

1 **Characterization of agouti-signaling protein (ASIP) in the bovine ovary and throughout**
2 **early embryogenesis**

3

4

5 Heather L. Chaney, Jaelyn Z. Current, Mingxiang Zhang, Victoria A. Nist, Brady M.
6 Nicewarner, and Jianbo Yao

7

8 Davis College of Agriculture, Natural Resources and Design, Division of Animal and Nutritional
9 Sciences, West Virginia University, Morgantown, WV, USA

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24 **Corresponding author:** Jianbo Yao (jianbo.yao@mail.wvu.edu)

25

26 **Abstract**

27 The oocyte expresses certain genes during folliculogenesis to regulate the acquisition of
28 oocyte competence. Oocyte competence, or oocyte quality, is directly related to the ability of the
29 oocyte to result in a successful pregnancy following fertilization. Presently, approximately 40% of
30 bovine embryos will develop to the blastocyst stage *in vitro*. Characterization of factors regulating
31 these processes is crucial to improve the efficiency of bovine *in vitro* embryo production. We
32 demonstrated that the secreted protein, agouti-signaling protein (ASIP) is highly abundant in the
33 bovine oocyte and aimed to characterize its spatiotemporal expression profile in the ovary and
34 throughout early embryonic development. In addition to oocyte expression, *ASIP* was detected in
35 granulosa, cumulus, and theca cells isolated from antral follicles. Both gene expression data and
36 immunofluorescent staining indicated ASIP declines with oocyte maturation which may indicate
37 a potential role for ASIP in the attainment of oocyte competence. Microinjection of zygotes using
38 small interfering RNA targeting *ASIP* led to a 13% reduction in the rate of development to the
39 blastocyst stage. Additionally, we examined potential ASIP signaling mechanisms through which
40 ASIP may function to establish oocyte developmental competence. The expression of
41 melanocortin receptor 3 and 4 and the coreceptor attractin was detected in the oocyte and follicular
42 cells. The addition of cortisol during *in vitro* maturation was found to increase significantly oocyte
43 *ASIP* levels. In conclusion, these results support a functional role for ASIP in promoting oocyte
44 maturation and subsequent embryonic development, potentially through signaling mechanisms
45 involving cortisol.

46

47 **Keywords:** Agouti-signaling protein, embryo, ovary, early embryonic development

48

49 **Introduction**

50 The development and optimization of reproductive biotechnologies, specifically *in vitro*
51 fertilization (IVF), over the past few decades have enabled the beef and dairy industries to improve
52 the genetics and productivity of cattle substantially. *In vitro* maturation (IVM) of bovine oocytes
53 has approximately 90% rate of maturation to the metaphase II (MII) stage. However, only 20 to
54 40% of presumptive zygotes will reach the blastocyst stage *in vitro* (Lonergan et al., 2016).
55 Additionally, *in vitro*-produced (IVP) embryos are of reduced developmental potential in
56 comparison to *in vivo*-derived (IVD) embryos (Ealy et al., 2019). Factors limiting the further
57 optimization of bovine IVF culture systems include the current lack of knowledge of molecular
58 factors imperative to oocyte quality and subsequent early embryonic development.

59 Oocyte competence, or the ability of an oocyte to successfully resume meiosis, cleave
60 following fertilization, promote embryonic development, and result in a full-term, healthy
61 pregnancy, is a limiting factor of reproductive success (Aguila et al., 2020; Hussein et al., 2006).
62 Numerous physical markers of oocyte competence have been described, such as an antral follicle
63 size of 6 to 10 mm, large oocyte diameter, and the presence of ovarian structures indicative of
64 estrous cyclicity (Aguila et al., 2020). Maternal-derived oocyte factors, including mRNAs and
65 proteins, contribute to the establishment of oocyte competence. Before activating the embryonic
66 genome at the 8- to 16-cell stage in cattle, the early embryo relies on oocyte-derived transcripts
67 and proteins for development. Various proteins highly expressed by the bovine oocyte have been
68 characterized as indicators of oocyte competence (Lee et al., 2009), including follistatin (FST)
69 (Lee et al., 2009), JY-1 (Bettegowda et al., 2007a), KPNA7 (Tejomurtula et al., 2009), and ZNFO
70 (Hand et al., 2017).

71 Agouti-signaling protein (ASIP) is a 132 amino acid secreted protein expressed in various
72 tissues in humans and cows, such as adipose, heart, liver, kidney, and the ovary (Albrecht et al.,
73 2012; Kwon et al., 1994; Wilson et al., 1995; Xie et al., 2022). Agouti, the ASIP homolog in mice,
74 was first characterized as a regulator of pigmentation as it functions as an antagonist for
75 melanocortin 1 receptor (MC1R) signaling, which causes a shift from eumelanin to pheomelanin
76 (Dinulescu and Cone, 2000; Lu et al., 1994). In addition to various members of the MCR family,
77 ASIP also binds the attractin (ATRN) receptor with low affinity and is believed to function as a
78 coreceptor for MCR signaling (He et al., 2001). Murine *agouti* is only expressed within the hair
79 follicle under normal physiological conditions. Interestingly, mice with a structural alternation in
80 the *agouti* promoter region were found to express agouti ubiquitously and exhibit a diabetes
81 mellitus phenotype accompanied by obesity (Dolinoy et al., 2006). Alternatively, human adipocyte
82 *ASIP* expression is associated with lipid metabolism as supplementation of ASIP to human
83 adipocytes *in vitro* was found to increase expression of fatty acid synthase (*FAS*), a critical
84 lipogenic gene (Claycombe et al., 2000).

85 Further, increased ASIP, regulated by elevated cortisol levels, increased both the
86 proliferation and differentiation of adipocytes. Patients with type II diabetes were also found to
87 have elevated adipocyte *ASIP* levels (Smith et al., 2003). A recent study by Xie and others (2022)
88 demonstrated that ASIP plays a crucial role in regulating lipid metabolism in cattle. Knockout of
89 the *ASIP* gene in bovine mammary epithelial cells led to the downregulation of genes regulating
90 the synthesis of fatty acids, such as *FAS*, and altered the cellular fatty acid profile (Xie et al., 2022).

91 Despite reports of ovarian *ASIP* expression, there are no reports of further characterization
92 of ASIP in mammalian reproduction. Further, the role of ASIP within the ovarian follicle and early
93 embryo has not been elucidated. Therefore, this work aimed to provide a detailed description of

94 the expression and localization of *ASIP* throughout folliculogenesis and early embryonic
95 development in cattle. The effect of *ASIP* ablation during early embryogenesis was examined by
96 conducting small interfering RNA (siRNA) mediated knockdown at the zygote stage. In addition,
97 the expression of potential ovarian *ASIP* receptors was investigated to gain insight into signaling
98 mechanisms through which *ASIP* exerts its action within the ovary. Data obtained from this
99 research could lead to the better optimization of embryo culture systems to increase the number of
100 transferable embryos and blastocyst quality. An increased understanding of the role of oocyte-
101 expressed genes in early embryonic development is vital to a comprehensive understanding of the
102 factors that limit fertility *in vivo* and may ultimately lead to the development of potential genetic
103 and pharmacological approaches to enhance fertility.

104 **Materials and Methods**

105 ***Sample collection and in vitro embryo production***

106 Luteal-stage ovaries from *Bos taurus* cows were obtained at an abattoir (JBS Beef Plant,
107 Souderton, PA) and transported to the laboratory in 0.9% saline solution. Ovaries were either
108 utilized for follicular cell collection or cumulus-oocyte complex (COC) aspiration. Upon return,
109 ovaries were washed in 0.9% saline, and COCs were aspirated from 2-7 mm visible follicles using
110 an 18-gauge needle. The follicular aspirate was then washed 3 × using Boviplus oocyte wash
111 medium containing BSA (Minitube USA, Inc., Verona, WI). After sedimentation, the COCs with
112 more than four compact layers of cumulus cells and homogeneous cytoplasm were individually
113 selected and washed. For germinal vesicle (GV) stage oocyte samples, cumulus cells were
114 removed via hyaluronidase (0.1%) digestion and were vortexed for 5 min. Denuded GV oocytes
115 were then stored with minimal volume at -80 °C. For MII oocyte samples, COCs were matured in
116 groups of 50 in BO-IVM medium (IVF Bioscience, Falmouth, United Kingdom) for 21-24 h at

117 38.5°C in 5% CO₂ in humidified air. Following IVM, cumulus cells were removed from the
118 metaphase II (MII) oocytes, which were then stored in the same manner as previously stated.

119 Following IVM, additional oocytes underwent *in vitro* fertilization (IVF) to generate embryo
120 samples. Bovine spermatozoa from a frozen-thawed semen straw were washed twice using 4 mL
121 of BO-Semen Prep medium (IVF Bioscience), centrifuged at 328 × g for 5 minutes, and
122 resuspended in approximately 350 µL of BO-Semen Prep medium. Expanded COCs were washed
123 in 50 µL drop of BO-IVF medium and transferred to 4 well plates containing BO-IVF medium.
124 Matured COCs and sperm (2.0 x 10⁶ sperm/mL) were co-incubated for 12 h in wells containing
125 500 µL of BO-IVF medium at 38.5°C in 6.5% CO₂ in humidified air. Following 12 h post
126 insemination, presumptive zygotes were then denuded as stated previously and placed in groups
127 of 50 in 500 µL of BO-IVC medium. Embryo culture was performed in humidified air at 38.5°C
128 in 5% CO₂ and 5% O₂. Stages of embryonic development were collected at the following times:
129 2-cell embryos were collected 33 h post insemination (hpi), 4-cell embryos 44 h hpi, 8-cell
130 embryos 52 h hpi, 16-cell embryos 72 hpi, morula 5 days pi, and blastocyst-stage embryos 8 days
131 pi. All embryo samples for gene expression analysis were stored at -80°C in minimal volume until
132 analysis.

133 Additional follicles were dissected for granulosa cell (GC) and theca cell (TC) collection
134 according to previously published methods with minor modifications (Amweg et al., 2011; Sudo
135 et al., 2007). Briefly, antral follicles were measured, dissected using dissecting scissors, snap-
136 frozen individually, and stored at -80°C until further analysis. At the time of RNA isolation,
137 follicles were placed in 1 X PBS for GC and TC collection. Using a scalpel with a blunt sterile
138 spatula, GC was scraped away from the follicular wall. Following rinsing the follicle with PBS,
139 the cell suspension was searched under a microscope for COC removal and centrifuged at 400 ×

140 g for 10 mins. The supernatant was discarded, and the GC pellet was placed on ice for RNA
141 isolation. The remaining follicular wall was rinsed with PBS to remove residual GC, and a portion
142 of the surrounding stroma was removed to isolate the TC layer.

143 Further, to determine the effect of antral follicle size on intrafollicular *ASIP* expression,
144 additional abattoir-derived ovaries were obtained. Antral follicles of either small (3-5 mm; SF) or
145 large (8-18 mm; LF) were dissected from ovaries and processed as previously mentioned.
146 Additionally, COCs from small and large follicles were cultured to determine the effect of follicle
147 size and maturation status on COC *ASIP* expression.

148 ***Quantification of ASIP in the ovarian follicular cells, oocytes, and early embryos***

149 To characterize levels of *ASIP* and its putative receptors in the ovarian follicle during oocyte
150 maturation, and throughout early embryonic development in cattle, quantitative real-time PCR
151 (RT-qPCR) analysis was performed. RNA was isolated from all samples using the RNAqueous-
152 Micro Total RNA Isolation Kit (Invitrogen, Waltham, MA). Embryo panel samples were spiked
153 with 250 fg of synthetic *GFP* RNA (polyadenylated) during RNA isolation, which was used for
154 normalization. DNase-treated RNA was then reverse transcribed into cDNA using the High-
155 Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Waltham, MA). Gene expression
156 was analyzed via RT-qPCR using Power-Up SYBR Green Master Mix (Applied Biosystems) and
157 the CFX96 Real-Time PCR machine (Bio-Rad Laboratories, Hercules, CA). Thermocycling
158 conditions consisted of 50°C for 2 min, 95°C for 2 min, followed by 40 cycles of 95°C for 15 sec
159 and 60°C for 1 min. A disassociation analysis was included for each primer set, and the presence
160 of a single, sharp peak was confirmed. Gene expression is relative to either *RPL19* or exogenous
161 *GFP* expression. Relative mRNA abundance was calculated using the standard curve method. As

162 the *ATRN* gene encodes both a membrane-bound and secreted protein isoform, primers were
163 designed to amplify specifically the membrane-bound transcript for *ATRN*.

164 To examine the *ASIP* expression throughout various organs, a panel of bovine tissues were
165 collected from a local abattoir, and RNA was isolated as previously described from samples
166 including bovine fetal ovary, adult ovary, fetal testis, adult testis, adrenal, brain, intestine, heart,
167 kidney, liver, lung, muscle, pituitary, stomach, and thymus and utilized for RT-PCR (Hand et al.,
168 2017). Tri-reagent (Ambion, Inc., Austin, TX) was utilized to extract RNA. The RNA was treated
169 with Turbo DNase I (Ambion) prior to cDNA synthesis using SuperScript III reverse transcriptase
170 (Invitrogen, Carlsbad, CA) with Oligo (dT)₁₈ primers. RNA concentration was determined prior
171 to cDNA synthesis using a Nanodrop at the absorbance of 260 nm and 280 nm. The resulting
172 cDNA samples were used as the template for PCR reactions to amplify *ASIP* and *RPL19*. Primer
173 utilized are listed in Table 1. The PCR reaction was performed as follows: 95°C for 30s, 60°C for
174 30s, and 72°C for 90s, and a final extension at 72°C for 10 min. Amplified PCR products were
175 then separated using a 1% agarose gel containing GelRed Nucleic Acid Gel Stain (Biotium,
176 Fremont, CA).

177 ***Immunofluorescent ASIP localization***

178 Immunofluorescent staining was utilized according to previously published procedures
179 (Silva et al., 2003) with modifications to determine the localization of ASIP in the oocyte and
180 during early embryonic development. Polyclonal antiserum against ASIP peptide was obtained
181 from GenScript Corporation (Piscataway, NJ) by immunizing rabbits with a 15-amino acid
182 synthetic peptide (APEEKPRDERNLKNC) of the predicted amino acid sequence of ASIP. Prior
183 to fixing, the zona pellucida was enzymatically removed from oocyte and embryo samples using
184 pre-warmed 0.5% pronase. Samples were then fixed in 4% paraformaldehyde in PBS for at least

185 30 min at room temperature (RT). To permeabilize, oocytes and embryos were washed in
186 PBS/PVP and placed in 0.25% Triton X for 20 mins at RT. Samples were then washed and placed
187 in 10% horse serum for 1 h at RT. Following washing 2 \times , samples were placed in 100 μ L drops
188 of either a primary antibody targeting bovine ASIP (10 μ g/mL in PBS/PVP) or rabbit pre-immune
189 serum (IgG control) at the same concentration. Overnight incubation was performed in a
190 humidified chamber at 4°C. The next day, samples were washed 4 \times and were then placed in 100
191 μ L of donkey anti-rabbit IgG FITC (Invitrogen, Waltham, MA) diluted 1:200. Following a 1 h
192 incubation at RT in a dark, humidified chamber, samples were once again washed 4 \times , and then
193 were placed on a slide with ProLong Gold Antifade with DAPI (Invitrogen) and a coverslip. Slides
194 were imaged following 24 h using a Zeiss MI microscope using Axiovision software version 4.8.2.

195 ***Cortisol supplementation during oocyte maturation***

196 To determine the effect of cortisol supplementation on the expression of *ASIP* throughout
197 oocyte maturation, COCs underwent IVM either in the absence or presence of 0.1 μ g/mL of
198 cortisol (Sigma-Aldrich) which was previously reported to be beneficial for bovine oocyte
199 maturation and the development of oocyte competence (da Costa et al., 2016). Following 22-24 h,
200 MII oocytes were removed from the culture medium, denuded, and stored in pools of 10 (n = 10
201 per treatment) at -80°C until further analysis.

202 ***Presumptive zygote microinjection***

203 Microinjection of *ASIP* siRNA into zygotes and subsequent embryo culture was conducted
204 using procedures described previously (Lee et al., 2014). The custom dicer-substrate siRNA
205 (DsRNA) design tool (Integrated DNA Technologies, Coralville, IA) was used to design a siRNA
206 species targeting the ORF of bovine *ASIP* mRNA. The siRNA was interrogated by BLAST
207 (<http://blast.ncbi.nlm.nih.gov/Blast.cgi>) search against the bovine transcriptome and genomic

208 database to rule out homology to any bovine sequences. The *ASIP* siRNA species was generated
209 commercially (Integrated DNA Technologies, Coralville, IA). Presumptive zygotes (n = 30-
210 38/treatment) were collected 12-16 hpi for microinjection, which was performed using M2
211 medium (Medium 199 containing HEPES supplemented with 2% FBS). Zygotes were injected
212 individually with approximately 15 pl of either *ASIP* siRNA (25 μ M), negative control siRNA (25
213 μ M, universal control species 1; Ambion Inc., Austin, TX), or remained as noninjected controls.
214 The percent development of zygotes reaching the blastocyst stage was determined on day 8. To
215 validate *ASIP* knockdown, 4-cell embryos (n = 4 pools of 10) were collected and the expression
216 of *ASIP* was determined via RT-qPCR.

217 ***Statistical Analysis***

218 Differences in gene expression were determined using either a Student's *t*-test or One-way
219 ANOVA using JMP statistical software version 15.2 (SAS Institute, Cary, NC). Individual mean
220 comparisons were performed using Tukey's HSD. Differences were considered statistically
221 significant at a probability value of P < 0.05. Statistical analysis of microinjection data was
222 conducted using a contrast to analyze the difference between blastocyst development.

223 **Results**

224 ***Tissue distribution of ASIP transcript***

225 A previous study analyzing bovine oocyte transcriptome using RNA-Seq (Wang et al.,
226 2020) revealed that *ASIP* transcript is highly abundant in bovine oocyte. As shown in Figure 1A,
227 the *ASIP* transcript level (expressed as FPKM) is notably higher than several previously
228 established oocyte-expressed genes known to be critical for early embryonic development,
229 including *KPNA7* (Tejomurtula et al., 2009), *NPM2* (Lingenfelter et al., 2011), *NLRP9* (Romar et
230 al., 2011), and *ZAR1* (Wu et al., 2003).

231 To characterize *ASIP* expression in other tissues, a panel of tissues including bovine fetal
232 ovary, adult ovary, fetal testis, adult testis, adrenal, brain, intestine, heart, kidney, liver, lung,
233 muscle, pituitary, stomach, and thymus were examined via RT-PCR. Expression of *ASIP* was
234 detected in both the fetal and adult ovary while the fetal testis band exhibited a faint band indicating
235 low *ASIP* expression (Figure 1B). Additionally, *ASIP* was detected in heart, kidney, liver, pituitary,
236 and thymus tissue samples as indicated by the RT-PCR gel image present in Figure 1B.

237 ***Characterization of the embryo and ovarian ASIP expression profile***

238 To characterize *ASIP* expression throughout early embryonic development, pools of 20
239 oocytes (GV and MII) and embryos ranging from the 2-cell stage to the blastocyst stage of early
240 embryonic development were collected. Mature oocytes and embryo samples were generated via
241 IVM and IVP, respectively. Data validated the RNA-Seq results as the GV and MII oocyte highly
242 express *ASIP* (Figure 2A). There was a significant effect of embryonic stage as *ASIP* expression
243 was slightly reduced following oocyte maturation and remained at constant low levels until
244 following the completion of the embryonic genome activation at the 16-cell stage ($P < 0.05$; Figure
245 2A). Meanwhile, blastocysts displayed very high levels of *ASIP* transcript.

246 To characterize *ASIP* expression within the ovarian follicle, cumulus, granulosa, and theca
247 cell samples were collected, and transcript abundance was analyzed via RT-qPCR. Expression of
248 *ASIP* was detected in all follicular cell types isolated from antral follicles (Figure 2B; $n = 12-16$).
249 Significantly higher levels of *ASIP* were detected in granulosa and theca in comparison to cumulus
250 cells ($P < 0.001$; Figure 2B).

251 ***The effect of follicle size on intrafollicular ASIP levels***

252 There was no effect of follicle size or cell type on *ASIP* expression in granulosa or theca
253 cells ($P > 0.10$). Oocytes isolated from large antral follicles highly express *ASIP* as there was a

254 significant effect of cell type when comparing *ASIP* expression in oocytes from small and large
255 antral follicles ($P < 0.0001$; Figure 3).

256 ***Expression of putative ASIP receptors in oocyte and follicular cells***

257 To characterize putative ASIP receptor expression within the ovarian follicle, cumulus,
258 granulosa, and theca cell samples were collected and transcript abundance was analyzed via RT-
259 qPCR. The expression of *MCR1*, 2, 3, 4, and 5 and *ATRN* were analyzed as they are known
260 receptors for ASIP. *ATRN* was found to be highly expressed in both GV and MII stage oocytes.
261 Out of all MCRs examined, only expression of *MC3R* and *MC4R* was detected in oocytes—both
262 being present in GV and MII oocytes (Figure 4A; $n = 4$). Maturation status did not affect expression
263 of *ATRN*, *MC3R*, or *MC4R*. Further, *ATRN* was detected in granulosa, theca, and cumulus cells.
264 Data indicate low cumulus, granulosa, and theca cell expression of both *MC3R* and *MC4R* isolated
265 from antral follicles (Figure 4B; $n = 12-16$). There was not a statistical difference between
266 follicular cell type and putative ASIP receptor expression.

267 ***Localization of ASIP protein in oocyte and embryo***

268 Immunofluorescent staining was performed to localize ASIP in the GV and MII oocyte using
269 either 10 μ g/mL of a custom bovine ASIP polyclonal antibody (Figure 5D-F; J-L) targeting a 15
270 amino acid peptide or the same concentration of rabbit IgG (Figure 5A-C; G-I) as an isotype
271 control. Oocytes were counterstained using DAPI to localize DNA. Representative images of
272 immunofluorescent localization of ASIP throughout oocyte maturation are presented in Figure 5.
273 Levels of oocyte ASIP appear to decrease following oocyte maturation as previously indicated via
274 RT-qPCR (Figure 2A). Results indicate both nuclear and cytoplasmic ASIP localization within the
275 GV oocyte (Figure 5D-F).

276 Further, ASIP protein levels and localization were examined in the 4-cell and blastocyst
277 stage embryo via immunofluorescent staining. Embryos at the 4-cell (Figure 6A-F) and day 8
278 blastocyst (Figure 6G-L) were incubated with either 10 µg/mL of a custom bovine ASIP polyclonal
279 antibody (Figure 6D-F; J-L) or rabbit IgG (Figure 6A-C; G-I). Results support that ASIP is present
280 in the 4-cell and blastocyst at low levels.

281 ***The effect of cortisol on oocyte ASIP levels***

282 In order to determine if cortisol impacts oocyte *ASIP* levels, cortisol was supplemented
283 during IVM and then oocyte *ASIP* expression was examined. COCs were placed in IVM medium
284 containing either 0 (control) or 0.1 µg/mL of cortisol and incubated for 22-24 h (n = 10 pools of
285 10 oocytes/treatment). MII oocyte expression of *ASIP* via RT-qPCR revealed cortisol
286 supplementation significantly increased *ASIP* expression (P = 0.0018; Figure 7).

287 ***The effect of ASIP ablation via siRNA knockdown on early embryonic development***

288 Data support the expression of *ASIP* throughout early embryonic development; therefore,
289 we addressed the effects of *ASIP* knockdown on the rate of blastocyst development. Presumptive
290 zygotes (n = 30-37 zygotes/treatment) were collected 12-16 h post-fertilization and injected with
291 approximately 15 pl of either *ASIP* siRNA (25 µM), negative siRNA (25 µM), or remained as
292 uninjected controls. On day 8, blastocyst rates were examined. There was no difference in
293 blastocyst rates between the uninjected (45% ± 2.98) and negative siRNA injected (45% ± 3.8)
294 controls. Statistical analysis using a contrast revealed blastocyst development was significantly
295 decreased by 13% in embryos injected with *ASIP* siRNA (29% ± 2.98), as shown in Figure 8 (P =
296 0.024).

297 **Discussion**

298 To date, studies have reported the human (Wilson et al., 1995) and bovine (Albrecht et al.,
299 2012; Girardot et al., 2006) total ovary tissue expression of *ASIP*. However, this is the first report
300 of characterization of the expression pattern of *ASIP* within the ovary and early embryo. Our
301 findings support that *ASIP* is highly abundant in the GV oocyte, and then upon resumption of
302 meiosis, *ASIP* levels decline. Using IF, the same pattern of *ASIP* abundance was shown from the
303 GV to MII transition. These data suggest *ASIP* may be important for the attainment of meiotic
304 competence as the oocyte acquires transcripts and proteins that are required for the resumption of
305 meiosis during the oocyte growth (Hyttel et al., 1997). Following maturation, *ASIP* expression
306 remained at a low but constant level until the completion of the embryonic genome activation
307 following the 8-16 cell stage. Interestingly, our RT-qPCR data indicated a dramatic increase in
308 *ASIP* transcript abundance in the blastocyst. Meanwhile, we were unable to exhibit the localization
309 of *ASIP* using IF in the blastocyst. We hypothesize that there may be an inhibitory mechanism
310 present at this stage of embryonic development preventing the translation of *ASIP*, such as a
311 microRNA (miRNA). During blastocyst formation, miRNAs play an important role in the post-
312 transcriptional regulation of pluripotency and cell lineage differentiation (Goossens et al., 2013).

313 Following the knockdown of *ASIP* at the zygote stage, a slight decrease of 13% was observed
314 in the rate of blastocyst development. In the future, additional siRNA species targeting bovine
315 *ASIP* will be developed to determine if a higher rate of effectiveness in knocking down *ASIP* can
316 be achieved. However, expression of *ASIP* during the early cleavage stages of embryonic
317 development has been shown to be relatively low, with notably higher levels in the oocyte and the
318 blastocyst. Manipulation of *ASIP* expression during the process of oocyte maturation may be more
319 informative into the role of *ASIP* in oocyte competence and early embryonic development. A study

320 by Lee et al. (2014) exhibited that authors were able to successfully microinject cumulus-enclosed
321 GV oocytes with siRNA to knock down gene expression during oocyte maturation. Following the
322 knockdown of JY-1, rates of both oocyte maturation and early embryonic development
323 significantly declined as oocyte competence was diminished in JY-1 knockdown oocytes (Lee et
324 al., 2014).

325 In addition to expression in the oocyte, we determined that *ASIP* is also expressed by
326 follicular cells, including cumulus, granulosa, and theca cells. The oocyte and surrounding
327 follicular cells secrete specific proteins which act on either the oocyte or follicular cells in a
328 paracrine manner in order to establish oocyte competence (Bettegowda et al., 2007b; Gilchrist et
329 al., 2008; Hussein et al., 2006). Previous research has identified various oocyte-secreted proteins
330 which exert signals on the surrounding cumulus and granulosa cells to contribute to cumulus
331 expansion and granulosa action in preparation for ovulation (Gilchrist et al., 2008). Specifically,
332 the bovine oocyte-secreted protein JY-1 acts upon granulosa cells to induce a shift from estradiol
333 to primarily progesterone production (Bettegowda et al., 2007b). Depletion of oocyte *JY-1* via
334 siRNA microinjection of cumulus-enclosed oocytes resulted in a reduction of cumulus cell
335 expansion, the rate of progression to the metaphase II stage, and the subsequent rate of embryonic
336 development.

337 Therefore, we aimed to examine the expression of potential receptors through which
338 follicular ASIP may function to indicate the potential role of ASIP in the follicle. As our results
339 indicate the oocyte and surrounding follicular cells express *ASIP*, we examined the expression of
340 receptors previously documented to function as a receptor for ASIP in other cell types—including
341 the melanocortin receptors *MC1R*, *MC3R*, *MC4R*, and *MC5R*, and the coreceptor *ATRN* (Liu et
342 al., 2018; Ollmann and Barsh, 1999; Voisey and van Daal, 2002; Yang et al., 1997). Similar to a

343 study conducted by Amweg and others (2011) which reported granulosa and theca cell expression
344 of *MC3R* and *MC4R* in bovine antral follicles, our results also indicate oocyte expression of these
345 receptors, as well as oocyte and follicular cell expression of *ATRN* (Amweg et al., 2011). While
346 ASIP has been shown to function as a ligand for MC3R and MC4R, the current understanding is
347 that ATRN, a single transmembrane domain receptor, acts solely as a proposed obligatory
348 accessory coreceptor for MCR signaling (Hida et al., 2009).

349 Antral follicle size has been positively correlated with oocyte competence in cattle, as
350 embryos derived from oocytes collected from large follicles experienced higher rates of blastocyst
351 development in comparison to their small follicle-derived counterparts (Lonergan et al., 1994;
352 Pavlok et al., 1992). Data from this study indicate oocytes aspirated from large follicles (8-18 mm)
353 contain higher levels of ASIP than oocytes collected from small follicles (3-5 mm). As we also
354 found *ASIP* expression to decrease with maturation, this is further evidence that *ASIP* may be a
355 factor acquired by the developing oocyte to undergo the resumption of meiosis.

356 In human adipose cells, it has been demonstrated that *ASIP* is highly upregulated by
357 glucocorticoids, and expression of 11 β -HSD1, the enzyme responsible for the conversion of
358 cortisol to its active form, was elevated in patients with elevated adipocyte *ASIP* (Smith et al.,
359 2003). Through a mechanism dependent upon increased cortisol levels, ASIP was then shown to
360 increase the proliferation and differentiation of adipocytes (Smith et al., 2003). Periovulatory
361 follicle granulosa cells express 11 β -HSD1 in cattle to support the attainment of oocyte competence
362 and to regulate the intrafollicular inflammatory environment (Thurston et al., 2007). Further, the
363 addition of cortisol during bovine IVM has been reported to increase oocyte competence and lead
364 to increase rates of blastocyst development (da Costa et al., 2016). This reported relationship
365 between ASIP and cortisol led us to hypothesize that expression of *ASIP* within the oocyte may be

366 under the regulation of cortisol during oocyte maturation. Our data exhibit that the
367 supplementation of IVM medium using 0.1 μ g/mL of cortisol, a concentration previously
368 established to improve embryonic development, led to significantly increased *ASIP* transcription
369 (da Costa et al., 2016). In women, various studies have reported elevated follicular fluid cortisol
370 levels are associated with increased oocyte maturation and subsequent implantation success (Keay
371 et al., 2002; Yu et al., 2022). Clinically, low doses of dexamethasone, a synthetic glucocorticoid 4
372 times as potent as cortisol, are administered occasionally to women with a poor ovarian response
373 who are undergoing IVF (Keay et al., 2001). Species differences may exist, however, as previous
374 studies have indicated detrimental effects of cortisol on oocyte maturation in mice and pigs (Yang
375 et al., 1999; Zhang et al., 2011). When mice were injected with cortisol prior to pregnancy, oocyte
376 developmental competence declined, accompanied by an increase in cumulus and granulosa cell
377 apoptosis and increased estradiol: progesterone ratio (Yuan et al., 2016).

378 In conclusion, the results of this study reveal that *AISP* is a gene expressed by the oocyte
379 and early embryo that may play a role in the development of oocyte competence through a
380 mechanism regulated by cortisol. Findings suggest additional studies should be conducted to
381 investigate further *ASIP* signaling mechanisms in the oocyte and its effects on early embryonic
382 development.

383 **Declaration of interest**

384 There is no conflict of interest that could be perceived as prejudicing the impartiality of the
385 research reported.

386 **Funding**

387 This work was supported by the National Institute of Food and Agriculture, U.S.
388 Department of Agriculture, award number 2020-38640-31520 through the Northeast SARE

389 program under sub-award number GNE21-252-35383 and the USDA National Institute of Food
390 and Agriculture, Multistate Research Project 1014002.

391 **Author contributions**

392 H.L.C. collected samples and performed experiments, data analysis, data interpretation,
393 study design, and drafted the manuscript. J.Z.C. collected ovary samples and performed *in vitro*
394 embryo production. M.Z. performed *in vitro* embryo production. B.M.N. and V.A.N. assisted with
395 gene expression data and sample collection. J.Y. helped with data analysis, interpretation, and
396 manuscript preparation.

397 **Acknowledgments**

398 The authors would like to thank Dr. Ida Holaskova for her statistical aid, Hyde's Meat
399 Packing (Enterprise, WV), and JBS Beef Plant (Souderton, PA) for their generous donation of
400 bovine ovaries for this work.

401

402 **References**

403 Aguila, L., Treulen, F., Therrien, J., Felmer, R., Valdivia, M. and Smith, L.C., 2020. Oocyte
404 Selection for In Vitro Embryo Production in Bovine Species: Noninvasive Approaches
405 for New Challenges of Oocyte Competence. *Animals* (Basel). 10.

406 Albrecht, E., Komolka, K., Kuzinski, J. and Maak, S., 2012. Agouti revisited: transcript
407 quantification of the ASIP gene in bovine tissues related to protein expression and
408 localization. *PLoS One*. 7, e35282.

409 Amweg, A.N., Paredes, A., Salvetti, N.R., Lara, H.E. and Ortega, H.H., 2011. Expression of
410 melanocortin receptors mRNA, and direct effects of ACTH on steroid secretion in the
411 bovine ovary. *Theriogenology*. 75, 628-37.

412 Bettegowda, A., Yao, J., Sen, A., Li, Q., Lee, K., Kobayashi, Y., Patel, O.V., Coussens, P.M.,
413 Ireland, J.J. and Smith, G.W., 2007a. JY-1, an oocyte-specific gene, regulates granulosa
414 cell function and early embryonic development in cattle. *Proceedings Of The National
415 Academy Of Sciences Of The United States Of America*. 104, 17602-17607.

416 Bettegowda, A., Yao, J., Sen, A., Li, Q., Lee, K.B., Kobayashi, Y., Patel, O.V., Coussens, P.M.,
417 Ireland, J.J. and Smith, G.W., 2007b. JY-1, an oocyte-specific gene, regulates granulosa
418 cell function and early embryonic development in cattle. *Proc Natl Acad Sci U S A*. 104,
419 17602-7.

420 Claycombe, K.J., Wang, Y., Jones, B.H., Kim, S., Wilkison, W.O., Zemel, M.B., Chun, J. and
421 Moustaid-Moussa, N., 2000. Transcriptional regulation of the adipocyte fatty acid
422 synthase gene by agouti: interaction with insulin. *Physiol Genomics*. 3, 157-62.

423 da Costa, N.N., Brito, K.N., Santana, P., Cordeiro, M.a.S., Silva, T.V., Santos, A.X., Ramos,
424 P.o.C., Santos, S.o.S., King, W.A., Miranda, M.o.S. and Ohashi, O.M., 2016. Effect of
425 cortisol on bovine oocyte maturation and embryo development in vitro. *Theriogenology*.
426 85, 323-9.

427 Dinulescu, D.M. and Cone, R.D., 2000. Agouti and agouti-related protein: analogies and
428 contrasts. *J Biol Chem*. 275, 6695-8.

429 Dolinoy, D.C., Weidman, J.R., Waterland, R.A. and Jirtle, R.L., 2006. Maternal genistein alters
430 coat color and protects Avy mouse offspring from obesity by modifying the fetal
431 epigenome. *Environ Health Perspect*. 114, 567-72.

432 Ealy, A.D., Wooldridge, L.K. and Mccoski, S.R., 2019. BOARD INVITED REVIEW: Post-
433 transfer consequences of in vitro-produced embryos in cattle. *Journal of Animal Science*.
434 97, 2555-2568.

435 Gilchrist, R.B., Lane, M. and Thompson, J.G., 2008. Oocyte-secreted factors: regulators of
436 cumulus cell function and oocyte quality. *Hum Reprod Update*. 14, 159-77.

437 Girardot, M., Guibert, S., Laforet, M.P., Gallard, Y., Larroque, H. and Oulmouden, A., 2006.
438 The insertion of a full-length Bos taurus LINE element is responsible for a transcriptional
439 deregulation of the Normande Agouti gene. *Pigment Cell Res*. 19, 346-55.

440 Goossens, K., Mestdagh, P., Lefever, S., Van Poucke, M., Van Zeveren, A., Van Soom, A.,
441 Vandesompele, J. and Peelman, L., 2013. Regulatory microRNA network identification
442 in bovine blastocyst development. *Stem Cells Dev*. 22, 1907-20.

443 Hand, J.M., Zhang, K., Wang, L., Koganti, P.P., Mastrantoni, K., Rajput, S.K., Ashry, M.,
444 Smith, G.W. and Yao, J., 2017. Discovery of a novel oocyte-specific Kruppel-associated
445 box domain-containing zinc finger protein required for early embryogenesis in cattle.
446 *Mech Dev*. 144, 103-112.

447 He, L., Gunn, T.M., Bouley, D.M., Lu, X.Y., Watson, S.J., Schlossman, S.F., Duke-Cohan, J.S.
448 and Barsh, G.S., 2001. A biochemical function for attractin in agouti-induced
449 pigmentation and obesity. *Nat Genet.* 27, 40-7.

450 Hida, T., Wakamatsu, K., Sviderskaya, E.V., Donkin, A.J., Montoliu, L., Lynn Lamoreux, M.,
451 Yu, B., Millhauser, G.L., Ito, S., Barsh, G.S., Jimbow, K. and Bennett, D.C., 2009.
452 Agouti protein, mahogunin, and attractin in pheomelanogenesis and melanoblast-like
453 alteration of melanocytes: a cAMP-independent pathway. *Pigment Cell Melanoma Res.*
454 22, 623-34.

455 Hussein, T.S., Thompson, J.G. and Gilchrist, R.B., 2006. Oocyte-secreted factors enhance oocyte
456 developmental competence. *Dev Biol.* 296, 514-21.

457 Hyttel, P., Fair, T., Callesen, H. and Greve, T., 1997. Oocyte growth, capacitation and final
458 maturation in cattle. *Theriogenology.* 47, 23-32.

459 Keay, S.D., Harlow, C.R., Wood, P.J., Jenkins, J.M. and Cahill, D.J., 2002. Higher
460 cortisol:cortisone ratios in the preovulatory follicle of completely unstimulated IVF
461 cycles indicate oocytes with increased pregnancy potential. *Hum Reprod.* 17, 2410-4.

462 Keay, S.D., Lenton, E.A., Cooke, I.D., Hull, M.G. and Jenkins, J.M., 2001. Low-dose
463 dexamethasone augments the ovarian response to exogenous gonadotrophins leading to a
464 reduction in cycle cancellation rate in a standard IVF programme. *Hum Reprod.* 16,
465 1861-5.

466 Kwon, H.Y., Bultman, S.J., Löffler, C., Chen, W.J., Furdon, P.J., Powell, J.G., Usala, A.L.,
467 Wilkison, W., Hansmann, I. and Woychik, R.P., 1994. Molecular structure and
468 chromosomal mapping of the human homolog of the agouti gene. *Proc Natl Acad Sci U S*
469 *A.* 91, 9760-4.

470 Lee, K.B., Bettegowda, A., Wee, G., Ireland, J.J. and Smith, G.W., 2009. Molecular
471 determinants of oocyte competence: potential functional role for maternal (oocyte-
472 derived) follistatin in promoting bovine early embryogenesis. *Endocrinology.* 150, 2463-
473 71.

474 Lee, K.B., Wee, G., Zhang, K., Folger, J.K., Knott, J.G. and Smith, G.W., 2014. Functional role
475 of the bovine oocyte-specific protein JY-1 in meiotic maturation, cumulus expansion, and
476 subsequent embryonic development. *Biol Reprod.* 90, 69.

477 Lingenfelter, B.M., Tripurani, S.K., Tejomurtula, J., Smith, G.W. and Yao, J., 2011. Molecular
478 cloning and expression of bovine nucleoplasmin 2 (NPM2): a maternal effect gene
479 regulated by miR-181a. *Reprod Biol Endocrinol.* 9, 40.

480 Liu, Y., Albrecht, E., Schering, L., Kuehn, C., Yang, R., Zhao, Z. and Maak, S., 2018. Agouti
481 Signaling Protein and Its Receptors as Potential Molecular Markers for Intramuscular and
482 Body Fat Deposition in Cattle. *Frontiers in Physiology.* 9.

483 Lonergan, P., Fair, T., Forde, N. and Rizos, D., 2016. Embryo development in dairy cattle.
484 *Theriogenology.* 86, 270-7.

485 Lonergan, P., Monaghan, P., Rizos, D., Boland, M.P. and Gordon, I., 1994. Effect of follicle size
486 on bovine oocyte quality and developmental competence following maturation,
487 fertilization, and culture in vitro. *Mol Reprod Dev.* 37, 48-53.

488 Lu, D., Willard, D., Patel, I.R., Kadwell, S., Overton, L., Kost, T., Luther, M., Chen, W.,
489 Woychik, R.P. and Wilkison, W.O., 1994. Agouti protein is an antagonist of the
490 melanocyte-stimulating-hormone receptor. *Nature.* 371, 799-802.

491 Ollmann, M.M. and Barsh, G.S., 1999. Down-regulation of melanocortin receptor signaling
492 mediated by the amino terminus of Agouti protein in *Xenopus melanophores*. *J Biol
493 Chem.* 274, 15837-46.

494 Pavlok, A., Lucas-Hahn, A. and Niemann, H., 1992. Fertilization and developmental competence
495 of bovine oocytes derived from different categories of antral follicles. *Mol Reprod Dev.*
496 31, 63-7.

497 Romar, R., De Santis, T., Papillier, P., Perreau, C., Thélie, A., Dell'Aquila, M.E., Mermilliod, P.
498 and Dalbiès-Tran, R., 2011. Expression of maternal transcripts during bovine oocyte in
499 vitro maturation is affected by donor age. *Reprod Domest Anim.* 46, e23-30.

500 Silva, C.C., Groome, N.P. and Knight, P.G., 2003. Immunohistochemical localization of
501 inhibin/activin alpha, betaA and betaB subunits and follistatin in bovine oocytes during in
502 vitro maturation and fertilization. *Reproduction.* 125, 33-42.

503 Smith, S.R., Gawronska-Kozak, B., Janderová, L., Nguyen, T., Murrell, A., Stephens, J.M. and
504 Mynatt, R.L., 2003. Agouti expression in human adipose tissue: functional consequences
505 and increased expression in type 2 diabetes. *Diabetes.* 52, 2914-22.

506 Sudo, N., Shimizu, T., Kawashima, C., Kaneko, E., Tetsuka, M. and Miyamoto, A., 2007.
507 Insulin-like growth factor-I (IGF-I) system during follicle development in the bovine
508 ovary: relationship among IGF-I, type 1 IGF receptor (IGFR-1) and pregnancy-associated
509 plasma protein-A (PAPP-A). *Mol Cell Endocrinol.* 264, 197-203.

510 Tejomurtula, J., Lee, K., Tripurani, S.K., Smith, G.W. and Yao, J., 2009. Role of Importin
511 Alpha8, a New Member of the Importin Alpha Family of Nuclear Transport Proteins, in
512 Early Embryonic Development in Cattle. *Biology of reproduction.* 81, 333-342.

513 Thurston, L.M., Abayasekara, D.R. and Michael, A.E., 2007. 11beta-Hydroxysteroid
514 dehydrogenase expression and activities in bovine granulosa cells and corpora lutea
515 implicate corticosteroids in bovine ovarian physiology. *J Endocrinol.* 193, 299-310.

516 Voisey, J. and van Daal, A., 2002. Agouti: from mouse to man, from skin to fat. *Pigment Cell
517 Res.* 15, 10-8.

518 Wang, J., Koganti, P.P. and Yao, J., 2020. Systematic identification of long intergenic non-
519 coding RNAs expressed in bovine oocytes. *Reprod Biol Endocrinol.* 18, 13.

520 Wilson, B.D., Ollmann, M.M., Kang, L., Stoffel, M., Bell, G.I. and Barsh, G.S., 1995. Structure
521 and function of ASP, the human homolog of the mouse agouti gene. *Hum Mol Genet.* 4,
522 223-30.

523 Wu, X., Viveiros, M.M., Eppig, J.J., Bai, Y., Fitzpatrick, S.L. and Matzuk, M.M., 2003. Zygote
524 arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition.
525 *Nature genetics.* 33, 187-91.

526 Xie, T., Liu, Y., Lu, H., Iqbal, A., Ruan, M., Jiang, P., Yu, H., Meng, J. and Zhao, Z., 2022. The
527 Knockout of the ASIP Gene Altered the Lipid Composition in Bovine Mammary
528 Epithelial Cells via the Expression of Genes in the Lipid Metabolism Pathway. *Animals
529 (Basel).* 12.

530 Yang, J.G., Chen, W.Y. and Li, P.S., 1999. Effects of glucocorticoids on maturation of pig
531 oocytes and their subsequent fertilizing capacity in vitro. *Biol Reprod.* 60, 929-36.

532 Yang, Y.K., Ollmann, M.M., Wilson, B.D., Dickinson, C., Yamada, T., Barsh, G.S. and Gantz,
533 I., 1997. Effects of recombinant agouti-signaling protein on melanocortin action. *Mol
534 Endocrinol.* 11, 274-80.

535 Yu, L., Liu, M., Xu, S., Wang, Z., Liu, T., Zhou, J., Zhang, D., Dong, X., Pan, B., Wang, B., Liu,
536 S. and Guo, W., 2022. Follicular fluid steroid and gonadotrophic hormone levels and

537 mitochondrial function from exosomes predict embryonic development. *Front Endocrinol*
 538 (Lausanne). 13, 1025523.

539 Yuan, H.J., Han, X., He, N., Wang, G.L., Gong, S., Lin, J., Gao, M. and Tan, J.H., 2016.
 540 Glucocorticoids impair oocyte developmental potential by triggering apoptosis of ovarian
 541 cells via activating the Fas system. *Sci Rep.* 6, 24036.

542 Zhang, S.Y., Wang, J.Z., Li, J.J., Wei, D.L., Sui, H.S., Zhang, Z.H., Zhou, P. and Tan, J.H.,
 543 2011. Maternal restraint stress diminishes the developmental potential of oocytes. *Biol
 544 Reprod.* 84, 672-81.

545

546 **Table 1. List of primers utilized in this study.**

Gene	Primer	Primer Sequence (5'-3')	Application
ASIP	Forward	ACTCTTCCATGAACCTGTTGG	RT-PCR
	Reverse	TAGCTGAGACTTCCTGAAGC	
RPL19	Forward	GAAATGCCAATGCCAACTC	RT-PCR
	Reverse	GAGCCTTGTCTGCCCTCA	
ASIP	Forward	AAGATGGCGGAGGAGTAGGAC	RT-qPCR
	Reverse	CCACAAAACAGCTTCTGAATG	
GFP	Forward	CAACAGCCACAACGTCTATATCATG	RT-qPCR
	Reverse	ATGTTGTGGCGGATCTTGAAG	
RPL19	Forward	GGATCCTCATGGAACATATCC	RT-qPCR
	Reverse	GATGATTTCTCTTTCTTGGCC	
MC1R	Forward	TCTAACGCTCTGTGGTGACTG	RT-qPCR
	Reverse	ATACTGCTGCACTGCTTCCTG	
MC3R	Forward	AGCTGCCGTGACTTTCTT	RT-qPCR
	Reverse	CAGGGTCACCCAACTTAACCA	
MC4R	Forward	CAGCCACAGCTTTCTTCTG	RT-qPCR
	Reverse	ATACACCAAGACTGGGCACTG	
MC5R	Forward	TCCTGATGATTCGTGTCCTC	RT-qPCR
	Reverse	CCTTAAAGGTCTCCGCATCT	
ATRN	Forward	ACAAAGCTGCTGCCTCTCTG	RT-qPCR
	Reverse	CTGCTGAGAAATGTCCACCAAG	

547

548

549 **Figure legends**

550 **Figure 1.** Expression of *ASIP* mRNA in oocyte and other tissues. A) Expression of *ASIP* mRNA
551 in oocyte relative to known highly abundant oocyte-expressed genes including *KPNA7*, *NPM2*,
552 *NLRP9* and *ZAR1* based on RNA-Seq analysis on bovine oocyte transcriptome. FPKM = fragments
553 per kilobase of transcript per million mapped reads. B) *ASIP* was detected in fetal and adult ovary
554 tissue, and other somatic tissues using RT-PCR.

555 **Figure 2.** Characterization of intraovarian and early embryonic *ASIP* expression via RT-qPCR
556 analysis. A) *ASIP* expression was detected throughout oocyte maturation and early embryonic
557 development. Embryo and oocyte (20/stage) pools included GV, MII, 2-cell, 4-cell, 8-cell, 16-cell,
558 morula, and blastocyst stage embryos and were spiked with *GFP* RNA before RNA isolation.
559 There was a significant effect of embryo stage on *ASIP* expression ($P < 0.05$) as expression was
560 slightly reduced following oocyte maturation and remained at constant low levels until following
561 completion of the embryonic genome activation at the 16-cell stage. *ASIP* levels then increased in
562 blastocyst-stage embryos (n = 4 pools). B) *ASIP* was detected in granulosa, cumulus, and theca
563 cells isolated from antral follicles with significantly higher levels in granulosa and theca than
564 cumulus cells ($P < 0.001$; n = 12-16 per cell type). Gene expression is relative to *RPL19*
565 expression.

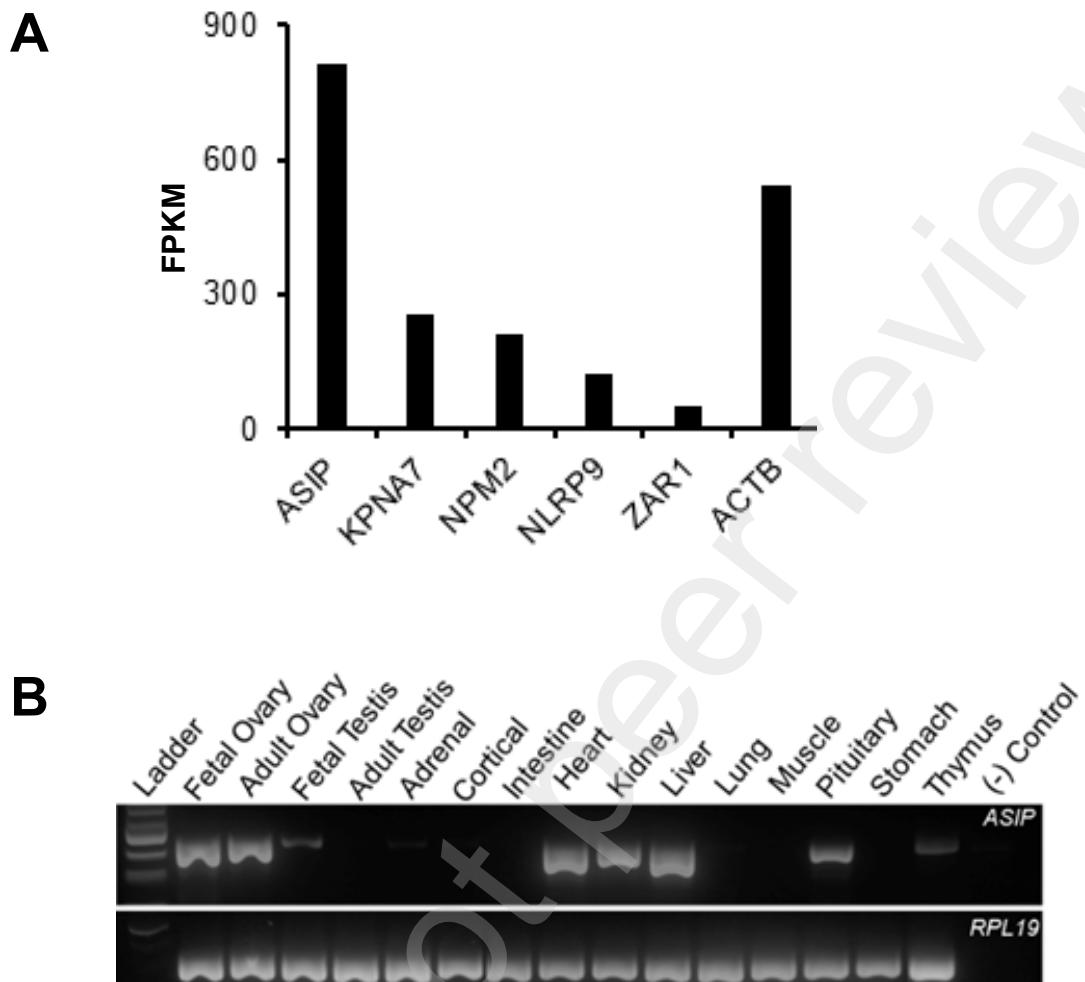
566 **Figure 3.** The effect of follicle size and maturation status on follicular cell *ASIP* expression. Cell
567 type was affected as oocytes from large follicles expressed *ASIP* significantly higher than oocytes
568 isolated from small antral follicles ($P < 0.0001$). Gene expression is relative to *RPL19* expression.

569 **Figure 4.** RT-qPCR analysis of known ASIP receptors (*ATRN*, *MC3R*, and *MC4R*) intrafollicular
570 transcript abundance. Oocyte maturity level did not affect *ATRN*, *MC3R*, and *MC4R* expression
571 levels ($P > 0.05$; n = 8 pools of cells/oocytes isolated from 10 COCs). A) Transcript abundance in

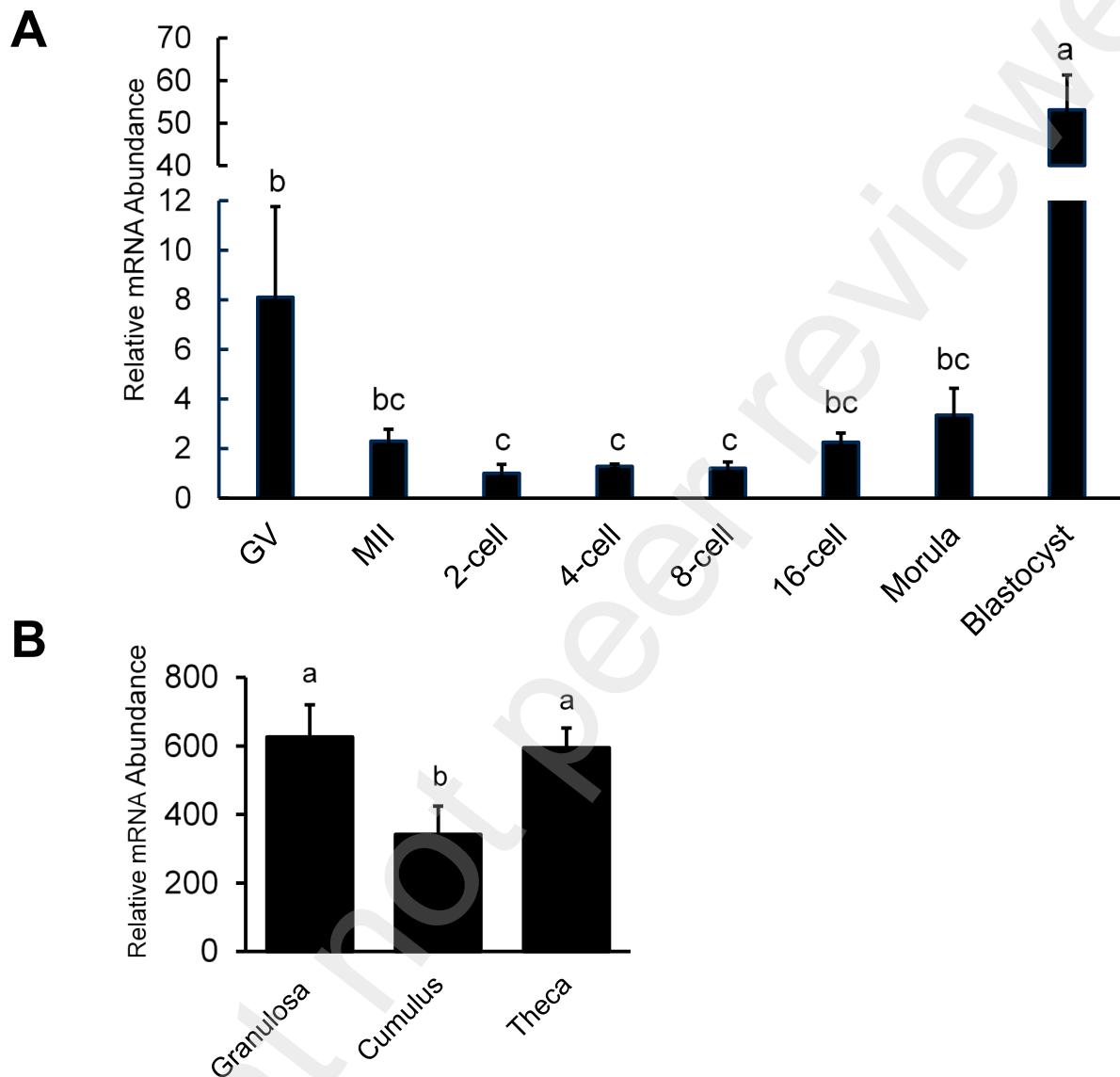
572 GV and MII oocytes ($P > 0.05$). *ATRN*, *MC3R*, and *MC4R* were found to be expressed in both
573 cumulus cells and oocytes. B) Follicular cell ASIP receptor expression in cumulus, granulosa, and
574 theca cells isolated from antral follicles. There was a significant effect on cell type as cumulus
575 cells expressed *ATRN* at higher levels than granulosa and theca cells ($P < 0.01$; $n = 12-16$ per cell
576 type). Gene expression is relative to *RPL19* expression.

577 **Figure 5.** Representative images of immunofluorescent localization of ASIP throughout oocyte
578 maturation. GV (A-F) and MII (G-L) oocytes were either incubated with either 10 μ g/mL of a
579 custom bovine ASIP polyclonal antibody (D-F; J-L) targeting a 15 amino acid peptide or the same
580 concentration of rabbit IgG (A-C; G-I) as an isotype control. Oocytes were counterstained using
581 DAPI to localize DNA. As previously indicated using RT-qPCR, oocyte *ASIP* appear to decrease
582 following oocyte maturation.

583 **Figure 6.** Representative images of ASIP localization during bovine early embryonic development
584 using immunofluorescent staining. Embryos at the 4-cell (A-F) and day 8 blastocyst (G-L) were
585 incubated with either 10 μ g/mL of a custom bovine ASIP polyclonal antibody (D-F; J-L) targeting
586 a 15 amino acid peptide or the same concentration of rabbit IgG (A-C; G-I) as an isotype control.
587 Results support that ASIP is present in the 4-cell and blastocyst at low levels.

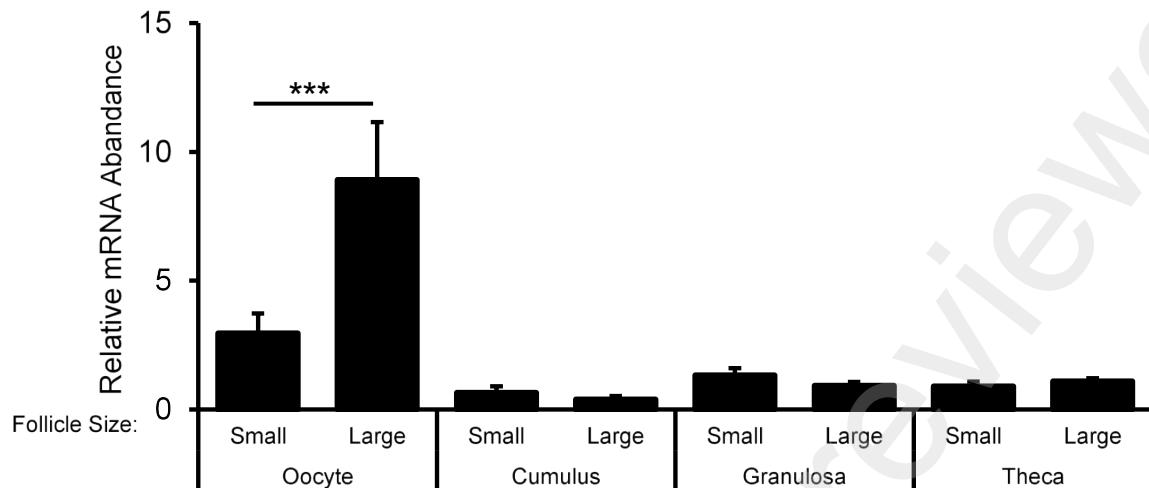

588 **Figure 7.** The effect of cortisol supplementation on oocyte *ASIP* expression during maturation.
589 COCs were placed in an IVM medium containing either 0 (control) or 0.1 μ g/mL of cortisol and
590 incubated for 22-24 h ($n = 10$ pools of 10 oocytes/treatment). MII oocyte expression of *ASIP* via
591 RT-qPCR revealed cortisol supplementation significantly increased *ASIP* expression ($P = 0.0018$).

592 **Figure 8.** Day 8 blastocyst development following *ASIP* siRNA mediated knockdown via
593 microinjection of zygotes. A) Microinjection of *ASIP* siRNA significantly decreased the
594 percentage of zygotes reaching the blastocyst stage of development compared to the control and

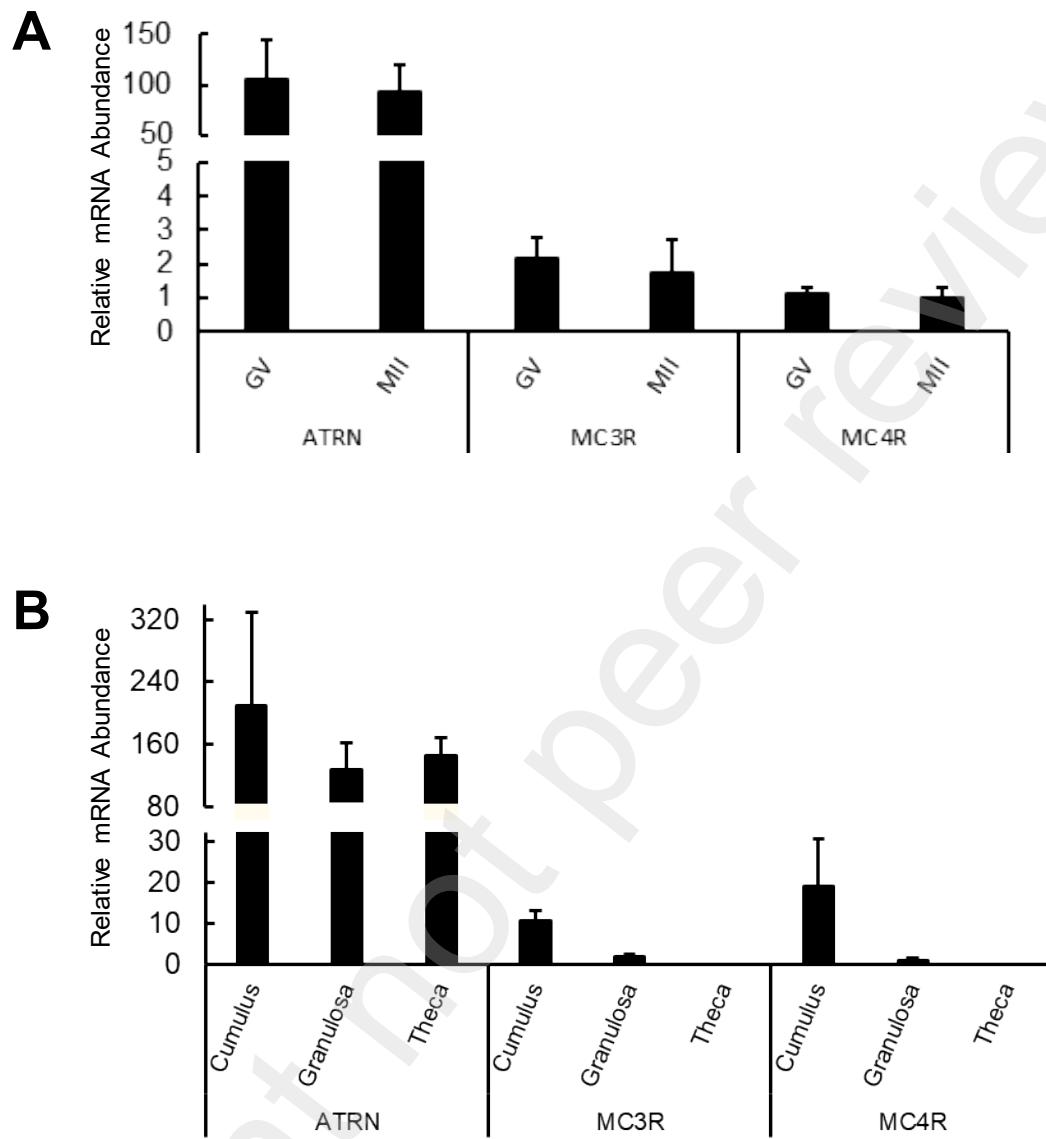

595 negative siRNA-injected embryos ($P = 0.024$; $n = 5$ replications of 30-38 embryos/treatment). B)
596 Validation of siRNA-mediated *ASIP* knockdown in 4 cell embryos revealed the *ASIP* siRNA was
597 effective in reducing *ASIP* levels ($P = 0.037$; $n = 4$ pools of 10/treatment).

598

599 **Figure 1**

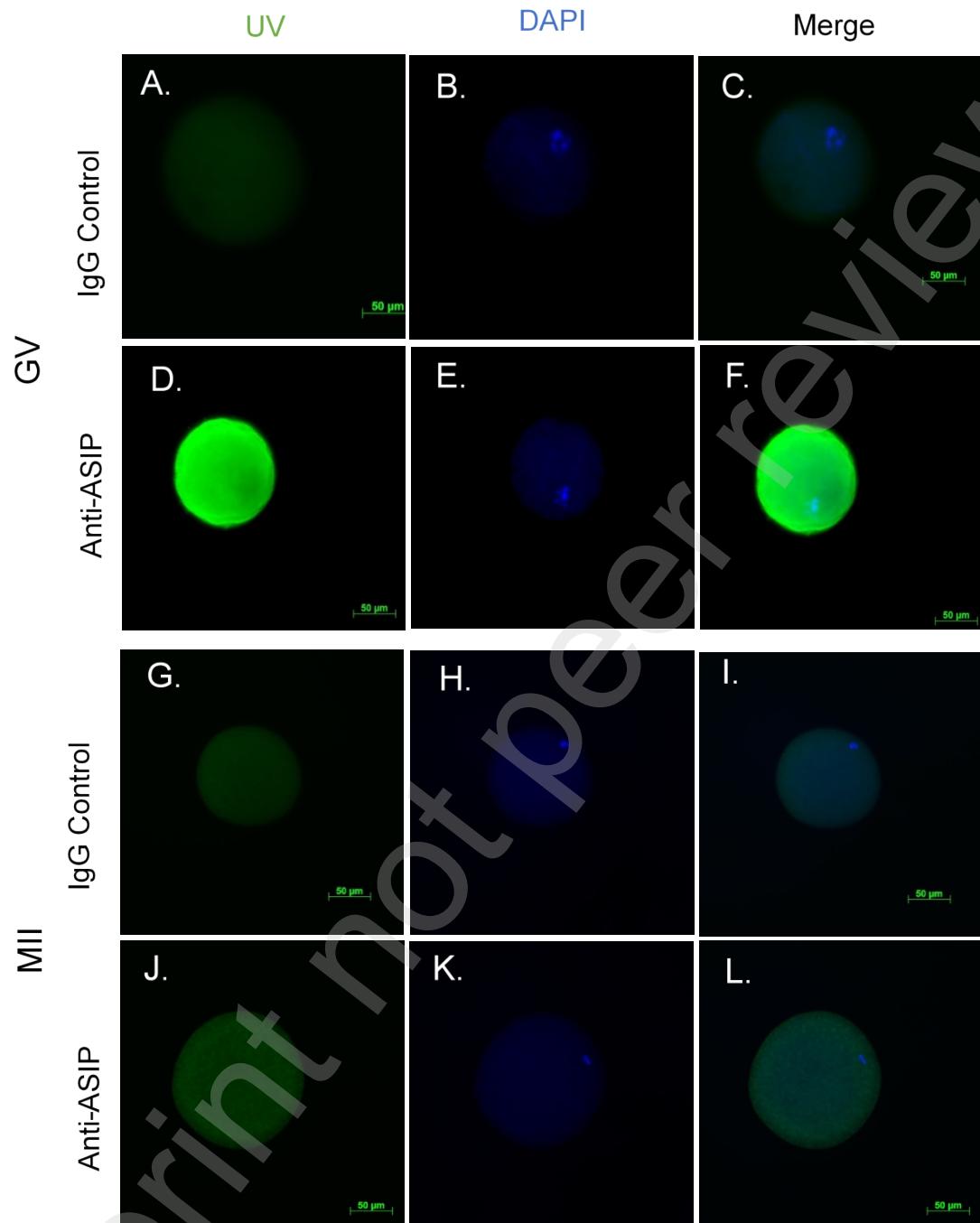


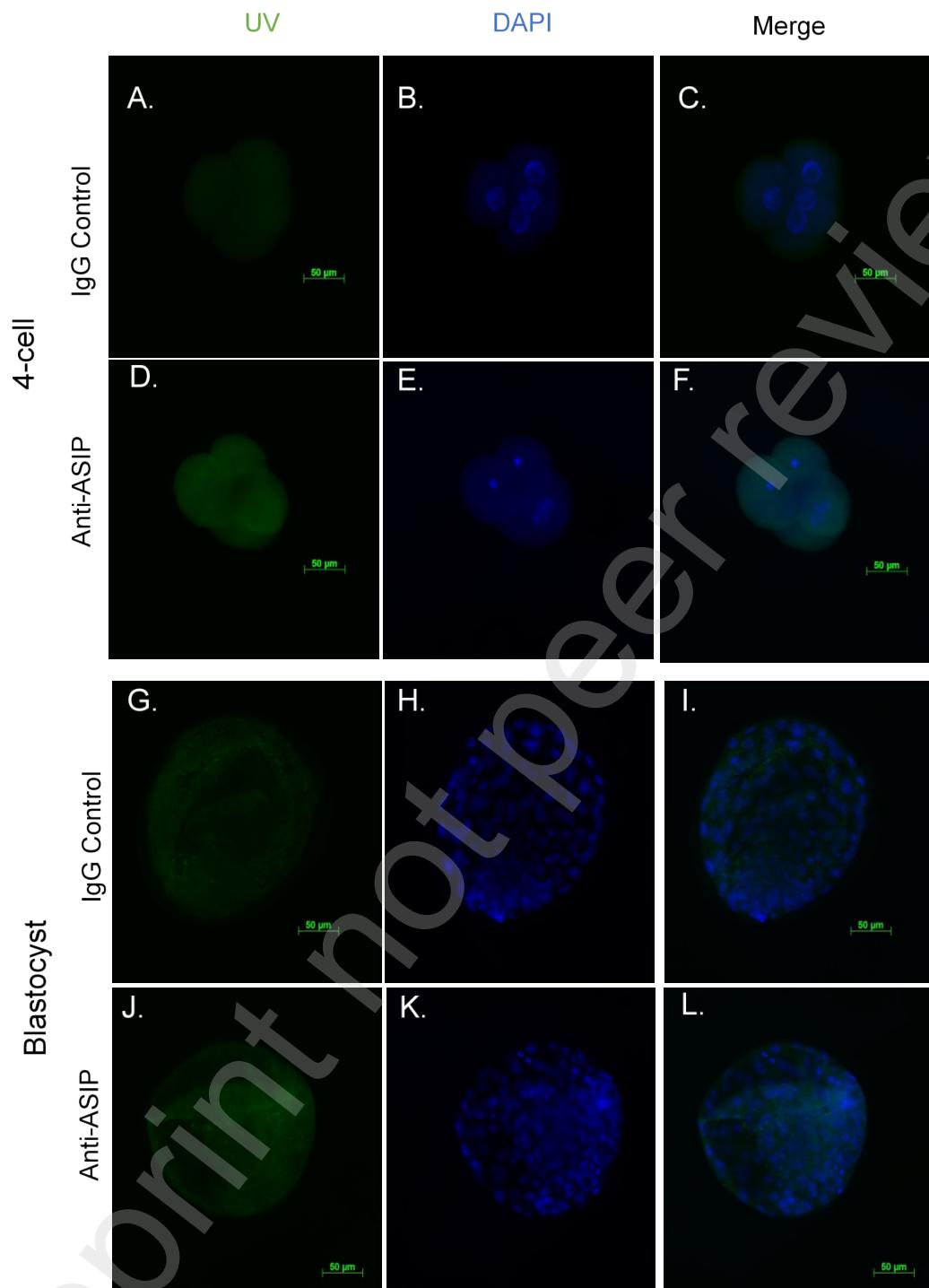
603 **Figure 2**



604

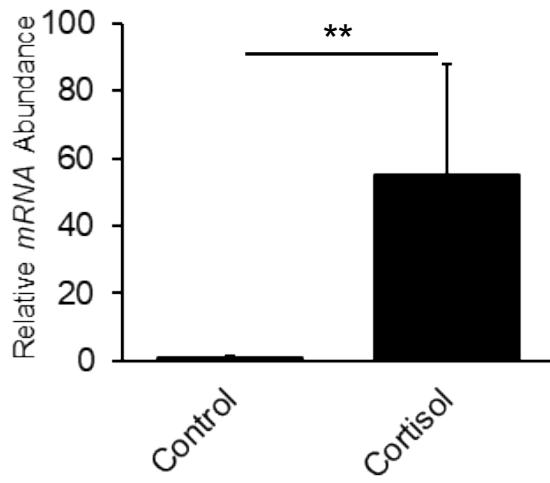
606 **Figure 3**


609 **Figure 4**


610

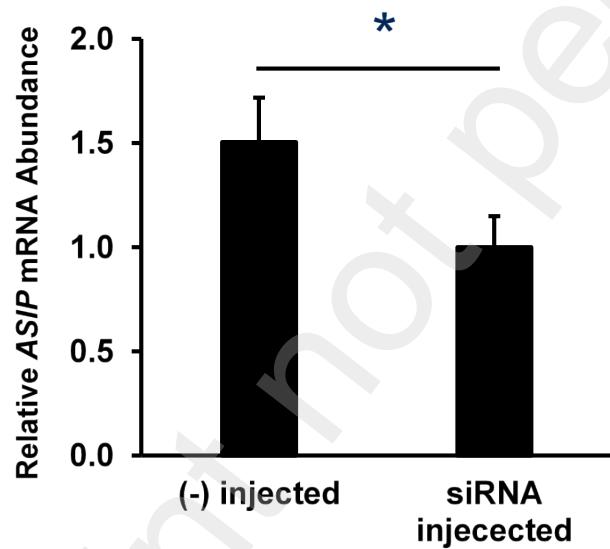
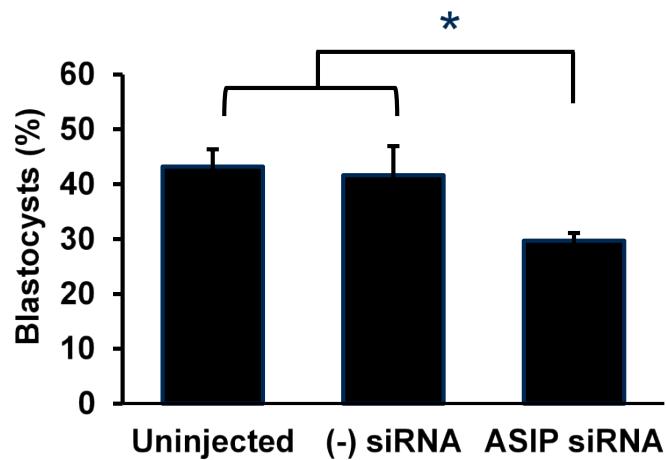
611

612 **Figure 5**


615 **Figure 6**

616

617



618 **Figure 7**

619
620

621 **Figure 8**

622

623

624