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Abstract

Critical loads (CLs) are frequently used to quantify terrestrial ecosystem

impacts from nitrogen (N) deposition using ecological responses such as the

growth and mortality of tree species. Typically, CLs are reported as a single

value, with uncertainty, for an indicator across a species’ entire range.

Mediating factors such as climate and soil conditions can influence species’
sensitivity to N, but the magnitudes of these effects are rarely calculated

explicitly. Here, we quantify the spatial variability and estimation error in

N CLs for the growth and survival of 10 different tree species while accounting

for key environmental factors that mediate species sensitivity to N (e.g., soil

characteristics). We used a bootstrapped machine learning approach to deter-

mine the level of N deposition at which a 1% decrease occurs in growth rate or

survival probability at forest plot locations across the United States. We found

minimal differences (<5 kg N ha−1 year−1) when comparing a single species’
CLs across climatic regimes but found considerable variability in species’ local
N CLs (>8.5 kg N ha−1 year−1) within these regimes. We also evaluated the

most important factors for predicting tree growth rates and mortality and found

that climate, competition, and air pollution generally have the greatest influence

on growth rates and survival probability. Lastly, we developed a new probability

of exceedance metric for each species and found high likelihoods of exceedance

across large portions (46%) of some species’ ranges. Our analysis demonstrates

that machine learning approaches provide a unique capability to: (1) quantify

mediating factor influences on N sensitivity of trees, (2) estimate the error in

local N CL estimates, and (3) generate localized N CLs with probabilities of

exceedance for tree species.
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INTRODUCTION

Global anthropogenic nitrogen (N) fluxes have outpaced
natural fluxes since the mid-19th century, causing a
10-fold increase in global N deposition from pre-industrial
levels (Galloway et al., 2004). Reactive nitrogen (Nr), which
includes all biologically and chemically reactive N species,
is an essential nutrient within terrestrial ecosystems that is
critical for the primary production of various plant species
(LeBauer & Treseder, 2008). There are three primary
sources of Nr to terrestrial ecosystems: biological nitrogen
fixation, soil mineralization, and atmospheric deposition.
While atmospheric deposition continues to be an important
anthropogenic Nr source globally (Galloway et al., 2008),
regulatory approaches to reduce emissions of nitrogen
oxides (NOx) have led to decreased Nr deposition in
many regions of the United States (Du et al., 2014;
Gilliam et al., 2019). For example, decreases in NOx

emissions have directly led to reductions of oxidized
N deposition in the form of wet and dry nitrate (NO3

−)
throughout the northeastern United States (Butler et al., 2003,
2005, 2011). Conversely, deposition of reduced N (NHx) forms
and gas phase ammonia (NH3) have remained steady or even
increased over the last 20 years due to (1) agricultural
and on-road emission sources (Butler et al., 2016;
Fenn et al., 2018; Sabo et al., 2019), (2) successes of
policies regulating NOx and sulfur oxide emissions leading
to less partitioning of gaseous NHx to the particulate phase
(Li et al., 2016; Saylor et al., 2015; Zhang et al., 2018), and
(3) increased temperature and precipitation in some
regions of the United States (Benish et al., 2022).
Owing to the inverse national trends of oxidized
N (35% lower) and NHx (30% higher) deposition,
average total Nr deposition has only modestly decreased
(~12.5%) over the last 20 years, and thus remains an impor-
tant environmental stressor within ecosystems (Beachley
et al., 2019).

While plant species can experience enhanced growth
from Nr deposition, there are also unintentional negative
consequences within terrestrial ecosystems that result
from excessive Nr deposition—otherwise called terrestrial
eutrophication. These detrimental effects can include
biodiversity loss through opportunistic species outcompeting
native herbaceous or understory species (Clark et al., 2019;
Simkin et al., 2016; Stevens et al., 2010); changes in forest
carbon stocks (Clark, Thomas, & Horn, 2023; Thomas
et al., 2010), shifts in forest community composition,
and/or differential impacts across species due to vari-
able N sensitivity (Clark, Phelan, et al., 2023; Coughlin
et al., 2023); NO3

− leaching losses leading to shifts
toward more acid-tolerant and nitrophilic species
within terrestrial ecosystem (Bobbink et al., 2010;
Högberg et al., 2006; Matson et al., 2002) and
increases in NO3

− export to fresh and coastal waters

(Driscoll et al., 2003; Gilliam et al., 2019); soil acidification
potentially leading to decreased buffering capacity and
nutrient imbalances in tree foliage or phloem (Bowman
et al., 2008; Likens et al., 1996; Sullivan et al., 2013);
increased tree mortality in areas of N saturation because
of compounding factors such as drought (Dietze &
Moorcroft, 2011; Wallace et al., 2007); and conse-
quences to ecosystem services (Clark et al., 2017). To
protect terrestrial ecosystems, regulatory agencies and
ecological researchers have established a framework to
evaluate the threshold (i.e., critical load [CL]) below
which harmful ecological impacts are not expected to
occur given current knowledge (Nilsson, 1988).

Significant advances have been made in quantifying
CLs for terrestrial ecosystem components over the last
decade (Blett et al., 2014). CLs have been established
for herbaceous and shrub species (Clark et al., 2019;
Simkin et al., 2016; Wilkins et al., 2022), lichen species
and functional groups (Geiser et al., 2019, 2021), tree
species (Horn et al., 2018; Pavlovic et al., 2023), and
regional areas (Pardo et al., 2011). Notably, recent
research established dose–response relationships for
tree species, which evaluated N deposition as an envi-
ronmental stressor on the growth and mortality of trees
(Canham & Murphy, 2016, 2017; Fenn et al., 2020; Horn
et al., 2018; Pavlovic et al., 2023; Thomas et al., 2010).
Some dose–response evaluations have utilized a
maximum-likelihood approach and included a variety of
environmental conditions or stressors (temperature,
precipitation, competition, size, and sulfur deposition)
to estimate the growth rate and survival probability
of different tree species as a function of N deposition
(Fenn et al., 2020; Horn et al., 2018; Thomas et al., 2010).
A key strength of these approaches is their adherence to a
predetermined functional form guided by ecological prin-
ciples (Canham & Murphy, 2016, 2017). A key limitation
is their computational burden and their current inability
to account for spatial variation in sensitivity to
N deposition—which is expected and known to exist
for other taxonomic groups (Clark et al., 2019; Pardo
et al., 2011). An alternative approach was developed
using the eXtreme Gradient Boosting (XGBoost) machine
learning (ML) algorithm, a non-parametric approach that
retains all predictors, and statistical predictive capability
was improved (i.e., increased coefficient of determination)
when estimating tree growth rates (Pavlovic et al., 2023).
The ML method also quantified CL uncertainties for tree
species across the United States (Pavlovic et al., 2023),
suggesting that spatially variable CLs could be quantifiable
for single species while accounting for variable environmen-
tal conditions (i.e., mediating factors).

The effects of N deposition on trees are thought to be
primarily mediated by soil conditions (Carter et al., 2017).
However, other factors, such as species’ physiological

2 of 23 COUGHLIN ET AL.

 21508925, 2024, 7, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4925 by Test, W

iley O
nline Library on [05/07/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



traits, atmospheric interactions, local competition,
mycorrhizal associations, secondary stressors, and
ozone, can also modify the sensitivity of tree species to
N deposition (Bobbink et al., 2010; Fenn et al., 2020;
Horn et al., 2018; Thomas et al., 2010). Soil conditions
can be widely variable, even within localized areas
(Hynicka et al., 2016). These variations may be due to soil
age, topography, climate, water imbalances, or underlying
geology—all of which have substantial influences on soil
development, nutrient availability, and buffering capacity
(Fenn et al., 1998; Jenny, 1994). In addition to soil condi-
tions, trees of the same species but in different locations
may vary in their sensitivity to N due to stressors such as
temperature extremes, drought, community composition,
competition with other species, climate change, invasive
species, and other pollutants (e.g., ozone, sulfur dioxide)
(Carter et al., 2017). It is therefore expected that N CLs for
a given tree species will be spatially variable due to the
heterogeneity of mediating factors, an effect which has
previously been demonstrated for herbaceous species
(Clark et al., 2019).

Here, we build upon research from Pavlovic et al.
(2023) to quantify spatially variable N CLs for tree species
using the XGBoost ML software library with independent
conditional expectation (ICE) (Chen & Guestrin, 2016;
Goldstein et al., 2015). XGBoost implements a supervised
ML algorithm which uses gradient boosting decision trees
to predict outcomes by sequentially adding decision trees
to the model. A major innovation of this work is the use of
ICE curves to quantify the sensitivity of individual tress
based on mediating environmental factors. We selected
10 tree species that are of ecological or economic impor-
tance to develop and test the ICE approach. For these
10 species, we quantified the spatial variability of
N CLs and compared our results to previously deter-
mined, species-wide CLs (additional species results are
contained in Appendix S1). To investigate the specific
influence of individual mediating factors, we used SHapley
Additive exPlanations (SHAP) values to identify the most
influential predictors in growth rate and survival probability
outcomes.

Our study includes a wider array of predictors
compared to prior empirical work that quantified N CLs.
These include drought indices, soil pH, percent organic
matter, percent clay, and ozone concentrations. We also
developed a new metric for determining the probability
that an area is experiencing detrimental levels of N depo-
sition at the individual tree level. This approach extends
our prior work by quantifying CL uncertainties at an
individual tree level. N CLs have traditionally been evalu-
ated at the national level across a species’ distributional
range. In contrast, our study provides a locality-based
N CL approach that incorporates statistical uncertainty.

These results can be leveraged by resource managers and
policymakers to evaluate whether additional air pollution
measures are needed in regional, or even local, areas, and
to appropriately account for this fine-scale variability in
national-level decision making.

METHODS

Forest inventory data

We compiled forest inventory data from the 2021
United States Forest Service (USFS) Forest and Inventory
Analysis (FIA) program database, which covered years
between 2000 and 2021; these data were fuzzed and
swapped to protect private landowner information. The
forest inventory dataset was compiled for 140 tree species
using procedures that have been previously applied
(Horn et al., 2018; Pavlovic et al., 2023). Briefly, the FIA
program collects tree characteristic data including tree
height, diameter, and survival status for all trees with a
dbh of >12.7 cm (Woudenberg et al., 2010). Here, we
only used trees that were larger than seedlings, so our
results will be reflective of stand-level effects across local
areas. The FIA program is operated using a nationally
standardized plot design where a plot consists of
macroplots (18 m radius), subplots (7.3 m radius), and
microplots (2.1 m radius) where subplot centers are
distanced 36.6 m horizontally from adjacent subplots.
Within each plot, there are a total of four macro- and
subplots. Only inventory trees with remeasurements in
the national plot design were used to minimize any
replication and/or measurement error. Additionally,
only species with >500 individuals were included in
the analysis after the filters described above were applied.
The final, compiled FIA dataset included tree height, basal
area, diameter, and aboveground biomass.

The growth rate and survival probability of tree
species were calculated using the first and most recent
inventory observation for each tree in the database.
Aboveground tree growth was calculated by using the
allometric carbon estimate (kilograms of carbon [C], kg C)
(Jenkins et al., 2003) from the dbh of the tree
and species-specific parameters. Changes in growth are
determined using the first and last estimates of kg C
which are then divided by the elapsed time between the
measurements. The growth analysis included trees that
were on private, state, and federal lands and did not take
disturbance history into account during data filtering. To
minimize additional error, we removed trees with growth
rates beyond the 95% quantile and any trees with nega-
tive growth rates. Tree survival probability was estimated
by using a binary live or dead result between the first and
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the last observation for each inventory tree. Trees that
were harvested or were recorded as dead in both the first
and the last measurements were excluded from the
analysis.

Overall, 2.03 million trees were used to evaluate tree
growth rates, and 2.49 million trees were used to evaluate
the probability of tree mortality. Tree height, basal area,
aboveground biomass, and the number of years between
the first and the last FIA observation were used as predic-
tors for model development. We evaluated tree diameter,
annualized tree growth, height ratios between the inven-
tory tree and the tallest tree, and trees per hectare
(Pavlovic et al., 2023), and determined that these predic-
tors were confounding factors with one of the following
predictors: tree height, basal area, and aboveground bio-
mass. The state of Wyoming was excluded in our model
because repeat measurements were not available at the
time that the database was compiled. While we only
focused on 10 species here, all other local N CLs for
127 species (growth) and 140 species (survival) results
were calculated using a simplified method and are
detailed in Appendix S1. We selected these 10 species
because (1) they had relatively large sample sizes
(>2000), (2) the species represented a geographical range
across multiple climatic regimes in both the eastern and
western United States, and (3) the species are considered
important ecologically (e.g., mammal/bird uses), cultur-
ally (e.g., sightseeing), and/or economically (e.g., used for
wood products).

Environmental conditions

In addition to environmental covariates that have been
used previously (Horn et al., 2018; Pavlovic et al., 2023),
we compiled additional covariates to predict tree growth
rate and decadal survival probability responses. These
variables were selected to reflect environmental stressors
that are likely to impact these ecological responses. The
new covariates included drought stress, soil characteris-
tics, and ozone. Both previous and newly compiled fac-
tors were used as predictors within model development
and iteration.

Environmental conditions at each FIA plot were
assembled and included (1) monthly mean temperature
and precipitation data from the Parameter-elevation
Regressions on Independent Slopes Model (PRISM)
(PRISM Climate Group, 2021) and (2) annual atmo-
spheric N and sulfur deposition (TDep version 2018.01)
from the U.S. National Atmospheric Deposition
Program’s Total Deposition Science Committee (TDep)
(NADP Program Office, 2022). In brief, PRISM is an
interpolation method that reflects current spatial

climate patterns at 800-m to 4-km spatial resolutions,
and a monthly temporal resolution by using a weighted
regression scheme to account for complex climate regimes
(Daly et al., 2008). Additionally, annual N deposition
(in kilograms of nitrogen per hectare per year) is modeled
at an ~4-km resolution (spatial resolution differs among
model versions) using a measurement-model fusion
approach, which combines measured air concentra-
tions and wet deposition with modeled deposition
velocity and dry deposition data from the Community
Multiscale Air Quality (CMAQ) model (Schwede &
Lear, 2014). In our study, annual N and sulfur deposi-
tion was obtained for 2000 through 2019 for the ML
model. We used the average N and sulfur deposition
between 2000 and 2019 as a predictor within the model
to estimate the annualized growth rate and survival
probability of each inventory tree. Model estimates
were compared with true values of growth rate and sur-
vival probability from the FIA data.

Drought severity can directly and indirectly affect
forests at the individual and stand levels as well as eco-
system services such as timber production (Woodall
et al., 2013) and carbon storage (Gonzalez et al., 2015). In
the eastern United States, drought effects have mostly
been observed at the individual tree level, while in the
western United States, stand-level changes have already
been observed (Clark et al., 2016; Klos et al., 2009). The
Palmer Drought Severity Index (PDSI) is a standardized
index that is used to estimate relative dryness on a scale
of −10 (dry) to +10 (wet). Five-day PDSI values (unitless)
are provided in a gridded format at 4-km spatial and
5-day temporal resolution, and were obtained for 1997
through 2020 from the GridMET program (Abatzoglou, 2013)
for the conterminous United States. We obtained all available
5-day data for June, July, and August and then aggregated
these values to summer (JJA) mean PDSI values, which
were compiled at each FIA plot location for each year. For
each inventory tree, the mean, median, maximum, and
minimum JJA PDSI values were calculated across all years
(1997–2020) from the first to last observation. Due to miss-
ing data in coastal locations, some trees lacked PDSI data.
In these cases, missing data values were replaced by the
PDSI value from the FIA plot’s nearest cell neighbor.

Tropospheric ozone concentrations have been known
to impact plant species with variable outcomes, such as
decreased crop yields, for the last 60 years (Karnosky
et al., 2007). Tree species can experience reduced stomatal
conductance and photosynthetic rates (Novak et al., 2005),
reduced biomass (Lee et al., 2022), and alterations to
biomass allocations in their root-shoot systems (Grantz
et al., 2006). While it has been demonstrated that accu-
mulated stomatal fluxes (e.g., phytotoxic ozone dose)
are better indicators for understanding impacts to biomass
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and visible leaf injury than exposure concentration metrics
(e.g., AOT40, W126) (Karlsson et al., 2007), the datasets
needed to calculate stomatal flux accumulation are exten-
sive, species-specific, and limited within the United States.
Here, we use the annual W126 exposure concentration
metric as a predictor within the ML model. Annual ozone
concentrations, measured at monitoring locations across
the United States, were obtained from Environmental
Protection Agency (EPA)’s Air Quality System (AQS) to
calculate annual W126. Annual W126 ozone values are a
metric of cumulative exposure to ozone (in parts per
million per hour) for the daylight hours during the
summer growing season and is commonly used to eval-
uate ozone exposure impacts to ecosystems (Lefohn &
Runeckles, 1987; U.S. Environmental Protection Agency, 2007).
Briefly, the W126 value is expressed as a sum of weighted
hourly concentrations over the 12-h daylight period
(8:00 a.m. to 8:00 p.m.) during rolling 3-month periods
across the ozone monitoring season (U.S. Environmental
Protection Agency, 2022). Only air quality monitors with
at least 75% data completeness were used. Interpolated
ozone rasters were created using output from the
Software for the Modeled Attainment Test-Community
Edition (SMAT-CE). SMAT-CE interpolates annual
ozone monitor data at a 4-km grid cell resolution to
create surfaces of annual W126 ozone using a Voronoi
Neighbor Averaging (VNA) technique at a 4-km resolution
(Chen et al., 2004; Gold et al., 1997). SMAT-CE also gener-
ates files of nearest neighbor data for the VNA interpola-
tion scheme. The nearest neighbor data include inverse
distance weights squared of the monitor values at each
grid cell. The inverse distance weights squared files were
used to create annual ozone rasters from 2000 to 2018.
The annual W126 ozone was compiled at each FIA plot,
and statistics were generated over the observation period
in an approach similar to that used for PDSI (i.e., mean,
median, maximum, and minimum).

Soil microbial communities and characteristics are a pri-
mary driver of N assimilation in trees (Carter et al., 2017).
For example, the interactive effects between N deposition
and humus accumulation have been shown to result in the
removal of other critical nutrients in soils which also leads
to reduced decomposition of organic matter, depending on
the stage of humus development (Berg & Matzner, 1997).
As previously mentioned, excessive N deposition can acid-
ify soils through the leaching of base cations (Ca2+, K+,
and Mg+). Nitrogen enrichment and acidified soils can
have cascading effects on carbon accumulation in
aboveground and belowground biomass pools (De Vries
et al., 2006; Liu & Greaver, 2010). Notably, soil properties,
such as higher clay content and the presence of Al and Fe,
will lead to greater retention of carbon and other key
nutrients (e.g., phosphorus) (Soong et al., 2020). Here, we

compiled datasets that would have interactive effects with
N deposition which could subsequently affect above-
ground biomass accumulation rates and/or tree mortality.
We obtained soils’ organic matter percentage, pH, and clay
percentage rasters for soil layers (0–30 cm depth) from the
Gridded National Soil Survey Geographic Database
(gNATSGO) ArcMap toolbox (United States Department
of Agriculture, 2020). These data are provided at a 30-m
resolution. The time-invariant values were compiled at
each FIA plot location and used as environmental
predictors within the ML model.

ML model

We developed growth and survival models for 127 and
140 tree species, respectively, using the XGBoost ML
algorithm (Chen & Guestrin, 2016). In this work, we only
focus on the 10 selected species for which bootstrapping
was conducted. We present limited results for all tree
species, using the individual condition expectation approach
without bootstrapping, in Appendix S1. Since bootstrap
results were omitted to limit computational requirements,
these other species’ CL estimates do not provide the
probabilistic results that are reported here for the
10 selected species. Briefly, we developed XGBoost
models to predict annual growth rate and decadal sur-
vival probability. For each species and outcome/process
(i.e., growth or survival), 600 bootstrap models were
trained using a resampled dataset that was sampled
randomly with replacement (Fawcett, 2006); 600 bootstraps
were chosen to ensure enough replicates were modeled to
minimize noise. The bootstrapped training data were used
to evaluate each inventory tree for each species 600 times.
Thus, each inventory tree had 600 CLs calculated to deter-
mine the error around the N CL estimate for individual
trees.

Modeling was conducted using the Scikit-learn 0.23.2
and XGBoost 1.2.0 libraries in Python 3.6. We assessed
growth model performance using the coefficient of deter-
mination (R2) and survival model performance using the
receiver operating characteristic’s area under the curve
(AUC) (Fawcett, 2006). The full modeling approach,
including mathematical description of the models, can be
found in Pavlovic et al. (2023).

CL determination

Our previous modeling approach (Pavlovic et al., 2023)
used partial dependence plots to develop static, species-wide
dose–response curves for N deposition impacts on tree
growth and survival probability. To develop spatially explicit
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CLs at the individual tree level, we use a modified approach
by calculating the ICE for growth and survival probability.
We generated ICE results, which describe the functional
relationship between a predictor variable (i.e., N deposition)
and the predicted result for individual observations
(Goldstein et al., 2015), for each tree in an FIA plot. To
calculate the error around individual tree CLs derived
from the ICE results, conditional expectation curves
are plotted for each bootstrap ICE result. Each ICE
curve is assessed across the range of N deposition expe-
rienced by a tree species across its entire range, at
20 equidistant bins, while holding all other predictors
constant. This method allows us to understand the predicted
response of growth or survival probability as a function of
N deposition, while including all mediating factors for a
single inventory tree. Thus, we can evaluate the error around
the N CL by evaluating the 600 bootstrapped ICE responses.
Hereafter, error is described as the uncertainty in the
N CL estimate for a single inventory tree, based on the
application of the 600 models to derive the point estimate.

Using each ICE result for each inventory tree
response, we evaluated the N deposition at which a
1% decrease from the maximum growth or survival
probability occurred to be consistent with methods in
Pavlovic et al. (2023). While the conventional defini-
tion of the CL is the condition where no detrimental
effects to an ecological factor are known to occur below
that stressor amount (NADP CLAD Committee, 2017;
Nilsson, 1988), there is no commonly accepted level of
effect (e.g., 1% vs. 5%) on annual tree growth rates or
decadal survival probability that have been defined as
harmful within the CL community. We established a 1%
decrease as the N CL (cCLnp) for the bootstrap result of
each individual tree using Equation (1):

xs− 1 + dICE xs− 1ð Þ−R× dICE x
ScICEmax

� �� �
×

xs− 1 − xsdICE xs− 1ð Þ− dICE xsð Þ
ð1Þ

where R is the percent decrease of interest (e.g., 1%
decrease is 0.99) in annual growth rate or decadal sur-
vival probability, dICEmax is the value that maximizes the
ICE value, and xs−1 is the first ICE less than xs. The CL
for each inventory tree (cCLnp,b) was calculated as the
median value for cCLnp across all bootstraps (i.e., local
median CL) and the 95% CI width was estimated using
the bootstrap results (i.e., local lower and upper 95% CI
CL). We use these results to assess the spatial variability
of the local median CL value and the width (range) of the
local 95% CI for each inventory tree.

We also performed a sensitivity test to understand
how the selection of a different decrease threshold

(e.g., 5%) from the maximum affects the cCLnp,b. Due to
the lack of widely accepted target levels, we briefly report
the sensitivity test results in Appendix S1 to demonstrate
how an effect threshold selection can change resultingcCLnp,b values. We focus on the 1% decrease threshold
here as an ecologically conservative approach (i.e., the
most protective for tree species) and to be consistent with
the methodology of Pavlovic et al. (2023).

Mediating factor importance evaluation

SHAP analysis evaluates how influential the contributions
of each predictor are to the outcome (e.g., growth rate of a
tree) (Shapley, 1953; Štrumbelj & Kononenko, 2014). We
used an approximation method (i.e., SHAP) to estimate
Shapley values (Lundberg & Lee, 2017) for each of our
models to understand variable importance in each model.
In plain terms, SHAP values (unitless) provide a quantifi-
cation of how much the inclusion of a mediating factor
(e.g., soil pH) in the model contributes to the model pre-
diction (e.g., difference in kilograms of carbon per year,
Δ kg C year−1). Positive SHAP values indicate that the
mediating factor resulted in increased growth rates or survival
probability, while negative SHAP values mean a decreased
value was predicted. Additionally, SHAP values can be
compared to the value of the mediating factor on a relative
scale (0–1) to understand if a higher mediating factor
value (e.g., increased ozone) or lower mediating factor
value leads to higher or lower outcomes (e.g., higher or
lower growth rates). SHAP is similar to feature-importance
analyses, and generates additive feature attributions using
Equation (2):

yi ¼ shap0 +…+ shap Xji
� � ð2Þ

where yi is the model prediction value for observation I,
shap0 is the mean prediction across all observations, and
shap(Xji) is the SHAP value of the jth feature for observa-
tion i, which is a quantification of the marginal contribu-
tion of the feature to the prediction. We conducted a
SHAP value analysis on the test (25%) data used in the
bootstrapping to understand the importance of mediating
factors on the outcome of the ML model.

Probability of CL exceedance

We obtained the most recent 3-year average (2019–2021,
TDep version 2022.01) total N deposition to evaluate CL
exceedances under recent air pollution conditions. To
leverage the bootstrapping method of calculating N CLs,
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we calculated a probability of exceedance metric which
used each bootstrapped CL estimation for each inventory
tree, and determined whether the 2019–2021 N deposition
was greater than the bootstrapped CL using simple subtrac-
tion (i.e., N deposition minus bootstrapped CL). To then
calculate the probability that an inventory tree is experienc-
ing an exceedance in its CL, we used Equation (3):

P Að Þ¼
Pn
i¼1

E

600
ð3Þ

where P(A) is the probability that the N CL is being
exceeded, E is a binary where 1 = CL is exceeded and
0 = CL is not exceeded; this term is summed to the total
number (n) of bootstraps where a CL was established.
Last, 600 reflects the total number of possible CL estima-
tions from the bootstraps. Once probabilities of exceed-
ance were calculated for each inventory tree,
probabilities were averaged at the FIA plot level, by spe-
cies, to result in an average probability of exceedance at
the plot level.

RESULTS

Model performance, species-wide N CLs,
and comparisons with previous N CLs

Using the ICE ML approach, we were able to estimate
the local median N CL (i.e., cCLnp,b) for each inventory
tree from the 10 selected species. The growth model
performance had R2 values ranging from 0.46 to 0.73. On
average, the growth R2 was 0.05 higher relative to prior
ML modeling efforts (Pavlovic et al., 2023). The survival
models resulted in AUC values ranging from 0.71 to 0.85,
with modest improvement over prior ML-modeling
performance (average AUC increase of 0.048). Full model
performance results for each species are provided in
Appendix S1: Tables S1 and S2.

N CLs were highly variable among species and had
wide 95% CI ranges (typically >5 kg N ha−1 year−1)
within species (i.e., species-wide; Table 1). These wide
CIs represent both spatial variation in the CL and error in
the CL estimation. Western hemlock (Tsuga heterophylla)
has the lowest, species-wide median N CL for growth
(4.5 kg N ha−1 year−1), while yellow-poplar (Liriodendron
tulipifera) has the highest (13.0 kg N ha−1 year−1). Similar
to growth, western hemlock is the least resilient to
N in terms of survival probability (species-wide median
CL = 2.8 kg N ha−1 year−1), while yellow poplar has the
highest median survival N CL (11.5 kg N ha−1 year−1)
(Table 1).

We also compared our growth and survival results to
previous studies, which determined static, species-wide
N CL nationally in the United States (Figure 1). We used
our species-wide average CLs for comparisons, which
were summarized from local median CLs across the boot-
strap results. Our results were within ±35%, on average,
when compared with the static, species-wide N CLs
found in Pavlovic et al. (2023). Differences can likely be
attributed to the updated FIA dataset, additional predic-
tors, and differences between the individual ICE curve
approach and the partial dependence method used in previ-
ous work (additional details are contained in Appendix S1).
The estimates were also within ±34%, on average, when
compared with the maximum-likelihood-derived, species-wide
estimates from Horn et al. (2018) for survival probability. Most
species fell between the 1:2 and the 2:1 line between our study
and the aforementioned studies (Horn et al., 2018; Pavlovic
et al., 2023) (Figure 1). However, there were large disparities
in growth N CLs for three species (yellow poplar, eastern
cottonwood [Populus deltoides], and Douglas-fir [Pseudotsuga
menziesii]). For these species, Horn et al. (2018) predicted
much higher N resiliency (Figure 1a), and CLs differed by as
much as 47.7 kg N ha−1 year−1 from our results. Tabular
comparisons of N CLs between studies are contained in
Appendix S1: Table S3.

Spatially variable N CLs

We evaluated the spatial variability in N CLs for each tree
species. Due to the bootstrapping method used in the
XGBoost model—where 75% of training data were used
with replacement—a single inventory tree will have vari-
able N CLs produced at a single location. We refer to the
variation around the CL as the error for a single inven-
tory tree (i.e., 95% CI width) and evaluate the 600 results
at the localized N CLs at the lower (2.5 percentile),
median, and upper (97.5 percentile) levels. Subsequently,
these local median CLs, with error, can then be summa-
rized across larger geographic regions. We referred to the
geographic range of N CLs as variability. N CLs were
evaluated in two ways: (1) as distributions of local
median N CLs across U.S. Forest Service Ecological
Divisions (Figure 2), and (2) the CI width in N CLs
(i.e., error) at an FIA plot level (Figure 3). For the
first analysis, we used geographic boundaries of
Ecological Divisions to evaluate regional-scale distribu-
tions. These divisions are differentiated by patterns in
precipitation and temperature within ecoregion domains—
thus, they can provide coarse insight into how climatic
regimes may be affecting the N CL estimation. At an FIA
plot level, we investigated spatial patterns for a given
species to understand whether geographic patterns exist
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that aren’t apparent in climatic regimes (i.e., Ecological
Division).

At the Ecological Division level, we find that species’
local median N CLs only slightly differ when comparing
across climatic regimes, but there is considerable variation
across FIA plots within Divisions (Figure 2). This suggests
that variation in the CL is either driven by smaller-scale,
non-climatic factors within a Division, or that the climatic
variation within Divisions is sufficiently wide to drive this
variation. For example, Division-level median growth rate
N CLs for sugar maple (Acer saccharum) ranged from 8.4 to
8.6 kg N ha−1 year−1 across Divisions, but local median
CLs within a single Division varied widely—such as in the
Warm Continental Division where local CLs range
from 4.0 to 14.3 kg N ha−1 year−1. Yellow-poplar and
sugar maple tend to have the most variable local
median N CLs for growth rate within Divisions (ranges
of >8.5 kg N ha−1 year−1) while western hemlock and
Douglas-fir are slightly less variable within Divisions
(local median ranges generally <5 kg N ha−1 year−1).
Additionally, some species, like ponderosa pine (Pinus
ponderosa), show greater variability in some Divisions
(e.g., Temperate Desert) but not in others (e.g., Tropical/
Subtropical Steppe). For survival probability, yellow-poplar
and Douglas-fir have the most variable local CLs within
Divisions (ranges generally >10 kg N ha−1 year−1),

while eastern cottonwood ranges are less variable
(≤3.5 kg N ha−1 year−1). Although Ecological Divisions
are generally separated by climatic differences, there is still
considerable variation in the environmental conditions
that can occur within a given Division. Thus, a more granu-
lar approach, such as comparisons at the plot level, is neces-
sary to further understand spatial variability in N CLs.

At the FIA plot level, significant N CL variability was
found for some of the species, depending on the ecologi-
cal response (e.g., growth rate). For example, much of the
black cherry (Prunus serotina) range in the southeastern
United States had local median N CLs for growth
between 10 and 15 kg N ha−1 year−1, while much of the
northern and northeastern portion of its range had a
local median CL between 5 and 10 kg N ha−1 year−1

(Figure 3a). The inverse is true for the survival N CLs of
black cherry, where its southeastern range is more sensi-
tive, and northern inventory trees are more resilient to
N deposition (Figure 3b). For a western species, the local
growth rate CLs of ponderosa pine are more N-tolerant
in southwestern states (5–7.5 kg N ha−1 year−1), while
trees in the Pacific Northwest have more sensitive local
N CLs (<5 kg N ha−1 year−1). The survival N CLs for
ponderosa pine have a similar geographic pattern that
falls within the same N deposition ranges as well.
Generally, spatial patterns represent gradual gradients in

TAB L E 1 Species-level summary of nitrogen (N) critical loads (CLs) for the 10 selected species for growth rate and survival probability.

FIA
code

Common
name

Scientific
name

Species-wide growth N CL
(kg N ha−1 year−1)

Species-wide
survival probability N CL

(kg N ha−1 year−1)

Median

Minimum
local
95% CI

Maximum
local
95% CI n Median

Minimum
lower
95% CI

Maximum
upper
95% CI n

97 Red spruce Picea rubens 6.4 3.6 10.6 16,101 9.5 6.1 11.1 19,130

122 Ponderosa pine Pinus ponderosa 5.4 1.9 7.7 51,208 3.8 1.3 8.2 65,594

202 Douglas-fir Pseudotsuga
menziesii

4.7 2.1 7.2 99,281 3.3 1.7 10.4 125,712

263 Western
hemlock

Tsuga heterophylla 4.5 2.3 5.8 21,963 2.8 1.6 6.3 27,352

318 Sugar maple Acer saccharum 8.5 4.1 11.9 75,524 10.2 4.1 14.5 90,639

375 Paper birch Betula papyrifera 7.6 4.1 12.2 23,943 7.7 3.3 10.4 33,016

621 Yellow-poplar Liriodendron
tulipifera

13.0 9.1 20.6 35,051 11.5 8.4 19.1 41,754

742 Eastern
cottonwood

Populus deltoides 11.0 8.4 15.9 2439 11.1 8.0 13.8 2926

746 Quaking aspen Populus
tremuloides

7.7 5.3 11.3 64,253 8.4 3.1 13.1 83,843

762 Black cherry Prunus serotina 9.9 8.0 14.7 27,217 10.1 7.2 14.6 33,942

Note: The species-wide median, minimum lower 95% CI, and maximum upper 95% CI, and sample size (n) are shown.
Abbreviation: FIA, Forest Inventory and Analysis.

8 of 23 COUGHLIN ET AL.

 21508925, 2024, 7, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4925 by Test, W

iley O
nline Library on [05/07/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



local N CLs rather than abrupt transitions. While there
are no discernible, systematic patterns across species,
there are geographic patterns within species that indicate
local mediating factors may be influencing N sensitivity
for trees of the same species.

To understand the potential significance of error
observed in our results, we assessed the 95% CI width of
the individual tree predictions for each species. We find
considerable error in the calculated N CL for individual
trees for both growth and survival across bootstraps
(Figure 4). For the 10 species we evaluated, the growth
rate CL 95% CI ranged from less than 0.02 to as high as
15.1 kg N ha−1 year−1 for individual trees. Some species
have a normally distributed 95% CI range distribution
(black cherry, quaking aspen [Populus tremuloides]),
others are slightly left-skewed (eastern cottonwood, sugar
maple), and a few were heavily left-tailed (paper birch
[Betula papyrifera], red spruce [Picea rubens], yellow-poplar,
western hemlock) (Figure 4). The distribution of 95% CI
growth rate CL ranges for ponderosa pine is bimodal.
Yellow-poplar has the highest 95% CI range at
11.3 kg N ha−1 year−1. For survival probability, the 95% CI
width spans from 0.0 to 17.1 kg N ha−1 year−1. Like
growth rates, there are variable distributions across species

with two species having normal distributions (black
cherry, yellow-poplar) while the remainder are left-skewed
(Figure 4). Ponderosa pine, sugar maple, and western
hemlock are heavily left-tailed.

Mediating factor influences on growth rate
and survival probability predictions

To better understand the magnitude of mediating factor
influences on tree sensitivity to N deposition, we used
SHAP analyses to quantify the relative importance of a
factor on growth and survival. Note that these mediating
factors should not be interpreted as the most important
features directly affecting the actual determination of a
CL because the ICE approach uses a 1% decrease to
establish the CL. Rather, the results of the SHAP analyses
provide insight into the determination of which mediat-
ing factor used in the model was the most important for
both higher and lower predictions of growth or survival
probability. In other words, these results reflect what
mediating factor had the greatest impact on improving
the XGBoost model and are therefore a correlative proxy
for which physical or environmental mechanisms may be
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F I GURE 1 The species-wide mean nitrogen (N) critical load (CL) comparisons from our study (x-axis) compared to previous studies’
N CL for (a) growth rate and (b) survival probability. Our species-wide N CLs are averaged, with standard deviations, across local median

N CLs. Ranges for the N CL are shown as uncertainty bounds along either the x- or y-axis for the relevant study. 1:2, 1:1, and 2:1 lines are

also shown.
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the most important for determining CLs, but they may
not always directly align with ecological principles.
Moreover, caution should be taken in interpreting the
SHAP results as direct causalities since multi-collinearity
issues are present for some species such as red spruce
and ponderosa pine (Appendix S1: Table S6), but a correl-
ative understanding can be gleaned.

Across the 10 species, growth rate predictions were
most heavily influenced (i.e., high and low SHAP values)
by the initial aboveground biomass estimation of the
inventory tree and other competition terms (i.e., basal
area within the FIA plot and basal area of trees larger
than the tree of interest in the plot). When high SHAP
values were found (e.g., higher growth rates), there
was typically a higher mediating factor value as well
(i.e., higher initial aboveground biomass). This translates
to inventory trees which initially had a higher above-
ground biomass tended to have higher growth rates
between the first and last observations. This pattern was
evident across all 10 species. Beyond aboveground
biomass and competition terms, SHAP analysis results
for growth rate predictions were variable among species.
For example, higher precipitation tended to lead to
higher predictions in growth for most species but not for
yellow-poplar, which experienced lower growth rates
(i.e., negative SHAP values) with increased precipitation.

Notably, soil conditions tended to be the least impactful
feature—absolute median SHAP values were within
0.07 across all species (Table 2)—on the growth rate pre-
dictions. Correlations between soil conditions and other
mediating factors were generally significant but weakly
correlated (<±0.4) for most species (Appendix S1:
Tables S4 and S5). This lack of impact from soil condi-
tions was evident for almost all species except for the
growth rate predictions of eastern cottonwood, which
tended to have higher influences from percent organic
matter than other species. Additionally, some ozone-sensitive
species (e.g., quaking aspen; Karnosky et al., 2003) experi-
enced decreased growth rates (SHAP < 0) with increased
W126 values, while others (e.g., black cherry) experienced
increased growth rates with higher W126.

Competition terms, climate conditions, and sulfur
deposition were the most important mediating factors of sur-
vival probability (Figure 5; Appendix S1: Figures S32–S41). If
competition term values were higher, this tended to lead
to positive SHAP values, or increased survival probability.
For example, if the initial height ratio of the inventory tree
of interest to the tallest tree in the subplot was high
(i.e., Height Competition with Larger Trees no. 2 in
Figure 5), then a higher predicted survival probability
was generally observed across most species, likely
reflecting the inventory tree’s ability to compete for light.

F I GURE 3 Map of local median nitrogen (N) critical loads (CLs) for (a) growth rate and (b) survival probability for the 10 selected tree

species. Black cherry and ponderosa pine are discussed in the text.
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Increased sulfur deposition mostly led to decreased survival
probability, except for western hemlock and Douglas-fir
which generally had higher survival probability with
increasing sulfur deposition. For most species, temper-
ature and precipitation levels had a significant negative
impact on the model predictions in both directions
(i.e., positive or negative, depending on species). SHAP
value magnitudes and directionality for these climatic
mediating factors were variable though. Some species,

such as yellow-poplar, eastern cottonwood, western
hemlock, and black cherry, have negative SHAP values
with increasing temperature, while the remaining
species have higher predicted survival probability with
elevated temperatures. Generally, precipitation tended
to be more impactful to growth rates and survival prob-
ability (i.e., higher absolute median SHAP values) than
temperature (Table 2). Ozone had moderate impacts to
modeled mortality predictions with bifurcating effects
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Species
black cherry
Douglas−fir

eastern cottonwood
paper birch

ponderosa pine
quaking aspen

red spruce
sugar maple

western hemlock
yellow−poplar

F I GURE 4 Distribution of the 95% CI width for the 10 selected species across all inventory trees for (a) growth rate nitrogen (N) critical

loads (CLs) and (b) survival probability N CLs. The 95% CI width for each inventory tree is estimated by evaluating the 600 bootstrap

estimates from the independent conditional expectation and determining the range between the 2.5% and 97.5% percentiles. The width of

the violin relays the density of points where the wider a violin is at a given point, the higher number of points that fall in that value range.
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TAB L E 2 Species-level summary of SHapley Additive exPlanations (SHAP) values across all 10 species for growth rate and survival

probability.

Predictor Description

Minimum
SHAP
value

Median
SHAP
value

Absolute
median

SHAP value
Average

SHAP value

Max
SHAP
value

Growth rate

Aboveground biomass Jenkins calculated above ground
biomass (kg C)

−12.61 −0.28 1.81 0.08 21.77

Initial plot basal area The initial subplot basal area (m2 ha−1) −7.77 −0.01 0.48 0.01 7.04

Competition with larger trees The initial basal area of the subplot for
trees that were larger than the tree of
interest

−3.62 −0.05 0.29 −0.05 3.38

Precipitation Mean annual precipitation (dm) −3.70 0.00 0.12 0.02 2.31

Sulfur deposition Mean annual sulfur deposition
(kg S ha−1 year−1)

−2.25 −0.04 0.12 −0.01 3.67

Temperature Mean annual temperature (K) −4.92 0.00 0.12 −0.02 4.95

Ozone Ozone W126 exposure concentration
(ppm h−1)

−2.80 0.01 0.11 −0.01 2.40

Nitrogen deposition Mean annual nitrogen deposition
(kg N ha−1 year−1)

−1.92 0.00 0.07 0.00 1.72

Drought severity Mean JJA PDSI −2.45 0.00 0.07 0.00 2.47

Soil organic matter Percent organic matter −5.33 0.01 0.06 0.00 2.23

Soil percent clay Percent clay −1.93 0.00 0.05 0.00 2.18

Soil acidity pH −2.26 0.00 0.05 0.00 1.10

Survival probability

Sulfur deposition Mean annual sulfur deposition
(kg S ha−1 year−1)

−3.33 0.26 0.38 0.29 4.21

Time between measurements Elapsed time to the day (years) −2.34 0.22 0.31 0.27 2.57

Areal competition with larger trees The ratio of the basal area of the tree of
interest to the basal area of the plot

−1.70 0.28 0.31 0.27 1.89

Precipitation Mean annual precipitation (dm) −1.95 0.23 0.28 0.21 1.89

Height competition with larger
trees no. 2

The initial ratio of the height of the tree
to the tallest tree in the subplot

−2.12 0.20 0.27 0.23 2.45

Ozone Ozone W126 exposure concentration
(ppm h−1)

−2.14 0.20 0.25 0.20 1.94

Nitrogen deposition Mean annual nitrogen deposition
(kg N ha−1 year−1)

−1.71 0.20 0.24 0.19 1.95

Aboveground biomass The initial Jenkins calculated
aboveground biomass (kg C)

−1.81 0.20 0.23 0.21 1.65

Temperature Mean annual temperature (K) −2.11 0.18 0.23 0.21 2.83

Initial subplot basal area The initial subplot basal area (m2 ha−1) −1.17 0.19 0.21 0.21 2.01

Drought severity Mean JJA PDSI −1.84 0.18 0.20 0.19 1.89

Height competition with larger
trees no. 1

The height of the tallest tree in the
subplot (m)

−1.19 0.14 0.17 0.16 2.37

Soil organic matter Percent organic matter −1.21 0.14 0.16 0.14 1.17

Soil percent clay Percent clay −2.01 0.13 0.15 0.14 1.41

Soil acidity pH −0.96 0.09 0.11 0.09 1.59

Note: The species-wide minimum, median, absolute median, average, and maximum are shown. SHAP values are unitless and reflect the impact on predictions
of growth rate and survival probability where a larger absolute SHAP value reflects a larger impact, either positive or negative, on the resulting prediction.

Mediating factors are ordered by the absolute median SHAP value, aggregated across all species, in a descending order.
Abbreviations: JJA, June, July, and August; PDSI, Palmer Drought Severity Index.

ECOSPHERE 13 of 23

 21508925, 2024, 7, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4925 by Test, W

iley O
nline Library on [05/07/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



F I GURE 5 Shapley approximation (SHapley Additive exPlanations [SHAP]) value results for all 10 species for both (a) growth rate and

(b) survival probability XGBoost model predictions. Each mediating factor used in the modeling is shown as a separate y-axis bin. Positive

SHAP values mean the mediating factor resulted in an increased growth rate or survival probability while negative SHAP values mean a

lower value was predicted. The color gradient for the legend (i.e., mediating factor value) illustrates whether the mediating factor value was

relatively low or high as compared against all values of the respective mediating factor for each tree species. Each point represents a single

inventory tree. Mediating factors are ordered by their absolute median SHAP value. Individual SHAP figures for all species are included in

Appendix S1.
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(both positive and negative SHAP values with increas-
ing ozone). Soil conditions generally tended to have
the least amount of impact—absolute median SHAP
values were within 0.17 across all species—on the
model predictions of survival probability (Figure 5,
Table 2; Appendix S1: Figures S32–S41). Individual
SHAP value results are contained in Appendix S1:
Figures S32–S41.

DISCUSSION

What drives the spatial variability in tree
growth and survival?

While we are not able to directly quantify the influences
from mediating factors on the predicted N CL, we are
able to understand which mediating factors are the most
influential for predicting growth rate and survival proba-
bility of inventory trees. The resulting SHAP values
across all species for each mediating factor are detailed in
Table 2. Here, absolute median SHAP values inform
which mediating factors had the largest impact on the
ML model’s predictions in both the positive and negative
directions but should only be compared in relation to
other mediating factors. Mediating factor values reflect
the relative value of the mediating factor at an FIA plot
(e.g., ozone concentration) against all other values for
that species across FIA plots.

Mechanistically, soil conditions, including pH, organic
matter, and permeability (percent clay), are some of
the best understood mediating factors in relation to how
N deposition affects tree species. In theory, soil pH serves
as a proxy for soil acidification in our study and should be
reflective of the cascading effects from potentially toxic
cation mobilization such as aluminum and manganese
(Carter et al., 2017). Our results indicate that soil acidity
(as represented by soil pH) was generally one of the least
impactful factors for predicted growth rate and survival
probability of tree species; this is demonstrated by the fact
that soil pH had the lowest absolute median SHAP value
(within ±0.05 for growth rate and within ±0.12 for sur-
vival probability) across all mediating factors (Table 2).
Similarly, percent clay and percent organic matter
were also minimally impactful (Table 2). While this
finding is somewhat counter-intuitive from a physio-
logical perspective, it could be due to limitations of the
soil characteristic data. For example, soil measure-
ments are taken at a shallow measurement depth
(30 cm) and mature stand tree roots will be much
deeper (>60 cm); this could result in lower effects
to the modeled predictions. Additionally, other soil
metrics (e.g., soil base saturation, exchangeable calcium),

which are not directly available across the full FIA panel,
could provide more predictive capability for pH as these
will have a direct effect on the acid–base status or calcium
status of soils (Robin-Abbott & Pardo, 2017; Sullivan
et al., 2013). Generally, soil conditions were minimally
correlated (<±0.4) with other mediating factors so the
limitation of our selected soil metrics is likely attributable
to dataset constraints rather than multi-collinearity issues
with other predictors.

Conversely, we find that competition, air pollution
(i.e., ozone), atmospheric deposition (e.g., sulfur deposi-
tion), and climatic variables are some of the most impact-
ful predictors for growth rate and survival probability,
although the impact of these conditions varies depending
on the species. Across all species’ SHAP results, we find
that aboveground biomass has the larger influence on
growth rate predictions (absolute median SHAP value
of 1.81). Notably, N deposition tends to be moderately
impactful to both growth rate and survival probability
predictions when compared to other environmental and
competition terms. This pattern suggests that while
N deposition is not the most impactful predictor of tree out-
comes, it is an important exogenous factor that can influ-
ence growth rate and survival probability for tree species.
While the SHAP analysis provides a unique capability to
understand what influences the modeled predictions, it
cannot disentangle multi-collinearity issues. For example,
the SHAP results for growth of red spruce suggest
that increased ozone concentrations positively impact
expected growth. However, N deposition and mean ozone
concentrations are positively correlated for red spruce
(R = 0.77, p < 0.001; Appendix S1: Table S4), indicating
that increased growth rates may be due to N deposition
rather than ozone. However, it is notable that previous
seedling studies with experimentally applied ozone con-
centrations found negligible ozone effects on the growth
of red spruce, so detrimental impacts are not necessarily
expected for this species (Kohut et al., 1990; Laurence
et al., 1989). Correlation tables for all predictors are
contained in Appendix S1: Tables S4 and S5.

One advantage of our modeling approach is the abil-
ity to quantify predictor importance on model results.
Previous studies have used Akaike information criterion
(AIC) to determine which predictor inclusions within
models will lead to the most accurate outcome in a
maximum-likelihood approach (Horn et al., 2018;
Thomas et al., 2010). AIC is used to compare different
model outcomes to determine the best fit to the observed
data. Here, we provide an alternative framework (SHAP
analysis) for evaluating the importance of different
environmental stressors that can be used within ML
frameworks while retaining all predictors. Each method
has its own strengths and limitations for determining
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N CLs and could be used together as ensembles when
evaluating whether areas are in exceedance.

Spatially varying exceedances in N CLs

Typically, CLs are evaluated in the form of exceedances
where the threshold is subtracted from the stressor
value—in this case, N deposition. Previous studies have
used percentiles in the context of CLs to evaluate 95% CI
widths of the CL across species (Pavlovic et al., 2023;
Simkin et al., 2016), as well as exceedances across ecosystem
components, such as trees or lichens (Clark et al., 2018).
Here, we evaluate the most recently available 3-year
average N deposition (2019–2021) across species’ ranges
using a probability of exceedance metric. This metric
allows us to evaluate all 600 bootstrapped N CL estimates
at the inventory tree level, resulting in a probability rang-
ing from 0% to 100%. If an inventory tree experiences
a probability higher than 50%, then we assume that the
N CL is exceeded at that location. We averaged proba-
bilities, by species, at the plot level to aggregate our
results. Although we use 50% here as the probability
threshold, different thresholds may be more suitable
depending on the resource management need. We use

50% here as a conservative demonstration of the approach,
but a previous effort used the 95% CI width to determine
whether an exceedance was occurring or not (Pavlovic
et al., 2023).

Using the probability of exceedance metric, we find
that there are large areas of species’ ranges that have a
>50% probability that their N CL is being exceeded, when
compared to 2019–2021 N deposition levels. For example,
when evaluating exceedances of the growth rate N CL for
black cherry, 26.2% of FIA plots are experiencing
exceedances across much of the Midwestern United States
and portions of the Eastern Seaboard (Figure 6).
Additionally, 22.3% of black cherry trees in FIA plots are
experiencing exceedances of their survival probability
N CL (Figure 6). Many of these exceedances occur along
the eastern side of the Mississippi River Basin where agri-
cultural activities result in higher Nr deposition and in the
North Carolina region where Nr deposition is high due
to concentrated animal feeding operations (Chen et al., 2020).
Some species (e.g., paper birch) have similar spatial distri-
butions in probabilities of exceedance for growth rate and
survival probability, while others (e.g., sugar maple) have
a greater number of high probability exceedance locations
for one ecological response (e.g., survival probability) but
not the other. These differences tend to reflect that species

F I GURE 6 Maps of the probability of exceedance (in percentage) of the nitrogen (N) critical load (CL) for (a) growth rate and

(b) survival probability when compared to 2019–2021 average N deposition for all 10 species. If the probability is higher than 50%, then there

is a high likelihood that an N CL exceedance is occurring at the Forest Inventory and Analysis plot.
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have higher survival probability N CLs than growth
N CLs. Across all evaluated species, the percentage of trees
among species with probabilities of exceedance >50%
ranged from 0.6% to 45.8% (Table 3, Figure 7). Across its
distributional range, red spruce had the lowest percentage
of N CL exceedances for survival probability (0.6%), but it
also has higher percentages (20.4%) for exceedances for
growth. Western hemlock had the highest percentage of

trees exceeding its local N CL for survival probability
(45.8%) and a fairly high percentage of growth rate CL
exceedances as well (26.8%). For growth, the median
across all species was 26.5% of trees experiencing an
exceedance; for survival probability, there was a median of
20% across all species. All 10 species and their respective
percentages of N CL exceedances across FIA plots are
detailed in Table 3 and Figure 7.

Growth Rate Survival Probability

0 25 50 75 100 0 25 50 75 100
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F I GURE 7 The percentage of Forest Inventory and Analysis plots in exceedance of the growth rate or survival nitrogen (N) critical

loads (CLs) based on 2019–2021 N deposition levels for the 10 different species. An inventory tree was determined to be in exceedance of its

N CL if there was a >50% probability of exceedance.

TAB L E 3 Species-level summary of the probability of exceedance metric across all trees for each species in Forest Inventory and

Analysis (FIA) plots.

FIA code Common name

Growth Survival probability

Total count

Percentage of
trees with high N CL

exceedance probability (%) Total count

Percent of trees with
high N CL exceedance

probability (%)

97 Red spruce 16,101 20.4 19,130 0.6

122 Ponderosa pine 51,208 17.9 65,594 17.7

202 Douglas-fir 99,281 24.9 125,712 26.2

263 Western hemlock 21,963 26.8 27,352 45.8

318 Sugar maple 75,524 31.3 90,639 16.3

375 Paper birch 23,943 27.0 33,016 32.2

621 Yellow-poplar 35,051 7.7 41,754 12.5

742 Eastern cottonwood 2439 28.6 2926 12.6

746 Quaking aspen 64,253 40.9 83,843 34.1

762 Black cherry 27,217 26.2 33,942 22.3

Note: The total count reflects the sample size of the tree species in FIA plots that were used in the growth rate and survival probability modeling. The

percentage of trees with high N CL exceedance probability (in percentage) reflects the tally of trees, for each species, that had a >50% probability that the N CL
was being exceeded, when compared to 2019–2021 average N deposition levels. Scientific names are provided in Table 1.
Abbreviations: CLs, critical loads; N, nitrogen.
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We also compared the probability of exceedance maps
against exceedance maps from static, species-wide CL
exceedances in Pavlovic et al. (2023). The purpose of this
analysis was to understand whether more granular infor-
mation from spatially varying N CLs results in greater
utility in the context of CL exceedances. Our spatially
variable results show local areas where high probabilities
of exceedances occur which were not apparent in static,
species-wide CL exceedance maps. For some species,
there are also broad regional or species’ range-wide differ-
ences. For example, previous static results for yellow-poplar
growth rate CLs showed limited exceedance across its entire
range. In contrast, our spatially variable results show higher
probabilities of exceedance in areas such as central
Tennessee. These differences further illustrate the advan-
tages of a spatially variable approach by providing locally
tuned information on the sensitivity of tree species.

Overall, our probability of exceedance metric can
provide additional context to federal land managers
about which areas of the United States may need more
focused protective measures. For instance, if a particular
species of interest has a high probability of exceedance
(>75%), then there is more confidence that an exceedance is
occurring. This pattern suggests that additional pollution
reduction measures may be warranted in these areas to
decrease N deposition. Our results indicate that ML
approaches with bootstrapping provide a unique capa-
bility to determine spatially varying N CLs for these
types of efforts.

Future evaluations of tree species’ N CLs

While our study expanded upon previous work on
N CLs for tree species, several mediating factors were not
incorporated into our model. Mycorrhizal associations
are known to be crucially important for N uptake at tree
root systems where arbuscular mycorrhizal-associated
trees tend to outcompete ectomycorrhizal-associated trees
as a result of differences in N acquisition process (Averill
et al., 2018; Jo et al., 2019; Liese et al., 2018). While our
study does not account for these associations, future
inclusion of this mediating factor could have substantial
impacts on growth. Similarly, carbon dioxide (CO2) has
long been demonstrated to have an important influence
on the primary productivity of trees (Idso & Kimball, 1993;
Rogers et al., 1983), notably for younger stands
(Kallarackal & Roby, 2012), although equivocal results
have been found for mature stands (Girardin et al., 2016).
Lastly, newly developed aboveground biomass estimation
techniques by the U.S. Forest Service (Westfall et al., 2024)
could provide more robust estimations of annual growth
rates.

For survival probability, pests and wildfires are two
critical stressors that have not been extensively incorporated
into the modeling of tree mortality, at least in relation to air
pollution. The inclusion of these mediating factors could
have a large effect on the empirical determination of
survival probability CLs. Additionally, with increasing
repeat measurements since the FIA program became
standardized in 1998, future research could also investi-
gate time-series responsiveness of growth and survival
rather than just the first and last observation.
Furthermore, incorporation of other important factors,
such as recruitment of new trees, should be further eval-
uated to understand the net gain or loss of tree species
in forested areas, such as shifts in species occurrence
and introductions of invasive species. As paradigms of
CLs shift toward climatic stressors, inclusion of this key
factor will be paramount. In addition to these ecological
factors for improvement, statistical factors may also be
improved. In particular, the ML approach allows for
flexible relationships, which may not adhere to ecological
expectations. Incorporating constraints of monotonicity or
higher-order relationships could improve this area.

CONCLUSION

Our study demonstrates how ML methods can be
expanded to predict spatially varying N CLs of growth
rate and survival probability for individual tree species
within the contiguous United States. This enhancement
offers a methodology for quantifying N CLs at more local-
ized scales. Previous methodologies have calculated the
range and uncertainty in tree species’ N CLs at national
scales, but our modified XGBoost approach provides a
method to empirically determine CLs at an FIA plot
level. In this study, we found large error in N CLs for sin-
gle inventory trees using a 95% CI width, although some
of the observed error is inherent to our methodology.
We also found significant spatial variability in N CLs
across species’ ranges, demonstrating that environmental
conditions influence species’ sensitivity to N deposition.
Competition, climatic, and other air pollutant mediating
factors tended to be the most influential predictors for
growth rate models. The soil conditions used here
(pH, percent organic matter, and percent clay) had the
least amount of influence on the CL predictions for
growth rates. Similar results were found for tree mortality
predictions, although different competition terms were
used. The impact, or lack thereof, of these mediating fac-
tors on our ML modeling could be due to differences in
measurement frequency and root depth. Further investi-
gation into how to better utilize soil datasets (e.g., base
cation weathering) for these dose–response evaluations is
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warranted. When we examined probabilities of exceed-
ance across the species of interest, a substantial number
of plots in the United States remain in exceedance
(>50% probability) for their local N CLs. This pattern
suggests that uncertainties around local N CLs can be
robustly incorporated into ML models evaluating deposi-
tion exceedances. Furthermore, this metric can provide
useful information to local resource managers addressing
local and regional air pollution emissions sources.

The Clean Air Act directs the U.S. EPA to promulgate
secondary National Ambient Air Quality Standards to
protect the public welfare from any known or anticipated
adverse effects from the presence of air pollutants.
While national air pollutant standards are necessary
for the enactment of the Clean Air Act, individual
trees of a given species have variable sensitivity to air
pollution due to mediating factors. The use of spatially
variable results can provide a more holistic under-
standing of ecosystem sensitivity when developing
regulatory policy.
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