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Abstract

During pandemics, countries, regions, and communities develop various epidemic models

to evaluate spread and guide mitigation policies. However, model uncertainties caused by

complex transmission behaviors, contact-tracing networks, time-varying parameters,

human factors, and limited data present significant challenges to model-based approaches.

To address these issues, we propose a novel framework that centers around reproduction

number estimates to perform counterfactual analysis, strategy evaluation, and feedback

control of epidemics. The framework 1) introduces a mechanism to quantify the impact of

the testing-for-isolation intervention strategy on the basic reproduction number. Building on

this mechanism, the framework 2) proposes a method to reverse engineer the effective

reproduction number under different strengths of the intervention strategy. In addition,

based on the method that quantifies the impact of the testing-for-isolation strategy on the

basic reproduction number, the framework 3) proposes a closed-loop control algorithm that

uses the effective reproduction number both as feedback to indicate the severity of the

spread and as the control goal to guide adjustments in the intensity of the intervention. We

illustrate the framework, along with its three core methods, by addressing three key ques-

tions and validating its effectiveness using data collected during the COVID-19 pandemic at

the University of Illinois Urbana-Champaign (UIUC) and Purdue University: 1) How severe

would an outbreak have been without the implemented intervention strategies? 2) What

impact would varying the intervention strength have had on an outbreak? 3) How can we

adjust the intervention intensity based on the current state of an outbreak?

Author summary

We propose a framework that centers around reproduction number estimates for counter-

factual analysis, strategy evaluation, and feedback control of epidemics. The framework
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introduces a mechanism to quantify the impact of the testing-for-isolation intervention on

the basic reproduction number first. It offers a method to reverse engineer the effective

reproduction number under alternative strengths of this strategy, enabling the reconstruc-

tion of hypothetical spreading scenarios under different strength of intervention. Addition-

ally, quantifying the impact of the testing-for-isolation intervention on the basic

reproduction number facilitates the development of a closed-loop feedback control algo-

rithm. This algorithm uses the effective reproduction number both as feedback to assess the

severity of the spread and as the control goal to adjust the strength of the intervention. We

leverage this framework to: 1) Analyze the effectiveness of the implemented intervention

strategy by examining the connection between the testing-for-isolation intervention and

the basic reproduction number; 2) Evaluate the impact of varying intervention intensities

using a reverse engineering method to generate effective reproduction numbers of hypo-

thetical spreading scenarios under different intervention strengths; and 3) Design a closed-

loop feedback epidemic control framework for intervention intensity adaptation through

the closed-loop control algorithm. This framework provides new insights into utilizing the

reproduction number estimates to analyze hypothetical spreading scenarios under alterna-

tive levels of intervention strategies. Additionally, it uses the effective reproduction number

as feedback information to design the closed-loop control strategy for dynamically adjust-

ing the strength of the intervention to support epidemic mitigation efforts. Using COVID-

19 data from UIUC and Purdue, we illustrate and validate our framework by conducting

counterfactual analyses to evaluate the effectiveness of the implemented testing-for-isola-

tion strategies. Additionally, we validate that our feedback control algorithm can effectively

adjust the intervention strategy based on the severity of the epidemic.

1 Introduction

Since 2019, the COVID-19 pandemic caused by SARS-CoV-2 has significantly affected societal

work patterns [1, 2]. Proactive epidemic intervention policies were essential to prevent out-

breaks [3, 4]. To assist in evaluating the effectiveness of implemented pandemic intervention

strategies and in designing feasible epidemic mitigation policies, spreading models have played

an important role in policy-making [5, 6]. However, model uncertainties, introduced by com-

plex transmission behaviors [7], contact-tracing networks [8], time-varying spreading parame-

ters [9], human factors [10], and insufficient data [11], have posed significant challenges for

model-based approaches [12]. Meanwhile, model-free approaches such as deep learning and

reinforcement learning frameworks require extensive data and real-world trials in an actual

epidemic spreading environment [13]. Further, due to the irreversible nature of epidemic

spread, it is impossible to replicate the exact same process to test different intervention strate-

gies or verify optimal resource allocation through control system design. Since the reproduc-

tion number effectively indicates the severity of disease spread by encapsulating key model

information and can be estimated with relatively limited data, we present a framework that

focuses on using reproduction number estimates to analyze, evaluate, and design pandemic

intervention strategies.

The reproduction number captures the average number of new infected cases generated by

a single infected individual [14–17]. Leveraging the reproduction number to evaluate the epi-

demic spread and assist in policy-making is widely accepted [18–20]. Nowadays, researchers

and policy-makers mainly leverage the reproduction number to analyze and predict epidemic

spreading processes. Our framework first introduces a mechanism that quantifies the impact
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of the level of the intervention strategy on the basic reproduction number. This mechanism

forms the foundation for two additional methods we propose. The first is to reverse engineer

the effective reproduction number under the intervention strategy for a real-world spread to

the effective reproduction number under an alternative strength of the intervention strategy

for the corresponding hypothetical spread. This method facilitates the analysis of implement-

ing different strengths of the intervention strategy on the same spread, which is irreversible in

the real world. The second method, based on the same mechanism, is a closed-loop feedback

control algorithm. We use the effective reproduction number as feedback information and the

strength of the intervention strategy as the control variable to influence the effective reproduc-

tion number and, consequently, the disease spread. This approach is well-suited for managing

uncertainties, as feedback control systems are designed to handle such challenges.

The paper is organized as follows. In general, we introduce and validate the framework cen-

tered around reproduction number estimates, along with three methods, using COVID-19

spread data and the testing-for-isolation intervention strategies implemented at the University

of Illinois Urbana-Champaign (UIUC) and Purdue University. An overview of the framework

is provided in Section 2.1, followed by a description of the spread environment and data used

for validation in Section 2.2. Section 3 demonstrates how the framework facilitates key analy-

ses, including the quantification of the intervention strategy’s impact on the basic reproduc-

tion number (Section 3.1 and Section 5.1), counterfactual scenarios assessing what might have

happened without the implemented strategies on both campuses (Section 3.4), and the effects

of varying the strength of the testing-for-isolation strategy on the spread (Section 3.5). Addi-

tionally, in Section 3.6, we explore whether a closed-loop feedback control algorithm that

adjusts the intensity of the strategy based on the effective reproduction number’s indication of

the spread’s severity could outperform a fixed open-loop control intervention strategy. We

explain the methods in detail, including how to quantify the impact of the testing-for-isolation

strategy on the basic reproduction number in Section 5.1, reverse engineer the effective repro-

duction number for counterfactual analysis in Section 5.3, and use the effective reproduction

number as both an observation and a control variable in a closed-loop control design in Sec-

tion 5.4. Limitations and future directions are discussed in Section 4. Comprehensive analyses

are provided in Section 2 in S1 Appendix.

2 Background

2.1 A framework for counterfactual analysis, strategy evaluation, and

control of epidemics

The proposed framework is shown in Fig 1. By leveraging data from a real-world epidemic, the

first step is to estimate the effective reproduction number. This estimation process relies on 1)

the initial infection profile and 2) the quantification of the intervention strategy’s impact on

the spread. We explain these concepts in detail later in the paper, when we introduce the first

method to quantify the effect of the testing-for-isolation strategy on the basic reproduction

number. The methodologies for epidemic reconstruction, intervention strategy evaluation,

and feedback control all depend on estimating the effective reproduction number and quanti-

fying the impact of the intervention on the basic reproduction number. Using the estimated

effective reproduction number, the framework first reconstructs the spreading process under

the same implemented intervention strategies. It then performs a counterfactual analysis,

reconstructing hypothetical scenarios to evaluate what would have happened if the interven-

tion strategy had not been implemented or if an alternative strength of the strategy had been

applied. We assume that nothing else changes in the hypothetical spreading scenario, meaning

that the change in the strength of the intervention strategy does not further impact students’
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behavior, viral loads, or other factors. Both analyses use the method of reverse engineering the

effective reproduction number. Additionally, quantifying the intervention strategy’s impact on

the basic reproduction number forms the foundation of the closed-loop feedback control algo-

rithm, which adjusts the strength of the intervention strategy according to the severity of the

spread. The effective reproduction number serves as feedback to gauge the pandemic’s sever-

ity, guiding adjustments to the intensity of the intervention strategy.

We consider the intervention strategies in Fig 1 as the testing-for-isolation strategy that

removes infected individuals from the population. Inspired by the successful implementation

of testing-for-isolation strategies during the COVID-19 pandemic [21], particularly at the Uni-

versity of Illinois Urbana-Champaign and Purdue University, we leverage the data collected by

both universities to validate our framework.

2.2 Testing-for-isolation strategies at UIUC and Purdue

We leverage the aggregated COVID-19 data collected by UIUC and Purdue to validate the

framework and the proposed methods. Plenty of universities, including Cornell University,

Emory University, Purdue University, and the University of Illinois Urbana-Champaign,

implemented the testing-for-isolation strategy during the COVID-19 pandemic [22–30]. This

strategy actively tests a proportion of the university’s population and isolates those who test

positive to prevent the infected population from spreading the virus. We collected and studied

data from both universities to investigate their testing-for-isolation strategies during the

COVID-19 pandemic through close collaboration with the Institutional Data Analytics

Fig 1. A framework for counterfactual analysis, strategy evaluation, and feedback control of epidemics using reproduction number estimates. The

framework consists of three pieces and three methods. The first piece is to leverage real-world spreading data to estimate the effective reproduction

number, where we propose a method to quantify the impact of the isolation rate on the basic reproduction number. The second step involves

performing counterfactual analysis by introducing a method to reverse engineer the effective reproduction number, enabling simulation of hypothetical

spreading scenarios without the implemented intervention strategy or with an alternative strength of intervention. The third component introduces a

closed-loop control algorithm that uses the effective reproduction number as feedback to adjust the isolation rate, which in turn influences the effective

reproduction number to manage the spread.

https://doi.org/10.1371/journal.pcbi.1012569.g001
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+ Assessment team (IDA+A) at Purdue University and the SHIELD: Target, Test, Tell team

(SHIELD) at the University of Illinois Urbana-Champaign. Both teams adopted testing-for-

isolation strategies to assess the severity of the pandemic and made necessary adjustments to

their plans. These strategies successfully maintained safe operations on the campuses during

the pandemic. More discussion on unique methodologies implemented by different universi-

ties is in Section 1A in S1 Appendix.

In order to introduce and validate our methods, we specifically focus on an early stage of

the pandemic, between Fall 2020 and Spring 2021, when pharmaceutical interventions were

not yet available. We consider the policy implemented by UIUC, which tested the entire cam-

pus twice a week during Fall 2020. We also consider Purdue University’s policy which tested a

proportion of the entire campus weekly. We define testing as the process of sampling and con-

firming whether an individual is infectious. We define isolation as the process of removing

infectious individuals from the population so that they cannot spread the virus. The testing

rate should be greater than or equal to the isolation rate because we can isolate only those who

test positive, whereas not everyone who tests positive is ensured to be isolated. For simplicity,

we assume uniformly random sampling at both universities. Additionally, since we use daily

aggregated data, we do not consider contact-tracing-based analysis that may leverage spatial

data or networks. We make simplifying assumptions about the strategies implemented by

UIUC and Purdue when validating our proposed framework and methods. The approaches

implemented by both universities were considerably more intricate. More detailed informa-

tion about the testing data, methods, and resources implemented by UIUC and Purdue can be

found in Sections 1B and 1C in S1 Appendix.

3 Results

In this section, we introduce and validate the proposed framework and methods shown in Fig

1 by studying the epidemic spread on the UIUC and Purdue campuses. We first present the

impact of the testing-for-isolation strategy on the infection profile and the basic reproduction

number in Section 3.1. Then, we leverage the COVID-19 data from UIUC and Purdue to esti-

mate their effective reproduction numbers in Section 3.2. We show that the estimated effective

reproduction numbers can infer the spreading processes at both universities. We leverage the

estimated effective reproduction number to reconstruct the spreading processes on the UIUC

and Purdue campuses in Section 3.3. By leveraging the connection between the basic and effec-

tive reproduction numbers, we extend the mechanism that quantifies the relationship between

the testing-for-isolation strategy and the basic reproduction number to also quantify its rela-

tionship with the effective reproduction number (see Section 5.3). Further, we leverage this

relationship to reverse engineer the effective reproduction number to perform counterfactual

analysis on what would have happened if different intensities of the isolation rate had been

employed in Sections 3.4 and 3.5. Finally, in Section 3.6, we compare the performance of 1)

our proposed closed-loop feedback control algorithm, which can adjust the intensity of the iso-

lation rate based on the severity of the pandemic (i.e., the effective reproduction number),

with 2) the fixed isolation rate on the UIUC campus, in the hypothetical spreading scenario

obtained from the counterfactual analysis. More details on the methods we propose for analy-

sis can be found in Section 5 and in Section 2 in S1 Appendix.

3.1 The impact of the isolation rate on the basic reproduction number

We introduce the method to quantify the isolation rate’s impact on the basic reproduction

number in this section. One standard way of characterizing epidemic spread is to use contact

tracing data to create an infection profile, also known as the generation time interval [31, 32].
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The infection profile represents the average time between the onset of symptoms of a primary

case and its secondary cases [16, 33]. It is also used to estimate critical epidemiological parame-

ters such as the reproduction number, generation time, and attack rate [31, 32, 34–37]. In epi-

demiology and infectious disease modeling, the infection profile (or infectivity profile) refers

to how infectiousness changes over the course of an individual’s infection. It can be considered

as a function of calendar time since infection. Typically, the profile reflects pathogen shedding,

with a single peak indicating pathogen growth followed by immune suppression or host death.

This profile also indicates the effective contact rate between infectious and susceptible individ-

uals, which can vary [16, 38]. For example, it may increase if a person coughs or sneezes due to

respiratory disease, or decrease if they take to bed with illness [34]. Additionally, the profile

can change during an epidemic as public health measures, such as the testing-for-isolation

strategy in this work, are implemented [39].

Depending on our focus, we can define the infection profile as either a continuous or dis-

crete function. The basic reproduction number is defined as the average number of new cases

of an infection caused by one typical infected individual in a population consisting solely of

susceptible individuals [15]. Then, the basic reproduction number can be obtained by accumu-

lating the average number of infected cases generated by one infected individual over calendar

time since infection, i.e., the infection profile. Building upon the idea that intervention strate-

gies can affect the infection profile, and the infection profile will determine the reproduction

number, we first propose a method to quantify the influence of the adopted testing-for-isola-

tion strategy on infection profiles, and further on the basic reproduction number, to lay a

foundation for reverse engineering the effective reproduction number (see Section 5.3).

We consider the infection profile as a discrete function, with calendar time measured in

days. Epidemics such as COVID-19 can result in both symptomatic and asymptomatic infec-

tions. We define infection profiles separately for symptomatic and asymptomatic infections in

a nearly susceptible population. Due to the existence of incubation period where an infected

individual is not infectious, consider the day when a symptomatic case becomes infectious as

day one. We define vi 2 R�0 as the average number of infected cases caused by a single symp-

tomatic case on day i since day one, i 2 {1, 2, 3, . . ., n}, where n 2 N>0 is the number of days

during which a symptomatic case is infectious. Hence, the infection profile of symptomatic

cases is defined as a vector

v ¼ ½v
1
; v

2
; � � � ; vn�; v 2 Rn: ð1Þ

Similarly, we define vi 2 R�0 as the average number of infected cases caused by a single

asymptomatic case on day i since day one, i 2 {1, 2, 3, . . ., m}, where m 2 N>0 is the number of

days during which an asymptomatic case is infectious. The infection profile of asymptomatic

cases is defined as a vector

v ¼ ½v1; v2; � � � ; vm�; v 2 Rm: ð2Þ

Then, the basic reproduction number of symptomatic and asymptomatic cases can be

obtained by

R ¼
Xn

i¼1

v i and R ¼
Xm

i¼1

vi; ð3Þ

respectively [33]. For an epidemic with both symptomatic and asymptomatic infected cases, if

the proportion of the symptomatic infection is θ 2 [0, 1], then, the proportion of the asymptom-

atic infection will be (1 − θ) 2 [0, 1]. Consequently, the basic reproduction number of the
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spreading process is given by

R ¼ y
Xn

i¼1

v i þ ð1 � yÞ
Xm

i¼1

vi ¼ yR þ ð1 � yÞR: ð4Þ

We use R to denote the basic reproduction number of a spreading process if the infection

profiles v and v are estimated in a nearly fully susceptible population. In addition, the basic

reproduction number R is heavily determined by the ratio of the symptomatic infection θ. In

this study, we use the same infection profiles for both symptomatic and asymptomatic cases at

UIUC and Purdue, as previous research on epidemic spread over the UIUC campus did not

differentiate between the infection profiles for these two types of infections [24, 40]. The infec-

tion profile is given by

v ¼ v ¼ ½0:148; 1:0; 0:823; 0:426; 0:202; 0:078; 0:042; 0:057; 0:009�; ð5Þ

which is shown in Fig 2A.

Different testing-for-isolation strategies, specifically different isolation rates, alter the infec-

tion profile in distinct ways. We propose a method to quantify the impact of the daily isolation

rate, α 2 [0, 1], on the infection profile (Section 5.1 and Section 2A in S1 Appendix). We

implement our method for quantifying the impact of the daily isolation rate on the infection

profile with mixed symptomatic and asymptomatic cases (Section 5.1) on the infection profile

in Eq (5), according to the testing-for-isolation strategies of UIUC and Purdue, respectively.

We first study the impact of the testing-for-isolation strategy from Purdue on the infection

profile in Eq (5). Purdue performed voluntary testing-for-isolation for symptomatic infections

and surveillance testing-for-isolation for asymptomatic infections. For simplicity, we consider

the daily isolation rate for symptomatic cases, i.e., positive cases that were isolated by voluntary

testing, as aP ¼ 1=7. Based on the method that quantifies the impact of the daily isolation rate

on the infection profile (see Section 5.1), the infection profile of symptomatic cases under the

voluntary testing-for-isolation is

vða PÞ ¼ ½0:127; 0:735; 0:518; 0:229; 0:093; 0:031; 0:014; 0:017; 0:002�:

Fig 2. A) The infection profile v of COVID-19 w/o testing-for-isolation strategies. The infection profile v is captured by Eq (5). We leverage the

infection profile to capture the spreading process across UIUC and Purdue. B) The infection profile v(αP) of COVID-19 w/ testing-for-isolation

strategies. The infection profile v(αP) reflects the impact of the overall isolation rate αP at Purdue, which reduces the average daily number of infected

cases generated by a single infected individual under Purdue’s testing-for-isolation strategy.

https://doi.org/10.1371/journal.pcbi.1012569.g002
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In addition, we consider the daily isolation rate for asymptomatic cases as aP ¼ 0:3=7. This

condition means that we assume that 30% of the total asymptomatic cases will be tested volun-

tarily and then isolated throughout the week, evenly split over seven days. We also discuss dif-

ferent isolation rates at Purdue University in Section 2E in S1 Appendix. Based on Eq (7), the

infection profile of asymptomatic cases at Purdue is

vðaPÞ ¼ ½0:147; 0:916; 0:722; 0:356; 0:162; 0:06; 0:03; 0:04; 0:006�:

Then we generate the basic reproduction number of the combined infection profile of the

whole population through Eq (8), shown in Fig 2B. Based on the relationship between the

infection profile and the basic reproduction number (Eq (9)), the basic reproduction number

under the testing-for-isolation strategy at Purdue is given by RðaPÞ ¼ 2:07, where aP ¼

yaP þ ð1 � yÞaP is defined as the overall isolation rate at Purdue.

The basic reproduction number from the infection profile v in Eq (5) is R ¼ 2:785. There-

fore, the testing-for-isolation strategy implemented by Purdue scales the basic reproduction

number by

FðaPÞ ¼ RðaPÞ=R ¼ 0:742; ð6Þ

where we define FðaPÞ as the scaling factor of the basic reproduction number under the overall

isolation rate αP. Compared to Purdue, UIUC tested the entire campus twice a week during

Fall 2020. We assume that all detected symptomatic and asymptomatic cases can be isolated

immediately after testing positive. Therefore, the overall daily isolation rate at UIUC is given

by αI = 2/7. Again, using our proposed method in Section 5.1, we obtain that RðaIÞ ¼ 1:084,

which scales the basic reproduction number down by 38.85%, i.e.,

FðaIÞ ¼ RðaIÞ=R ¼ 0:3885.

Compared to Purdue’s strategy, UIUC’s testing-for-isolation strategy can reduce the basic

reproduction number almost twice as much as Purdue’s (FðaPÞ ¼ 0:742), at the cost of more

resources. Therefore, we establish a way to measure the strength of the testing-for-isolation

strategy (i.e., the isolation rate) on epidemic spreading processes in terms of modifying the

infection profile and the basic reproduction number. We illustrate the results by analyzing the

infection profile under Purdue and UIUC’s testing-for-isolation strategies. For further discus-

sion on the testing-for-isolation strategies implemented by Purdue and UIUC, and detailed

methods for quantifying their impact on the infection profile and the basic reproduction num-

ber, please refer to Section 2C in S1 Appendix.

3.2 Estimating the effective reproduction number at UIUC and Purdue

The framework in Fig 1 illustrates that our methods are centered around the reproduction

number. Therefore, to leverage the connection between the implemented isolation rate and

the basic reproduction number for counterfactual analysis, we first obtain the effective repro-

duction number from the real-world spreading data at Purdue and UIUC. We leverage the

confirmed cases from both universities to estimate the effective reproduction number, as illus-

trated by the framework depicted within the dashed region in Fig 1. We utilize Bayesian infer-

ence techniques and the EpiEstim package [41–43] to estimate the effective reproduction

number. Since we leverage existing methods to estimate the effective reproduction number,

we only briefly introduce the core idea. Detailed methodologies on estimating the effective

reproduction number from confirmed epidemic cases can be found in [19, 33, 41–45], as well

as in Sections 2B and 2D in S1 Appendix.

We obtain the effective reproduction number for both universities based on the modified

serial interval distribution (Section 5.2), accounting for the impact of the testing-for-isolation
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strategies employed by UIUC and Purdue on the infection profile, respectively. In particular,

we leverage the daily confirmed cases from UIUC during Fall 2020 and Spring 2021, ranging

from August 18th 2020 to April 13th 2021 (Fig 3A), to estimate the effective reproduction num-

ber RtðaIÞ under the overall isolation rate αI, as illustrated in Fig 3B, along with the 95% confi-

dence interval. One key observation during Fall 2020 is that there were two periods where the

effective reproduction number (95% confidence interval) was above one, matching the two

major events during that semester in the confirmed cases in Fig 3A. The most notable spike

during Fall 2020 in Fig 3A was during the period from August 18th, 2020 to August 31st, 2020,

captured by Shaded Area I. At the beginning of the Fall 2020 semester, when students returned

to campus, a significant number of infected cases were identified by the SHIELD team. Addi-

tionally, the estimated effective reproduction number experienced a significant spike during

mid-October to early November. Research by the SHIELD team at UIUC attributed this

increase to the return of the Big Ten football season, when students violated the social

Fig 3. A) Daily confirmed cases at UIUC during Fall 2020 and Spring 2021. We mark five shaded areas for five important events across the two

semesters, corresponding to the entry screening of Fall 2020 (I), the start of the Big Ten football season (II), Christmas Break (III), the entry screening of

Spring 2021 (IV), and Spring Break (V). The simulated spreading process (dotted solid line) accurately captures the spreading trend observed on the

UIUC campus during Fall 2020 and Spring 2021, including spikes and weekly confirmed pattern. We simulate the spreading process over Fall 2020 and

Spring 2021 separately, since at the beginning of each semester, the entry-screening resets the spreading process. B) Estimated effective reproduction

number for UIUC from Fall 2020 to Spring 2021. The estimated effective reproduction number (95% confidence interval) is greater than one during

multiple periods, particularly at the beginning of Fall 2020, around the middle of October 2020, and the middle of Spring 2021, corresponding to the

three events marked by Shaded Areas I, II, and V in Fig 3A. The effective reproduction number aligns with the confirmed cases at UIUC during Fall

2020 and Spring 2021, as shown in Fig 3A, where several mild spikes were observed. There is no estimated effective reproduction number from 2020-

08-18 to 2020-08-24 because we use data from the seven-day window between 2020-08-18 and 2020-08-25 to estimate the effective reproduction

number for 2020-08-25. We do not have sufficient data to estimate the effective reproduction number prior to 2020-08-25.

https://doi.org/10.1371/journal.pcbi.1012569.g003
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distancing policy and began to gather, marked by the Shaded Area II in Fig 3A. There is a

delay between the spikes in confirmed cases and the estimated effective reproduction number

due to factors such as the incubation period, testing-to-confirmation delay, and the selection

of the estimation window, which leverages past data. Further discussion on the impact of these

delays on the estimation of the effective reproduction number can be found in Section 2D in

S1 Appendix.

Similar to UIUC, we leverage confirmed cases from Fall 2020 to Spring 2021 at Purdue Uni-

versity via the IDA+A team, as shown in Fig 4A, to estimate the effective reproduction num-

ber. The confirmed cases include the total number of confirmed symptomatic and

asymptomatic cases. The daily confirmed cases through voluntary testing and surveillance test-

ing can be found in Sections 1B and 1C in S1 Appendix. Fig 4A shows five major events by

Fig 4. A) Daily confirmed cases at Purdue during Fall 2020 and Spring 2021. We mark five shaded areas for five major events across the two semesters

at Purdue, corresponding to the entry screening of Fall 2020 (I), the start of the Big Ten football season (II), Thanksgiving Break (III), the entry

screening of Spring 2021 (IV), and Spring Break (V). Purdue allowed students to stay home after Thanksgiving break, leading to a significant decrease

in confirmed cases, as shown in Shaded Area III. The reconstructed spreading process (dotted solid line) matches the confirmed cases observed on the

Purdue campus during Fall 2020 and Spring 2021. Unlike UIUC, where we reset the initial condition at the start of Spring 2021, not resetting it for

Purdue results in overestimating daily cases during Spring 2021. B) Estimated effective reproduction number for Purdue from Fall 2020 to Spring 2021.

The estimated effective reproduction number (95% confidence interval) was around one for most of the time, reflecting that Purdue’s testing-for-

isolation strategy avoided potential large outbreaks. Two major spikes were observed in the estimated effective reproduction number (95% confidence

interval) at Purdue: one around the beginning of August (I) and the other around the beginning of January (IV). As shown in Fig 4A, these two spikes

correspond to the infection process during the Summer and Christmas breaks. Unlike UIUC, Purdue provided sufficient data prior to 2020-08-18,

allowing us to estimate the effective reproduction number from 2020-08-18 to 2020-08-24, as shown in Fig 4B. To match the dates in both figures, we

did not include data prior to 2020-08-18 in Fig 4A.

https://doi.org/10.1371/journal.pcbi.1012569.g004
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shaded areas: from August 18th to September 10th, from October 13th to November 15th, from

November 27th to December 20th, from January 16th to February 1st, and from March 16th to

March 30th. These five major events correspond to the entry screening of the Fall 2020 semes-

ter (Shaded Area I), the increasing number of gatherings and activities at the start of the Big

Ten football season (Shaded Area II), the Thanksgiving Break (Shaded Area III), the entry

screening of the Spring 2021 semester (Shaded Area IV), and the return from 2021 Spring

break (Shaded Area V), respectively. We leverage the total confirmed positive cases shown in

Fig 4A, to estimate the effective reproduction number RtðaPÞ under the overall isolation rate

αP, as illustrated in Fig 4B. From the estimation, we observe that the estimated effective repro-

duction number (95% confidence interval) fluctuated around one, and the pattern corre-

sponds to the five major events shown in the shaded areas in Fig 4A. For example, the

estimated effective reproduction number (95% confidence interval) dropped below one at the

end of November due to Purdue allowing most students to stay home starting from Thanks-

giving break until the end of the Fall 2020 semester.

Although UIUC and Purdue implemented different testing-for-isolation strategies, the esti-

mated effective reproduction number reflects similar spreading trends in terms of entry-

screening and in-semester spikes. One main reason for this observation is that both universi-

ties have a similar size, population behavior, and location. In addition to leveraging the esti-

mated effective reproduction number to analyze the epidemic spread, as illustrated in Figs 3

and 4, we find that the estimated effective reproduction number fluctuated around one at both

universities. Since we propose a method to measure the impact of the isolation rate on the

basic reproduction number (Section 3.1), we further establish an algorithm to leverage the iso-

lation rate as a control variable to manipulate the effective reproduction number directly (see

Section 5.1). The effective testing-for-isolation strategies implemented by both universities

inspire our closed-loop feedback control algorithm, where the mitigation goal is to maintain

the effective reproduction number at a desired threshold, i.e., less than or equal to one.

3.3 Reconstructing epidemic spread at UIUC and Purdue

Through the estimated effective reproduction number, we simulate the spreading process, as

shown in the Reconstruction framework in Fig 1. This simulation process, which uses the

effective reproduction number to model the spread, forms the basis for leveraging the reverse

engineered effective reproduction number to simulate the hypothetical spread. One challenge

faced by researchers in modeling, analyzing, and controlling epidemic spreading processes is

the fact that such processes are irreversible. We cannot experience the exact same epidemic

spreading process under the exact same conditions twice. Therefore, to evaluate the effective-

ness of existing intervention strategies and to create the hypothetical spreading scenario to

assess the impact of different strengths of the intervention strategies on the epidemic spread,

we leverage the methodology introduced by [41, 42] and the estimated effective reproduction

number in Section 3.2 to reconstruct the spreading process.

Reconstructing the epidemic spread through the estimated effective reproduction number

can be formulated as the inverse process of estimating the effective reproduction number

through the confirmed cases. Since we leverage existing methods from [41, 42] to reconstruct

the spreading process, and the methodologies for simulating the spreading process from the

effective reproduction number are not the main focus of this paper, we only present the results

in this section. In Section 2B in S1 Appendix, we leverage the infection profile, the simulated

effective reproduction number, delay distributions, and added noisy patterns to show that we

can generate both infected cases (without any delays and noise) and confirmed cases (by add-

ing different delays and weekly noisy patterns) to imitate confirmed cases with weekly
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reporting patterns for a real-world spread. Therefore, we use this method to simulate the con-

firmed cases at both universities by leveraging the estimated effective reproduction numbers

given in Section 3.2. More detailed discussions on how to reconstruct the spreading process

using the effective reproduction number, the serial interval distribution, and delay distribu-

tions can be found in Section 2B in S1 Appendix and [41, 42].

Through the estimated effective reproduction number in Figs 3B and 4B, we obtain the

reconstructed spreading processes on both UIUC and Purdue campuses in the form of daily

confirmed cases, depicted by the solid lines in Figs 3A and 4A, respectively. The reconstructed

spreading processes can successfully capture the epidemic spreading trend over both cam-

puses, especially the spikes (see Section 2E in S1 Appendix). Building on this reconstruction

methodology, in the following sections, we simulate hypothetical spreading scenarios at UIUC

and Purdue. These scenarios assume that alternative isolation rates were implemented while

nothing else changes in the hypothetical spreading scenario, meaning that the change in the

strength of the intervention strategy does not further impact students’ behavior, viral loads, or

other factors. Using the reverse engineering method for the effective reproduction number in

Section 5.3, we apply varying intensities of isolation rates. Through these simulations, we eval-

uate the effectiveness of the implemented isolation rates and explore alternative strengths of

testing-for-isolation strategies. Note that based on the spreading behavior of COVID-19, we

can implement alternative reconstruction methods, such as a Susceptible-Exposed-Infectious-

Recovered (SEIR) model, to simulate the spread, where the spreading behavior can be captured

by the time-varying parameters in the model.

3.4 Evaluating isolation strategies at UIUC and Purdue

Following the framework in Fig 1, along with the estimated effective reproduction numbers

from UIUC and Purdue in Section 3.2 and the reconstructed spreading processes in Section

3.3, we illustrate the method for reverse engineering the effective reproduction number with

alternative strengths of the implemented testing-for-isolation strategy or without any isolation

at all (see Section 5.3). We show that this method allows us to perform counterfactual analysis

to evaluate what would have happened if UIUC and Purdue had not implemented their test-

ing-for-isolation strategies, under the assumption that the change in the strength of the inter-

vention strategy does not further impact students’ behavior, viral loads, or other factors.

For the outbreaks at UIUC and Purdue, consider that the only difference between 1) the

spread without any testing-for-isolation strategies and 2) the historical spreading process is the

implemented isolation rate. Furthermore, we assume the population on the two university

campuses is finite and remains fixed during the semester, and there is no loss of immunity

after recovery in such a short period. We first evaluate the implemented testing-for-isolation

strategy on the UIUC campus. We leverage the reconstruction method that uses the effective

reproduction number to simulate the spread, as described in Section 3.3, in order to simulate

the hypothetical spreading scenario on the UIUC campus. In this scenario, the effective repro-

duction number for the spread without the isolation strategy is computed using Eq (13), based

on the estimated reproduction number from UIUC in Fig 4A.

When examining the hypothetical spreading scenario on the UIUC campus without any

implemented isolation strategies, we consider the worst-case scenario. In this scenario, the

implemented daily isolation rate is αI = 2/7 = 0.286, indicating that the isolation rate is equal to

the testing rate, i.e., testing and isolating all positive cases twice a week. Further, without the

testing-for-isolation strategy, both symptomatic and asymptomatic cases will behave normally

and will not isolate themselves from the population. This worst-case scenario creates a situa-

tion where no one on campus takes preventative action against the pandemic. Although no

PLOS COMPUTATIONAL BIOLOGY A framework for counterfactual analysis, strategy evaluation, and control of epidemics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012569 November 20, 2024 12 / 30

https://doi.org/10.1371/journal.pcbi.1012569


isolation measures are in place, we can still record confirmed cases using the same testing strat-

egy implemented by UIUC, facilitating the estimation of the susceptible population on campus

(see Section 5.3). The detailed process on reconstructing the hypothetical spreading process on

the UIUC campus without their testing-for-isolation strategy can be found in Section 2E in S1

Appendix.

Fig 5A shows that, without any isolation and further with everyone taking no actions

against the virus, there would have been a significant outbreak on the UIUC campus during

Fall 2020. Around 90% of the total population on campus will be infected during the Fall 2020

semester. Starting from September 2020, as captured by the Shaded Area I in Fig 5A, the con-

firmed cases of the hypothetical spreading scenario start to grow slowly, since the strict entry-

screen caught most of the infected cases. However, even with the pandemic interventions

implemented by UIUC, there was a mild spike in mid-September, reflected by the peak value

of the estimated effective reproduction number between Shaded Area I and Shaded Area II in

Fig 3B. For the hypothetical spreading scenario without any isolation strategies, the effective

reproduction number around mid-September would be further scaled up (see Eq (13)), as

shown in Fig 5B. Consequently, the effective reproduction number in this hypothetical sce-

nario would rise, causing the number of confirmed cases to continue increasing from mid-

September, eventually peaking around the end of September.

Later on, the confirmed cases start to decrease, which is caused by a heavily reduced suscep-

tible population on campus during Fall 2020 (see Eq (13)). Therefore, the campus reaches the

Fig 5. A) Daily confirmed positive cases from hypothetical spreading scenario at UIUC during Fall 2020. The solid dark blue line represents the

hypothetical spreading scenario without employing any testing-for-isolation strategies. The solid red line represents the simulated spreading process

under UIUC’s testing-for-isolation strategy. The hypothetical spreading scenario captures the worst-case scenario where every individual on campus

does not take actions against the pandemic. B) Reverse engineered effective reproduction number at UIUC. The dashed dark blue line illustrates the

reverse engineered effective reproduction number of the hypothetical spreading scenario without the implementation of testing-for-isolation strategies.

The dashed red line represents the estimated effective reproduction number obtained from the data at UIUC featuring the implemented testing-for-

isolation strategy. C) Daily confirmed positive cases from hypothetical spreading scenario at Purdue during Fall 2020 and Spring 2021. Compared to the

hypothetical spreading scenario at UIUC, the simulated outbreak at Purdue is less severe since, by assumption, all symptomatic cases are caught and

isolated through the voluntary testing-for-isolation strategy. D) Reverse engineered effective reproduction number at Purdue. During the first two

months of the Fall 2020 semester, the effective reproduction number of the hypothetical spreading scenario without isolation under surveillance testing

consistently exceeds the estimated effective reproduction number obtained from the real spreading data on campus. After October 2020, the reduction

in the susceptible population leads to the effective reproduction number of the hypothetical spreading scenario becoming smaller than the estimated

effective reproduction number of the COVID-19 data from Purdue.

https://doi.org/10.1371/journal.pcbi.1012569.g005
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herd immunity threshold [46, 47], where the epidemic begins to fade away after a certain por-

tion of the population becomes infected and gains immunity against the virus. Additionally,

the peak value is enormous because we consider no isolation or intervention for the infected

cases, and the change in the strength of the intervention strategy does not further affect other

factors, making it essentially the worst-case scenario. This scenario can be demonstrated by a

similar large infection peak in China during Spring 2023 when most COVID-19 interventions

were suddenly lifted, allowing the virus to spread freely [48]. More counterfactual analyses are

explored by considering different isolation rates on the UIUC campus in Section 2E in S1

Appendix.

After discussing what would have happened without the implemented testing-for-isolation

strategies, we compare 1) the effective reproduction number under reverse engineering (Fig

5B blue line) with 2) the estimated effective reproduction number (Fig 5B red line) to illustrate

the method in Section 5.3. Fig 5B shows that starting from the beginning of the Fall 2020

semester until late September 2020, the effective reproduction number of the hypothetical

spreading scenario R̂t is higher than the estimated effective reproduction number RtðaIÞ,

reflected by the exponential growth before the end of September. This phenomenon is deter-

mined by the scaling factor FðaIÞ in the reverse engineering method (Eq (13) in Section 5.3).

As explained in Eq (13), another determining factor for reverse engineering the effective repro-

duction number is the ratio between the susceptible populations. Fig 5B illustrates that after a

large amount of the population on campus is infected, the infected population starts to

decrease. Therefore, from late September 2020, the effective reproduction number of the hypo-

thetical spreading scenario R̂t is lower than the estimated effective reproduction number of

the real-world spread RtðaIÞ.

Using the same method from Section 5.3 and the estimated reproduction number, RtðaPÞ,

from Purdue (as shown in Fig 4B), we reconstruct the hypothetical spreading scenario for the

Purdue campus without the testing-for-isolation strategies that were implemented. As dis-

cussed regarding the impact of Purdue’s testing-for-isolation strategy on the infection profile,

all confirmed symptomatic cases will self-report and isolate themselves from the population

when they test positive, as they are cautious and willing to be tested. Based on the testing data

from Purdue, we have the ratio of the symptomatic infection to be θ = 55%. In contrast to

UIUC, we focus on the impact of the surveillance testing-for-isolation strategy on asymptom-

atic cases at the Purdue campus, i.e., the daily isolation rate for asymptomatic infection only,

while fixing the daily isolation rate for symptomatic infection at 1/7. In addition, we consider a

daily 0.3/7 isolation rate for asymptomatic infection when simulating the spreading process

over the Purdue campus. For further discussion on the impact of choosing the isolation rate

and the symptomatic ratio, refer to Section 2E in S1 Appendix.

We reconstruct the hypothetical spreading scenario over the Purdue campus without the

testing-for-isolation strategy for asymptomatic infections during Fall 2020 and Spring 2021, as

illustrated in Fig 5C. Fig 5C shows that without the surveillance testing-for-isolation strategy

that generates a daily isolation rate of 0.3/7 for the asymptomatic infected population, and

under the condition that all symptomatic cases will self-report and isolate themselves from the

population, there would be a larger outbreak. Due to the existence of θ = 55% symptomatic

population being isolated, the hypothetical outbreak is much milder than that of UIUC. In par-

ticular, the confirmed cases of the hypothetical spreading scenario would start to surpass the

confirmed cases at Purdue beginning in October, caused by the return of the Big Ten football

season (the Shaded Area II in Fig 5C). Additionally, Fig 5D indicates that the effective repro-

duction number of the hypothetical spread R̂t is slightly higher than the estimated effective

reproduction number RtðaPÞ from the beginning of the Fall 2020 semester until the end of

PLOS COMPUTATIONAL BIOLOGY A framework for counterfactual analysis, strategy evaluation, and control of epidemics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012569 November 20, 2024 14 / 30

https://doi.org/10.1371/journal.pcbi.1012569


October. We can also explain this phenomenon by the absence of the testing-for-isolation

strategy for asymptomatic cases (see Eq (13)).

In this section, we demonstrate the proposed method of reverse engineering the effective

reproduction number (as detailed in Section 5.3) through our counterfactual analysis to evalu-

ate the testing-for-isolation strategies implemented by UIUC and Purdue. The evaluation

shows that the testing-for-isolation is critical for epidemic mitigation. Without testing-for-iso-

lation, there would have been a huge outbreak, as illustrated by the analysis of the hypothetical

spreading scenario over the UIUC campus. Even under the ideal situation where all symptom-

atic cases are tested voluntarily and isolate themselves, there still would have been an outbreak

due to the existence of asymptomatic cases and disturbances such as the Big Ten football sea-

son, as illustrated by the hypothetical spreading scenario on the Purdue campus. We further

discuss additional evaluations of the implemented testing-for-isolation strategies over the

UIUC and Purdue campuses under different scenarios in Section 2E in S1 Appendix.

3.5 Open-loop epidemic control

We have evaluated the spreading processes on both the UIUC and Purdue campuses by intro-

ducing a method to reverse engineer the effective reproduction number for the hypothetical

spreading scenario without the implemented isolation strategy, addressing the Epidemic

Reconstruction and Strategy Evaluation phase in Fig 1. To further address the Strategy Evalua-

tion framework, we illustrate the reverse engineering method from Section 5.3 by conducting

a counterfactual analysis on the hypothetical spreading scenario under different fixed isolation

rates for UIUC and Purdue. The selection of a fixed isolation rate, regardless of the spread, can

be viewed as an open-loop epidemic control strategy.

First, we study the worst-case hypothetical spread over the UIUC campus under different

isolation rates, as given in Fig 5A. When discussing control strategies, we describe the isolation

rates on a weekly basis to align with the universities’ testing-for-isolation policy. In practice,

adjusting the isolation rate daily can be challenging. However, for scaling the infection profile

and the basic reproduction number in Eq (6), we still utilize the daily isolation rate, which is

obtained by dividing the weekly isolation rate by seven. In the hypothetical worst-case sce-

nario, if an infected case is not isolated after testing, the individual will behave normally, as if

uninfected, until recovery. We compare the outcomes if we had implemented different fixed

isolation rates that are less than 200% weekly on the UIUC campus during Fall 2020. Under

the condition that the weekly testing rate is 200%, the fixed weekly isolation rates of the hypo-

thetical spreading scenario are drawn from {0%, 10%, 20%, . . ., 90%} and {100%, 120%, . . .,

180%, 200%} in order. Meanwhile, the testing-for-isolation process does not distinguish

between symptomatic and asymptomatic cases.

According to the reverse engineering method for the effective reproduction number, used

for hypothetical analysis of the spread with alternative isolation rates (Eq (14)), and the frame-

work in Section 3.3, we generate the daily confirmed cases at UIUC shown in the heatmap in

Fig 6A. The heatmap is based on the reverse engineered effective reproduction number under

different isolation rates and it highlights higher peak infection levels with brighter colors. Fig

6A suggests that higher isolation rates lead to smoother and flatter curves in terms of con-

firmed cases in the hypothetical spreading scenario, indicating a reduced peak in infection lev-

els. The shape of the brighter area in Fig 6A also indicates that a higher isolation rate will lead

to lower spikes, while these lower spikes will also be further delayed. All analyses are based on

the hypothetical worst-case scenario at UIUC proposed in Section 3.3 and the assumption that

the change in the isolation rate will not affect students’ behavior, viral loads, or other factors.

Assessing these fixed isolation rates in a different hypothetical spreading environment at
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UIUC would yield significantly different results. Therefore, when evaluating intervention

strategies such as a fixed isolation rate, it is critical to consider assumptions regarding popula-

tion dynamics and virus transmission behavior. However, the proposed reverse engineering

method for the effective reproduction number remains general, regardless of these assump-

tions. We present the impact of the isolation rate on the cumulative confirmed cases in Section

2F in S1 Appendix.

In comparison to UIUC, we analyze the effects of varying isolation rates under surveillance

testing for the hypothetical spreading scenario on the Purdue campus. We use the hypothetical

spreading environment at Purdue during Fall 2020 without the implemented surveillance test-

ing-for-isolation, as shown in Fig 5C, where positive cases confirmed through voluntary test-

ing would self-isolate. Further, based on the data from Purdue, θ = 55% of the population was

symptomatic. We vary the weekly isolation rate from the surveillance testing for asymptomatic

cases from {0%, 10%, 20%, . . ., 90%} and {100%, 120%, . . ., 180%, 200%}. Using the same

methods and assumptions applied to study alternative isolation rates on the hypothetical

spreading scenario on the UIUC campus, we capture the daily confirmed cases for Purdue as

shown in the heatmap in Fig 6B. We obtain the confirmed cases based on reconstructing the

hypothetical spreading scenarios using the reverse engineered effective reproduction numbers

under different isolation rates.

As expected, the daily confirmed cases of the hypothetical spreading scenario at Purdue were

much lower than the daily confirmed cases on the UIUC campus, given the extra assumption

regarding the population behavior of symptomatic cases at Purdue. Higher isolation rates gen-

erate relatively smoother and flatter curves in terms of confirmed cases, illustrating Eq (14).

Additionally, Fig 6B indicates that higher isolation rates result in lower spikes during the return

of the Big Ten football season, marked by the Shaded Area II in Fig 5C. Fig 6B also shows that

there is a noticeable difference between isolation rates for asymptomatic cases below 50% per

week and isolation rates higher than 50% of the asymptomatic cases per week. Based on the

Fig 6. A) Daily confirmed cases over the UIUC campus with different isolation rates. The fixed weekly isolation rates of the hypothetical spreading

scenario are drawn from {0%, 10%, 20%, . . ., 90%} and {100%, 120%, . . ., 180%, 200%}. Higher isolation rates will result in relatively smoother and

flatter curves in terms of outbreak. The shape of the brighter area also indicates that a higher isolation rate will lead to lower spikes, while these lower

spikes will also be further delayed. B) Daily confirmed cases over Purdue campus with different isolation rates. The weekly isolation rates for

asymptomatic cases are drawn from {0%, 10%, 20%, . . ., 90%} and {100%, 120%, . . ., 180%, 200%}. The daily confirmed cases of the hypothetical

outbreak at Purdue are significantly lower than those on the UIUC campus, due to the existence of a voluntary testing-for-isolation strategy. Higher

isolation rates generate relatively smoother and flatter curves in terms of confirmed cases.

https://doi.org/10.1371/journal.pcbi.1012569.g006
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analysis in this specific example, when the weekly isolation rate for asymptomatic cases is higher

than 50%, there would not be any significant outbreak during the Fall 2020 semester at the Pur-

due campus. The same as the UIUC study, the simulation results are based on certain condi-

tions and assumptions. Changing simulation conditions and assumptions will generate

different conclusions. Further detailed analyses and confirmed cases for Purdue during Fall

2020 under different isolation rates can be found in Section 2F in S1 Appendix.

By studying the impact of varying isolation rates on the hypothetical spreading scenario on

the UIUC and Purdue campuses, we illustrate the reverse engineering method for the effective

reproduction number under alternative strengths of the isolation rate (see Section 5.3). We

formulate the problem by considering an open-loop mitigation strategy with a fixed isolation

rate and explore hypothetical scenarios for UIUC and Purdue campuses during Fall 2020. Spe-

cifically, we identify how the isolation rate influences peak infection levels and timing. Further-

more, we investigate threshold conditions associated with isolation rates that help avoid

potential outbreaks. The conditions set for the hypothetical spreading environment, along

with the assumptions about population behavior, viral load, and other factors, will affect the

simulation results. Although we cannot alter the real-world spreading process that occurred

under the implemented testing-for-isolation strategies, our counterfactual analysis offers valu-

able insights. By using spreading data and the reverse engineering method from Section 5.3,

we can determine appropriate isolation rates and threshold conditions. These insights are criti-

cal for policy-making in epidemic mitigation.

3.6 Closed-loop feedback epidemic control

In this section, we complete the framework in Fig 1 by implementing a feedback control algo-

rithm to adjust the strength of the testing-for-isolation strategy based on varying isolation rate,

which is determined by the severity of the spread, captured by the estimated effective repro-

duction number. We propose this algorithm in Section 5.4. If all the conditions of the real-

world spread from Eq (4) (the infection profiles and the ratio of the symptomatic infection)

were perfectly known, it would be possible to generate an isolation rate that maintains the

effective reproduction number exactly at the desired value with a single computation, accord-

ing to our developed mechanisms in Section 5.1. However, the complex nature of the spread

introduces uncertainty, making it difficult to design such a rate with perfect settings. To

address this challenge, instead of relying on a fixed isolation rate, as studied in Section 3.5, we

propose a closed-loop feedback control algorithm to adjust the isolation rate according to the

severity of the spread.

The feedback control strategy is straightforward: in order to minimize the total number of

tests conducted (which is proportional to the isolation rate) while maintaining the effective

reproduction number at a certain level R∗
t 2 ð0; 1�; we increase the isolation rate to prevent

more infected individuals from spreading the virus when the outbreak is severe and decrease

the rate to isolate fewer infected individuals when the spread is less severe. We leverage the

estimated effective reproduction number as feedback information to indicate the severity of

the outbreak. We implement this algorithm in the hypothetical spreading scenario across the

UIUC campus, as shown in Fig 5A. A detailed explanation of the closed-loop feedback control

algorithm can be found in Section 5.4. We further discuss in Section 2G in S1 Appendix how

the goal of maintaining the daily infected population at an acceptable level aligns with the opti-

mal mitigation strategy [49, 50].

Consider implementing the closed-loop feedback control algorithm in the hypothetical

spreading scenario in Fig 5A. The control strategy adjusts the weekly isolation rate, which is

evenly split over seven days, every two weeks. We estimate the effective reproduction number
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over the past two weeks and update the isolation rate for the following two weeks. This algo-

rithm (see Section 5.4) indicates that we use the average estimated effective reproduction num-

ber of the past 14-day period as the indicator of the effective reproduction number for the

subsequent two weeks. The algorithm assumes that the average effective reproduction number

for the next two weeks will remain the same as the average value from the past 14-day period,

provided the implemented isolation rate does not change. Therefore, there are no prediction

mechanisms when updating the future isolation rate.

We implement the proposed feedback control algorithm (Section 5.4) in the hypothetical

spreading environment in Fig 5A and compare it to the testing-for-isolation strategy imple-

mented by UIUC, which involved testing and then isolating the infectious cases across the

entire campus twice a week, i.e., the daily isolation rate will be 2/7. Our goal is to control the

effective reproduction number at R∗
t ¼ 0:95. The effective reproduction number, slightly

smaller than one, ensures that the epidemic can gradually fade away with sufficient testing-for-

isolation resource. Controlling the effective reproduction number slightly below one to design

pandemic mitigation policies is a strategy discussed by other researchers as well [51, 52]. The

feedback control framework, as depicted in Fig 7, demonstrates that it can achieve a similar

number of daily and total confirmed cases in the hypothetical spreading scenario (both around

5000) compared to the policy implemented by UIUC. Furthermore, under the condition that

the isolation rate is proportional to the number of tests, we find that the implemented strategy

by UIUC required testing everyone 32 times in total, while our proposed feedback control

strategy only requires testing everyone 28 times in total. Additionally, for most of the Fall 2020

period, the feedback control algorithm implements a lower isolation rate compared to UIUC’s

implemented 200% weekly isolation rate. However, during October, the feedback control

framework employs higher isolation rates to mitigate the potential outbreak associated with

the return of the Big Ten football season. This adjustment is based on the real-world confirmed

data and the estimated effective reproduction number during Fall 2020, as depicted in the

Shaded Area II in Fig 3A and 3B, respectively.

The feedback control algorithm demonstrates the core concept of utilizing the effective

reproduction number as both the feedback information and the control goal to design the

closed-loop control algorithm for pandemic mitigation, as illustrated in Fig 1. The strategy

adjusts the isolation rate based on the risk of outbreaks, lowering the isolation rate when the

Fig 7. Closed-loop feedback control for the outbreak at UIUC. When controlling the effective reproduction number at 0.95, the closed-loop feedback

control algorithm we propose aligns with the testing-for-isolation policy implemented by UIUC in terms of daily and total confirmed cases, which are

around 5000. Under the condition that the isolation rate is proportional to the number of tests, the implemented testing-for-isolation strategy by UIUC

will result in a total of 32 tests per individual, whereas our proposed feedback control strategy will require 28 tests per individual.

https://doi.org/10.1371/journal.pcbi.1012569.g007
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risk is low and increasing it when a potential spike is detected. This example highlights the

flexibility and effectiveness of the feedback control algorithm in managing pandemics. In Sec-

tion 2G in S1 Appendix, we further discuss and study the impact of selecting other target effec-

tive reproduction numbers (e.g., R∗
t ¼ 0:90) on the hypothetical outbreak at UIUC by

implementing the closed-loop control algorithm. In addition, we extend the closed-loop con-

trol algorithm introduced in Section 5.4 (Eq (15)), accounting for both symptomatic and

asymptomatic cases, to design the closed-loop feedback control algorithm for the outbreak on

the Purdue campus in Section 2G in S1 Appendix.

4 Discussions

4.1 Counterfactual analysis, strategy evaluation, and feedback control

We propose a framework for counterfactual analysis, strategy evaluation, and feedback control

of epidemics. We propose three methods centered around the reproduction number. The first

method quantifies the impact of the testing-for-isolation strategy, specifically, the isolation

rate, on the basic reproduction number. This method forms the foundation for the other two

methods. The second method involves reverse engineering the effective reproduction number

under an alternative strength of the isolation rate. The third method formulates a closed-loop

feedback control algorithm that leverages the effective reproduction number as feedback infor-

mation to guide adjustments to the isolation rate. Our approaches rely on critical information

from disease spread such as the infection profile of the spread, the ratio of the symptomatic

infection, and the isolation rate, to guide the analysis and control of spreading behavior. We

validate the approaches by leveraging testing-for-isolation data from UIUC and Purdue.

Through analysis, we evaluate the implemented strategies at both universities during the early

stage of the COVID-19 pandemic.

We validate the proposed closed-loop feedback control algorithm that relies on the severity

of the spread, indicated by the effective reproduction number. We compare the hypothetical

spreading scenario where we implement the feedback control algorithm to adjust the isolation

rate, with the fixed isolate rate implemented by UIUC. Our closed-loop feedback control

framework effectively manages the spreading process and can adapt to changing conditions.

Nevertheless, relying solely on the estimated effective reproduction number, particularly the

mean, as feedback information for comprehensive pandemic evaluation may present several

limitations and challenges in real-world applications. As noted by the SHIELD team at UIUC,

even when the estimated effective reproduction number is around one, outbreaks can still

occur on campus [24]. In our closed-loop feedback control algorithm, when selecting a target

effective reproduction number slightly below one, such as R∗
t ¼ 0:95, a large infected popula-

tion may still lead to outbreaks because the decline in infections could be very slow. Further-

more, the stochastic nature of outbreaks and potential disturbances from various events may

cause the effective reproduction number of the outbreak to easily surpass one. Therefore,

when implementing the closed-loop feedback control algorithm for pandemic mitigation, it is

reasonable to select a target reproduction number significantly below one to ensure the algo-

rithm’s robustness against disturbances, while carefully adapting the control goal based on the

evolution of real-world spreading scenarios.

4.2 Interventions beyond testing-for-isolation

We leverage COVID-19 data from universities to introduce and demonstrate our proposed

framework, as shown in Fig 1. However, our framework is adaptable to other scenarios involv-

ing different intervention strategies. The concept of using the effective reproduction number
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as both the feedback and the control goal necessitates an examination of the relationship

between the intervention strategy and the basic reproduction number, grounded in the infec-

tion profile [14–16]. For example, we consider a different intervention strategy, such as varying

vaccination percentages. To implement the entire framework outlined in Fig 1, it is critical to

quantify the impact of vaccination on altering the basic reproduction number. This connection

is essential to effectively reverse engineer the effective reproduction number considering vari-

ous vaccination rates. Hence, by exploring different intervention strategies’ effects, we can gen-

eralize the framework and algorithm.

4.3 Future work

We acknowledge several limitations of the proposed framework and provide potential avenues

for improvement through future work (for more details, see Sections 3 and 4 in S1 Appendix).

First, when estimating the effective reproduction number, we use existing infection profiles

from the literature. However, it is essential to update these profiles with contact tracing data

from testing-for-isolation strategies to account for varying spreading behaviors. By leveraging

contact tracing data, we can capture the impact of stochasticity changes for each individual in

the infection profile. The influence includes variations in viral load caused by different virus

variants and changes in contact behavior due to policies beyond the testing-for-isolation strat-

egy. Also, we utilize the past average estimated effective reproduction number to project future

values in our control design, without considering any predictions. Since the estimated effective

reproduction number can fluctuate due to various factors, it is crucial to incorporate predictive

control mechanisms and machine learning techniques to improve the approaches. Addition-

ally, as for the mitigation goal, with a substantial initial infected population, maintaining the

effective reproduction number slightly below one may still lead to a large number of infections.

Hence, adjusting the control goal (i.e., the effective reproduction number) of the framework

according to different spreading scenarios becomes highly significant [53, 54].

Furthermore, while the feedback control framework can potentially save mitigation

resources, frequent policy changes may be impractical. Meanwhile, the policy generated by the

feedback control design could exceed the resource capacity during a certain period. Thus,

exploring constrained optimization on the method is necessary. Last, we propose the frame-

work and methods using aggregated data. However, the framework can be improved with spa-

tially and heterogeneously spreading data, where we can estimate the effective reproduction

number for connected sub-regions and adjust mitigation strategies accordingly by formulating

a network optimization problem. Future work can explore a high-resolution distributed strat-

egy evaluation and feedback control framework, by leveraging machine learning techniques

like graph learning and causal inference to infer connections between sub-regions.

Nonetheless, we aim for this work to provoke discussions about the role and limitations of

leveraging reproduction number estimates in pandemic mitigation, considering both analyti-

cal and computational perspectives. We believe that the three methods we propose for epi-

demic analysis and control can inspire and significantly benefit the development of rigorous

strategy evaluation and feedback control across various research fields. For instance, the feed-

back control algorithm not only serves as a foundation for designing future control frame-

works to allocate resources for epidemic mitigation but also lays the groundwork for

incorporating control analysis in other biological and ecological dynamic systems.

5 Methods

In this section, we introduce the methods we develop to obtain the results in this work. As out-

lined in Fig 1, we include 1) the method we design to quantify the impact of the isolation rate
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on the infection profile and the basic reproduction number, 2) the mechanism to reverse engi-

neer the effective reproduction number, and 3) the closed-loop feedback control algorithm

that leverages the effective reproduction number as feedback to adjust the isolation rate. Addi-

tionally, we introduce the foundations for estimating the effective reproduction number by

leveraging Bayesian inference. The Institutional Review Boards (IRBs) for this research were

ruled exempt by UIUC (protocol #21216) and Purdue IRB-2020-1683.

5.1 Quantifying the impact of isolation on epidemic spread

In order to align with the infection profile defined on a daily basis, we consider the daily isola-

tion rate to be represented by α, a 2 R�0. We propose a mechanism to quantify the impact of

the isolation rate on the infection profile and, consequently, on the basic reproduction num-

ber. Consider testing-for-isolation strategies for asymptomatic infection, where the infection

profile is given by Eq (2). If we have k 2 N>0 asymptomatic infectious cases on day one, with-

out testing-for-isolation strategies, these k infectious cases will generate an average number of

kvi cases on day i, i 2 {1, 2, . . ., m}. However, consider the same number of k asymptomatic

cases under a testing-for-isolation strategy. If we test and then isolate ka asymptomatic cases

on day one from the k asymptomatic cases, there will be kv1ð1 � aÞ new infected cases that are

generated by the kð1 � aÞ cases. On day two, there will be kv2ð1 � aÞ
2

cases generated by

kð1 � aÞ
2

infectious asymptomatic cases. Consequently, the new infected cases caused by the

original k asymptomatic cases are kvið1 � aÞ
i
on day i, i 2 {1, 2, . . ., m}. Thus, the average

number of infected cases generated by a single asymptomatic individual on day i, i 2 {1, 2, . . .,

m}, is given by kvið1 � aÞ
i
. We obtain the asymptomatic infection profile under the impact of

the daily isolation rate a, which is given by

vðaÞ ¼ ½v1ð1 � aÞ; v2ð1 � aÞ
2
; � � � ; vmð1 � aÞ

m
�: ð7Þ

Eq (7) gives the connection between the daily isolation rate and the infection profile on a daily

basis, and consequently, the basic reproduction number according to Eq (3). The same mecha-

nism is applicable to modify the infection profile of symptomatic infections, and we use a and

vðaÞ to represent the daily isolation rate of symptomatic cases and the infection profile of

symptomatic infections under the isolation rate, respectively. Similar to the computation of

the basic reproduction number of the mixed population in Eq (4), the modified infection pro-

file with both symptomatic and asymptomatic infection of the population is given by

vðaÞ ¼ yvðaÞ þ ð1 � yÞvðaÞ; ð8Þ

quantifying the impact of the overall isolation rate a ¼ ya þ ð1 � yÞa on the infection profile

v. Further, similar to Eq (4), we define the basic reproduction number of the spread under the

overall isolation rate α, which is a function of the isolation rates a for symptomatic infections

and a for asymptomatic infections, as

RðaÞ ¼ y
Xn

i¼1

v iðaÞ þ ð1 � yÞ
Xm

i¼1

viðaÞ ¼ yRðaÞ þ ð1 � yÞRðaÞ; ð9Þ

where RðaÞ and RðaÞ are the basic reproduction numbers of symptomatic and asymptomatic

infections under the isolation rates a and a, respectively. Note that the method also applies to

the effective reproduction number where infection profiles are estimated in a mixed popula-

tion, such that the summation of the infection profile gives the effective reproduction number.

In reality, it takes two to three days to receive a positive test result, with Lateral Flow (LFD)

tests remaining positive for about five days and Polymerase Chain Reaction (PCR) tests for a
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longer duration. Furthermore, testing may not be uniformly distributed across the population,

and the viral load may vary within the host. Therefore, we make the following assumption in

this work when applying the method in the equation.

Assumption 1 The proposed method in Eq (9) assumes that the probability of a test giving a
correct result is constant and uniform, and does not change with the viral load in the host. Fur-
thermore, the relative difference inRðaÞ for any α is constant over the epidemic window we con-
sider, and thus acts as a scaling factor FðaÞ, as defined in Eq (6).

5.2 Estimating the effective reproduction number

We utilize Bayesian inference techniques to estimate the effective reproduction number. One

critical information to leverage Bayesian inference to estimate the effective reproduction num-

ber is the normalized infection profile [19, 33, 41–43], which is usually referred to as the serial

interval distribution [55]. The serial interval distribution captures the duration of time

between the onset of symptoms in a primary case and a secondary case [56]. Following the

infection profile and the basic reproduction number in Eqs (1)–(3), we define serial interval

distributions of symptomatic and asymptomatic infections as

w ¼ v=R ¼ ½v
1
=R ; v

2
=R ; � � � ; vn=R �; ð10Þ

w ¼ v=R ¼ ½v1=R; v2=R; � � � ; vm=R�; ð11Þ

respectively.

Following Eqs (7) and (8), we define the modified serial interval distribution for a spreading

process with both symptomatic and asymptomatic infections. This distribution, under isola-

tion rates a and a, and with a symptomatic infection ratio of θ, is denoted as w(α), where

wiðaÞ ¼ ðyv ið1 � aÞ
i
þ ð1 � yÞvið1 � aÞ

i
Þ=RðaÞ: ð12Þ

Recall that RðaÞ is defined in Eq (9), and i 2 {1, 2, . . ., n} (considering m = n). Hence, based

on the implemented isolation rates and the predefined infection profiles in Eqs (1) and (2), we

can derive the modified infection profile in Eq (8), and subsequently obtain the modified serial

interval distribution in Eq (12). Based on this information, we can apply existing methods to

estimate the effective reproduction number, as outlined in Section 3.2 and Section 2D in S1

Appendix. Additionally, since the serial interval distribution is the normalized infection pro-

file, we refer readers to Section 2C in S1 Appendix for details on how to compute the scaling

factor FðaÞ using the serial interval distribution.

5.3 Reverse engineering the effective reproduction number

We propose a method to reverse engineer the effective reproduction number, assuming an

alternative isolation strategy strength was implemented. This method also considers scenarios

where no isolation strategy was applied, with all other spreading conditions remaining the

same, indicating that the change in the strength of the intervention strategy does not further

impact students’ behavior, viral loads, or other factors. Additionally, we assume a fixed total

population and no loss of immunity for recovered cases. The method builds upon Eq (6),

where we define the scaling factor FðaÞ to capture the relationship between the basic repro-

duction number of an outbreak with and without the implemented isolation rate α.

Consider the basic reproduction number of an epidemic outbreak without any isolation

strategy, denoted by R. We approximate the effective reproduction number as

R̂t ¼ R � ŜðtÞ=N;
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where ŜðtÞ > 0 is the susceptible population at time t > 0, and N > 0 is the total fixed popula-

tion. Consider the same outbreak under two different isolation strategies, each with a different

isolation rate, denoted by αi > 0, for i 2 {1, 2}. We define the basic reproduction number for

these outbreaks as RðaiÞ, for i 2 {1, 2}, where RðaiÞ is derived from Eq (9) based on R and the

corresponding infection profile. The effective reproduction numbers for the two outbreaks are

given by RtðaiÞ ¼ RðaiÞ � SiðtÞ=N, where Si(t)>0 represents the susceptible population of the

outbreak corresponding to the isolation rate αi, for each t > 0.

Consider a real-world outbreak where we can estimate the effective reproduction number,

Rtða1Þ, based on the spread under the implemented isolation rate α1. We introduce a reverse

engineering method to obtain: 1) the effective reproduction number, R̂t , for the hypothetical

spreading scenario where no isolation strategy was implemented, and 2) the effective repro-

duction number, Rtða2Þ, for the hypothetical spreading scenario where an alternative isolation

rate, α2, was implemented.

Using the mechanism from Eq (6), which quantifies the impact of isolation rates on the

basic reproduction number, we can compute the corresponding scaling factors FðaiÞ for dif-

ferent isolation rates αi, given the basic reproduction number R of the same outbreak:

FðaiÞ ¼
RðaiÞ

R
¼

RtðaiÞN=SiðtÞ
R̂tN=ŜðtÞ

; i 2 f1; 2g:

Therefore, we first obtain that

R̂t ¼
Rtða1ÞŜðtÞ
Fða1ÞS1ðtÞ

: ð13Þ

Further, given that the effective reproduction number R̂t and the susceptible population

ŜðtÞ for the hypothetical spreading scenarios of the same outbreak without any testing-for-iso-

lation strategies should remain the same, we conclude that

Rtða2Þ ¼
Rtða1ÞFða2ÞS2ðtÞ

Fða1ÞS1ðtÞ
: ð14Þ

Eq (13) introduces a reverse engineering method to calculate the effective reproduction

number, R̂t, for the hypothetical scenario with zero isolation rate, based on a real-world

spreading process that occurred under the implemented isolation rate α1. Similarly, Eq (14)

presents a method to leverage the estimated effective reproduction number from the real-

world spread, Rtða1Þ, under isolation rate α1, to compute the effective reproduction number

Rtða2Þ for the hypothetical spreading scenario with an alternative isolation rate α2. Both

approaches build upon the method and Assumption 1 that quantify the impact of isolation

rates on the basic reproduction number, given in Section 5.1. In addition, both methods

assume that the change in the isolation rate will not affect population behavior, viral loads, or

other factors.

Eq (13) indicates that it is critical to consider two factors to reverse engineer the effective

reproduction number: 1) The scaling factor Fða1Þ computed from the basic reproduction

number of the spread and 2) the ratio of the susceptible populations
ŜðtÞ
S1ðtÞ between the hypothet-

ical and real-world spread. The scaling factor F will be lower if we have a higher isolation rate,

and vice versa. Hence, it is natural to think that without the higher implemented isolation rate,

the outbreak could be worse. Meanwhile, a higher ratio between the susceptible population
ŜðtÞ
S1ðtÞ

will result in higher scaling of R̂t of the hypothetical spreading scenario without the isolation.
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In addition, Eq (14) shows that when reverse engineering the effective reproduction number

for the hypothetical scenario with an alternative isolation rate α2, it is essential to consider the

ratio of the scaling factors
Fða2Þ

Fða1Þ
, rather than just Fða1Þ. For example, if α2 > α1, the ratio will be

less than one, indicating a smaller reverse engineered effective production number Rtða2Þ,

thus a less severe hypothetical outbreak with the alternative isolation rate α2. Conversely, if α2

< α1, the ratio will be greater than one, indicating a more severe outbreak. Therefore, the

hypothetical outbreak would have been less severe if a higher isolation rate, α2, had been

implemented.

Eqs (13) and (14) require the estimation of the susceptible population in both the real-

world spread (S1(t)) and the hypothetical spreading scenario (ŜðtÞ and S2(t)), which we con-

struct using the method in Section 3.3. We briefly discuss how to obtain the susceptible popu-

lation for both scenarios. In a real-world outbreak, we can monitor the spread and estimate

the current susceptible population, S1(t), at each time step by subtracting the cumulative num-

ber of infected cases from the total population. The cumulative number of infected cases can

be estimated through new daily infected cases based on the testing-for-isolation process, under

the following assumptions: (1) there are no delays, and testing is uniformly distributed; (2) the

testing results are accurate; (3) there is no loss of immunity among previously infected individ-

uals during the epidemic window of study; and (4) we need complete ascertainment of cases.

Even when testing delays exist, we can use the delay distributions to adjust the confirmed cases

and estimate the actual number of infected cases (see Section 2D in S1 Appendix). Thus, to

obtain the susceptible population, we assume that the testing-for-isolation strategy allows for

accurate tracking of infected cases, as was implemented at UIUC with a high testing rate dur-

ing the COVID-19 pandemic.

When reverse engineering the effective reproduction number for the hypothetical spread in

a simulation environment, we can similarly calculate the susceptible population of the hypo-

thetical outbreak, ŜðtÞ or S2(t). When the simulation environment generates infected cases

based on the generation time interval and the effective reproduction number (Section 2B in S1

Appendix), we can record the daily new infected cases. By subtracting these infected cases

from the total population, we can obtain the current susceptible population. There may be

more accurate ways to estimate the susceptible population even in the presence of delays and

noisy infection data. However, since estimating the susceptible population is not the primary

focus of our work and represents an entire field of research in itself, we only briefly comment

on potential methods for estimating the susceptible population from daily case reports. More

analyses on reverse engineering the effective reproduction number for counterfactual analysis

of the spread on the UIUC and Purdue campuses can be found in Section 2E in S1 Appendix.

Algorithm 1 Reverse Engineering the R̂t in a Hypothetical Outbreak
1: Input:
2: Time-series infection data, fixed implemented testing-for-isola-

tion rate α, infection profile v, the total fixed population N,
epidemic window of interest τ

3: Preprocessing:
4: Estimate time-series susceptible population data (Section 5.3 and

Section 2E in S1 Appendix)
5: Scale the infection profile v(α) and calculate the serial interval

distribution w(α) (Sections 5.1 and 5.2)
6: Compute the scaling factor FðaÞ (Section 5.1)
7: Estimate the effective reproduction number RtðaÞ by leveraging

infection data (Section 5.2 and Section 2D in S1 Appendix)
8: Initialization of the hypothetical Outbreak:
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9: Set the initial infection counts for the hypothetical spreading
scenario; Subtracting the cumulative infection counts from N to
obtain the current susceptible population

10: Compute the reverse engineered effective reproduction number R̂1

(Section 5.3)
11: Simulate the hypothetical spread into the future for a time length

τ (Section 3.3 and Section 2B in S1 Appendix)
12: for each subsequent time step t = 2, 3, . . . do
13: Step 1: Data Collection and Updates
14: Record time-series infected cases and compute existing suscepti-

ble population at t (Section 5.3)
15: Update the scaling factor FðaÞ at t (Section 5.3)
16: Step 2: Compute Reverse Engineered Effective Reproduction Number
17: Update the reverse engineered effective reproduction number R̂t

using data from the hypothetical spread and the preprocessed
data at t (Section 5.3)

18: Step 3: Simulate Hypothetical Spread
19: Generate new infected cases for the hypothetical spread into the

future for a time length τ, marked as time step t + 1, using R̂t

(Section 3.3 and Section 2B in S1 Appendix)
20: if termination condition is reached (e.g., epidemic ends, or

predefined simulation criteria are met) then
21: Terminate the simulation
22: end if
23: end for
24: End of Algorithm

At the end of this section, we briefly formulate Algorithm 1 to present the method for

reverse engineering the effective reproduction number while generating a hypothetical out-

break based on that reproduction number. The time-series infection data in the algorithm can

come from a real-world spread or from a simulated outbreak that captures the real-world

spread. In this work, we leverage the reconstructed real-world spread to generate the time-

series infection data (solid lines in Figs 3 and 4) and the susceptible population data, while

using the estimated effective reproduction number from the real-world outbreak to reverse

engineer the effective reproduction number of the hypothetical spread. We apply the same

spread-generation mechanism for both the real-world and the hypothetical outbreaks to better

illustrate the reverse engineering method. Additionally, as mentioned in the discussion on

obtaining the susceptible population, using the simulated spread facilitates computing the sus-

ceptible population. This approach avoids the need to implement another algorithm to esti-

mate the susceptible population from real-world infection data.

5.4 A closed-loop feedback epidemic control algorithm

We first introduce the necessary information for implementing the closed-loop feedback con-

trol algorithm. For an epidemic spread, with any implemented testing-for-isolation strategies,

we can obtain spreading data. Illustrated in Fig 1, under the condition that we know 1) the

infection profiles (v) of the virus through the public health or the contact tracing data, 2) isola-

tion rates (a and a) implemented by the authorities, and 3) the ratio of symptomatic (θ) and

asymptomatic cases (1 − θ) from collected data, we can estimate the effective reproduction

number RtðaÞ under the implemented overall isolation rate a ¼ ya þ ð1 � yÞa at any given

time window. If the estimated effective reproduction number RtðaÞ is not equal to the

expected value R∗
t , we need to update the isolation rate α (including both a and a) for the next

period. We integrate the methods developed in Eqs (6) and (9) to propose a novel control algo-

rithm to adjust the isolation rate based on the estimated effective reproduction number.
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Without loss of generality, we first introduce the algorithm without distinguishing between

symptomatic and asymptomatic infections. Therefore, the overall isolation rate satisfies

a ¼ a ¼ a . Although the estimated effective reproduction number RtðaÞ is continuous, in

reality, we can estimate only a finite number of the effective reproduction number to capture

the spread at certain time steps. Hence, we use RkðakÞ to represent the estimated effective

reproduction number under the isolation rate αk at the kth step, k 2 N>0. Based on the esti-

mated effective reproduction number RkðakÞ at step k, we propose the following algorithm to

update the isolation rate αk+1 at the (k + 1)th step.

We first compute the modified infection profile v(αk), using the estimated effective repro-

duction number RkðakÞ, under the isolation rate αk. Specifically, viðakÞ ¼ wiðakÞRkðakÞ, for i 2

{1, 2, . . ., n}, where wi(αk) is defined in Eq (12). If the effective reproduction number RkðakÞ

under the isolation rate αk is not equal to the target effective reproduction number R∗
t at the

kth step, given by RkðakÞ 6¼ R∗
t , we will update the isolation rate αk+1 for the (k + 1)th step. The

effective reproduction number, estimated through the method in Section 3.2, satisfies:

RkðakÞ ¼
Xn

i¼1

wiðakÞRkðakÞ:

According to the definition of wi(αk) in Eq (12), i.e., the serial interval distribution under

the isolation rate αk, we have that
Pn

i¼1
wiðakÞ ¼ 1. Therefore, we can define the infection pro-

file v0ðakÞ 2 Rn that corresponds to the estimated effective reproduction number, where the ith

entry of the vector v0(αk) is given by

v0

iðakÞ ¼ wiðakÞRkðakÞ; i 2 f1; 2; . . . ; ng:

Then, we have that
Pn

i¼1
v0
iðakÞ ¼ RkðakÞ. According to Section 5.1, where the scaling

mechanism also applies to the infection profiles of the effective reproduction number, we

establish the following feedback control algorithm to update the isolation rate αk+1 at the next

step in order to control the effective reproduction number at R∗
t 2 ð0; 1�:

1

FðakÞ

Xn

i¼1

v0

iðakÞð1 � akþ1Þ
i
¼

RkðakÞ

FðakÞ

Xn

i¼1

wiðakÞð1 � akþ1Þ
i
¼ R∗

t : ð15Þ

In Eq (15), RkðakÞ is the effective reproduction number at step kth, under the implemented

isolation rate αk. The only unknown in Eq (15) is the isolation rate to be updated, αk+1. There-

fore, by solving Eq (15), we compute the updated isolation rate at the next time step directly

with the feedback information from the effective reproduction number RkðakÞ and the modi-

fied serial interval distribution wðakÞ 2 Rn
�0

under the previously implemented isolation rate

αk, making it a closed-loop feedback control policy. More details can be found in Section 2G

in S1 Appendix.

We generate Algorithm 2 for the proposed closed-loop feedback control framework for the

pandemic mitigation problem. In the algorithm, we use ‘period’ to represent a fixed time inter-

val such as a week, month, or season. In addition, we can replace the isolation rate with other

control intervention strategies, provided we can quantify the impact of the intervention on the

infection profile.

Algorithm 2 Closed-loop Feedback Control Framework for Epidemics
1: Initialize:
2: Compute the initial infection profile v from spreading data or

obtain from public health (Section 3.1 and Section 2A in S1
Appendix)
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3: Generate the initial serial interval distribution w (Section 5.2
and Section 2A in S1 Appendix)

4: Input: Target effective reproduction number R∗
t, initial serial

interval distribution w
5: for each period k = 1, 2, . . . do
6: if period k = 1 then
7: Implement the daily isolation rate α1 based on the initial pan-

demic evaluation
8: Compute the modified serial interval distribution w(α1) for

k = 1 based on the daily isolation rate α1 (Section 5.2 and Sec-
tion 2E in S1 Appendix)

9: else
10: Estimate the effective reproduction number RkðakÞ at the end of

period k using infection data collected (Section 5.2 and Sec-
tion 2D in S1 Appendix)

11: if Rk ¼ R∗
t then

12: Maintain the same daily isolation rate: αk+1 = αk
13: else
14: Compute a new daily isolation rate αk+1 (Eq (15))
15: end if
16: Update the modified serial interval distribution as w(αk+1)

(Eqs (4), (7) and (12))
17: end if
18: Proceed to the next period k + 1 by updating the isolation rate

as αk+1
19: end for
20: End of Algorithm

Supporting information

S1 Appendix. Supporting information for a framework for counterfactual analysis, strat-

egy evaluation, and control of epidemics using reproduction number estimates.

(PDF)
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