of ASIP in the follicle. As our results
indicate the oocyte and surrounding follicular cells express ASIP, we examined the expression of
receptors previously documented to function as a receptor for ASIP in other cell types—including
the melanocortin receptors MCIR, MC3R, MC4R, and MC5R, and the coreceptor ATRN (Liu et

al., 2018; Ollmann and Barsh, 1999; Voisey and van Daal, 2002; Yang et al., 1997). Similar to a
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study conducted by Amweg and others (2011) which reported granulosa and theca cell expression
of MC3R and MC4R in bovine antral follicles, our results also indicate oocyte expression of these
receptors, as well as oocyte and follicular cell expression of ATRN (Amweg et al., 2011). While
ASIP has been shown to function as a ligand for MC3R and MC4R, the current understanding is
that ATRN, a single transmembrane domain receptor, acts solely as a proposed obligatory

accessory coreceptor for MCR signaling (Hida et al., 2009).

Antral follicle size has been positively correlated with oocyte competence in cattle, as
embryos derived from oocytes collected from large follicles experienced higher rates of blastocyst
development in comparison to their small follicle-derived counterparts (Lonergan et al., 1994;
Pavlok et al., 1992). Data from this study indicate oocytes aspirated from large follicles (8-18 mm)
contain higher levels of ASIP than oocytes collected from small follicles (3-5 mm). As we also
found ASIP expression to decrease with maturation, this is further evidence that ASIP may be a

factor acquired by the developing oocyte to undergo the resumption of meiosis.

In human adipose cells, it has been demonstrated that ASIP is highly upregulated by
glucocorticoids, and expression of 11B-HSDI, the enzyme responsible for the conversion of
cortisol to its active form, was elevated in patients with elevated adipocyte ASIP (Smith et al.,
2003). Through a mechanism dependent upon increased cortisol levels, ASIP was then shown to
increase the proliferation and differentiation of adipocytes (Smith et al., 2003). Periovulatory
follicle granulosa cells express 113-HSDI in cattle to support the attainment of oocyte competence
and to regulate the intrafollicular inflammatory environment (Thurston et al., 2007). Further, the
addition of cortisol during bovine IVM has been reported to increase oocyte competence and lead
to increase rates of blastocyst development (da Costa et al., 2016). This reported relationship

between ASIP and cortisol led us to hypothesize that expression of ASIP within the oocyte may be
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under the regulation of cortisol during oocyte maturation. Our data exhibit that the
supplementation of IVM medium using 0.1 ug/mL of cortisol, a concentration previously
established to improve embryonic development, led to significantly increased ASIP transcription
(da Costa et al., 2016). In women, various studies have reported elevated follicular fluid cortisol
levels are associated with increased oocyte maturation and subsequent implantation success (Keay
et al., 2002; Yu et al., 2022). Clinically, low doses of dexamethasone, a synthetic glucocorticoid 4
times as potent as cortisol, are administered occasionally to women with a poor ovarian response
who are undergoing IVF (Keay et al., 2001). Species differences may exist, however, as previous
studies have indicated detrimental effects of cortisol on oocyte maturation in mice and pigs (Yang
etal., 1999; Zhang et al., 2011). When mice were injected with cortisol prior to pregnancy, oocyte
developmental competence declined, accompanied by an increase in cumulus and granulosa cell

apoptosis and increased estradiol: progesterone ratio (Yuan et al., 2016).

In conclusion, the results of this study reveal that AISP is a gene expressed by the oocyte
and early embryo that may play a role in the development of oocyte competence through a
mechanism regulated by cortisol. Findings suggest additional studies should be conducted to
investigate further ASIP signaling mechanisms in the oocyte and its effects on early embryonic

development.
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Table 1. List of primers utilized in this study.

Gene Primer Primer Sequence (5°-3’) Application

ASIP Forward ACTCTTCCATGAACCTGTTGG RT-PCR
Reverse TAGCTGAGACTTCCTGAAGC

RPL19 Forward GAAATCGCCAATGCCAACTC RT-PCR
Reverse GAGCCTTGTCTGCCTTCA

ASIP Forward AAGATGGCGGAGGAGTAGGAC RT-qPCR
Reverse CCACAAAACAGCTTCTGAATG

GFP Forward CAACAGCCACAACGTCTATATCATG RT-qPCR

Reverse ATGTTGTGGCGGATCTTGAAG

RPL19 Forward GGATCCTCATGGAACATATCC RT-qPCR
Reverse GATGATTTCCTCTTTCTTGGCC

MC1R Forward TCTAACGCTCTGTGGTGACTG RT-gPCR
Reverse ATACTGCTGCACTGCTTCCTG

MC3R Forward AGCTGCCTGTGACTTTCTTG RT-qPCR
Reverse CAGGGTCACCCAACTTTAACA

MC4R Forward CAGCCACAGCTTTTTCTTCTG RT-gPCR
Reverse ATACACCAAGACTGGGCACTG

MC5R Forward TCCTGATGATTTCGTGTCCTC RT-qPCR
Reverse CCTTAAAGGTCTTCCGCATCT

ATRN Forward ACAAAGCTGCTGTCCTCTCTG RT-gPCR
Reverse CTGCTGAGAAATGTCCACCAG
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Figure legends

Figure 1. Expression of 4AS/P mRNA in oocyte and other tissues. A) Expression of 4STP mRNA
in oocyte relative to known highly abundant oocyte-expressed genes including KPNA7, NPM2,
NLRPY and ZAR I based on RNA-Seq analysis on bovine oocyte transcriptome. FPKM = fragments
per kilobase of transcript per million mapped reads. B) ASIP was detected in fetal and adult ovary

tissue, and other somatic tissues using RT-PCR.

Figure 2. Characterization of intraovarian and early embryonic ASIP expression via RT-qPCR
analysis. A) ASIP expression was detected throughout oocyte maturation and early embryonic
development. Embryo and oocyte (20/stage) pools included GV, MII, 2-cell, 4-cell, 8-cell, 16-cell,
morula, and blastocyst stage embryos and were spiked with GFP RNA before RNA isolation.
There was a significant effect of embryo stage on ASIP expression (P < 0.05) as expression was
slightly reduced following oocyte maturation and remained at constant low levels until following
completion of the embryonic genome activation at the 16-cell stage. ASIP levels then increased in
blastocyst-stage embryos (n = 4 pools). B) ASIP was detected in granulosa, cumulus, and theca
cells isolated from antral follicles with significantly higher levels in granulosa and theca than
cumulus cells (P < 0.001; n = 12-16 per cell type). Gene expression is relative to RPLI9

expression.

Figure 3. The effect of follicle size and maturation status on follicular cell 4SIP expression. Cell
type was affected as oocytes from large follicles expressed ASIP significantly higher than oocytes

isolated from small antral follicles (P < 0.0001). Gene expression is relative to RPL19 expression.

Figure 4. RT-qPCR analysis of known ASIP receptors (4TRN, MC3R, and MC4R) intrafollicular
transcript abundance. Oocyte maturity level did not affect ATRN, MC3R, and MC4R expression

levels (P > 0.05; n = 8 pools of cells/oocytes isolated from 10 COCs). A) Transcript abundance in
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GV and MII oocytes (P > 0.05). ATRN, MC3R, and MC4R were found to be expressed in both
cumulus cells and oocytes. B) Follicular cell ASIP receptor expression in cumulus, granulosa, and
theca cells isolated from antral follicles. There was a significant effect on cell type as cumulus
cells expressed ATRN at higher levels than granulosa and theca cells (P < 0.01; n = 12-16 per cell

type). Gene expression is relative to RPL19 expression.

Figure 5. Representative images of immunofluorescent localization of ASIP throughout oocyte
maturation. GV (A-F) and MII (G-L) oocytes were either incubated with either 10 ug/mL of a
custom bovine ASIP polyclonal antibody (D-F; J-L) targeting a 15 amino acid peptide or the same
concentration of rabbit IgG (A-C; G-I) as an isotype control. Oocytes were counterstained using
DAPI to localize DNA. As previously indicated using RT-qPCR, oocyte ASIP appear to decrease

following oocyte maturation.

Figure 6. Representative images of ASIP localization during bovine early embryonic development
using immunofluorescent staining. Embryos at the 4-cell (A-F) and day 8 blastocyst (G-L) were
incubated with either 10 pg/mL of a custom bovine ASIP polyclonal antibody (D-F; J-L) targeting
a 15 amino acid peptide or the same concentration of rabbit IgG (A-C; G-I) as an isotype control.

Results support that ASIP is present in the 4-cell and blastocyst at low levels.

Figure 7. The effect of cortisol supplementation on oocyte ASIP expression during maturation.
COCs were placed in an IVM medium containing either 0 (control) or 0.1 pg/mL of cortisol and
incubated for 22-24 h (n = 10 pools of 10 oocytes/treatment). MII oocyte expression of ASIP via

RT-gPCR revealed cortisol supplementation significantly increased ASIP expression (P =0.0018).

Figure 8. Day 8 blastocyst development following ASIP siRNA mediated knockdown via
microinjection of zygotes. A) Microinjection of ASIP siRNA significantly decreased the

percentage of zygotes reaching the blastocyst stage of development compared to the control and
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595  negative siRNA-injected embryos (P = 0.024; n = 5 replications of 30-38 embryos/treatment). B)
596  Validation of siRNA-mediated ASIP knockdown in 4 cell embryos revealed the ASIP siRNA was

597 effective in reducing ASIP levels (P = 0.037; n = 4 pools of 10/treatment).
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