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Abstract— This letter explores the implementation of a
safe control law for systems of dynamically coupled co-
operating agents. Under a CBF-based collaborative safety
framework, we examine how the maximum safety capability
for a given agent, which is computed using a collabora-
tive safety condition, influences safety requests made to
neighbors. We provide conditions under which neighbors
may be resilient to non-compliance of neighbors to safety
requests, and compute an upper bound for the total amount
of non-compliance an agent is resilient to, given its 1-
hop neighborhood state and knowledge of the network
dynamics. We then illustrate our results via simulations of a
networked susceptible-infected-susceptible (SIS) epidemic
model.

Index Terms— Collaborative control, network control,
safety-critical control

I. INTRODUCTION

ENSURING safety for complex networked systems is a
challenging problem across many applications. Some

examples of critical networked system applications include
smart grid management [1], uncrewed aerial drone swarms [2],
[3], multi-agent robot systems [4], and the mitigation of epi-
demic spreading processes [5]. While much of the foundational
work on safety for dynamical systems via set invariance was
performed by Nagumo during the 1940s [6], the study of
safety-critical control has seen a significant resurgence in
recent years, due largely to the introduction and refinement of
control barrier functions (CBFs) [7], [8]. Of particular interest
for this work are scenarios where agents in networked systems
may be treated as independent entities with individual safety
requirements. This dynamically coupled environment moti-
vates the need for collaborative frameworks that can facilitate
cooperation between neighbors and enable the collective safety
of all agents [9]–[14].

Resilience for networked systems is crucial to achieving
reliable performance [15]–[18]. In this work, we define re-
silience similarly to [15], which is the ability of the network
to operate reliably even after experiencing some failures. Note
that resilience is different from the property of robustness,
which is the ability of systems to reject disturbances such as
noise. For example, a robust system may be able to handle
uncertainty or noise in the system states; however, a resilient
system should be able to adapt to fundamental changes in the
system’s capability, such as the loss of an actuator or sudden
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change in control constraints due to loss of resources. In
multi-agent systems, compliance is used to describe an agent’s
behavior with respect to the adherence to group norms [19];
however, in this work, we consider compliance explicitly as an
agent’s ability, or willingness, to fulfill requests by neighbors
in a collaborative setting.

In our previous work, we developed a CBF-based safety-
filter control law that defines a collaborative safety frame-
work for cooperating coupled agents [20] and applied this
framework to a formation control problem with obstacle avoid-
ance [21]. In this work, we examine the case where, under the
previously developed collaborative framework, agents may be
unable to fulfill their commitments to maintain their neighbors’
safety requirements. Thus, we investigate how resilient each
agent is to this possible neighbor failure, which is a first
step towards identifying factors that could lead to cascading
failures across the network [22]. In other words, we investigate
the following question: How resilient is each agent to non-
compliant neighbors?

Thus, in this letter, we make the following contributions:
• Under the formulation of our collaborative safety frame-

work [20], we show how the computation of the max-
imum safety capability for a given agent influences its
safety requests made to neighbors.

• We define a metric for non-compliance and provide an
upper bound of the total amount of non-compliance an
agent is resilient to given its 1-hop neighborhood state
and knowledge of networked dynamics.

II. PRELIMINARIES

In this section, we define the notation used in this paper,
introduce preliminaries for networked dynamic systems, and
discuss safety definitions for networked systems.

A. Notation
Let IntC, ∂C, |C| denote the interior, boundary, and cardinality
of the set C, respectively. R and N are the sets of real numbers
and positive integers, respectively. Let Dr denote the set of
functions r-times continuously differentiable in all arguments,
and K the set of class-K functions. We define [n] ⊂ N to
be a set of indices {1, 2, . . . , n}. We define the Lie derivative
of the function h : RN → R with respect to the vector field
generated by f : RN → RN as

Lfh(x) =
∂h(x)

∂x
f(x). (1)

We define higher-order Lie derivatives with respect to the same
vector field f with a recursive formula [23], for k > 1, as

Lk
fh(x) =

∂Lk−1
f h(x)

∂x
f(x). (2)



B. Networked Dynamic System Model

We define a networked system using a graph G = (V, E),
where V is the set of n = |V| nodes and E ⊆ V ×V is the set
of edges. Let N+

i be the set of all neighbors with an incoming
connection to node i, where

N+
i = {j ∈ [n] \ {i} : (i, j) ∈ E}. (3)

Similarly, all nodes with an outgoing connection from i to j
are given by

N−
i = {j ∈ [n] \ {i} : (j, i) ∈ E}, (4)

with the complete set of neighboring nodes given by

Ni = N+
i ∪N

−
i . (5)

Further, we define the state vector for each node as xi ∈
RNi , with N =

∑
i∈[n]Ni being the state dimension of the

entire system, N+
i =

∑
j∈N+

i
Nj the combined dimension

of incoming neighbor states, and xN+
i
∈ RN+

i denoting the
combined state vector of all incoming neighbors. Then, for
each node i ∈ [n], we describe its state dynamics, which are
potentially nonlinear, time-invariant, and control-affine, as

ẋi = fi(xi, xN+
i
) + gi(xi)ui, (6)

where fi : RNi+N+
i → RNi and gi : RNi → RNi × RMi are

locally Lipschitz for all i ∈ [n], and ui ∈ Ui ⊂ RMi . For
notational compactness, given a node i ∈ [n], we collect the
1-hop neighborhood state as xi = (xi, xN+

i
) and the 2-hop

neighborhood state as x+
i = (xi, xN+

i
, xN+

j
∀j ∈ N+

i ).

C. Safety Definitions

We define a node-level safety constraint for node i ∈ [n]
with the set

Ci =
{
xi ∈ RNi : hi(xi) ≥ 0

}
, (7)

where hi ∈ Dr, r ≥ 1 and hi : RNi → R is a function whose
zero-super-level set defines the region which node i ∈ [n]
considers to be safe (i.e., if hi(xi) < 0, then node i is no
longer safe).

III. SAFETY IN NETWORKED DYNAMIC SYSTEMS

One challenge that comes from the definition of node-level
safety constraints (defined in Section II-C), which depend
only on the state of the given node, is that, when evaluating
the derivative of hi(xi), we must incorporate the network
influence of its neighbors j ∈ N+

i , where we define the
derivative of hi as

ḣi(xi, ui) = Lfihi(xi) + Lgihi(xi)ui.

Notice that, in this case, we can define the node-level con-
straint function as the mapping hi : RNi → R; however, the
dynamics of node i, whose dynamics are a function of all
neighboring nodes in N+

i , require that ḣi : RNi+N+
i → R.

Therefore, it is possible for neighboring states xNi , whose
dynamics are controlled by each neighbor j ∈ Ni through
uj ∈ RMj , to influence the safety of node i.

Using principles from high-order barrier functions [24],
[25], we can analyze the effect of the 1-hop neighborhood
dynamics on the safety of node i by computing the second-
order derivative of hi, which can be expressed as

ḧi(x
+
i , ui, uN+

i
, u̇i) =

∑
j∈N+

i

[
LfjLfihi(x

+
i ) + LgjLfihi(xi)uj

]
+ L2fihi(xi) + u⊤i L

2
gihi(xi)ui + Lgihi(xi)u̇i

+
(
LfiLgihi(xi)

⊤ + LgiLfihi(xi)
)
ui.

(8)
Notice that the dynamics of each neighbor j ∈ N+

i and u̇i
appear in the second-order differential expression of hi. To
assist in our analysis of the high-order dynamics of hi, we
make the following assumption.

Assumption 1. For a given node i ∈ [n], let u̇i := d(ui),
where d(ui) : RMi → RMi is locally Lipschitz.

While obtaining a closed-form solution for u̇i may be
challenging in some applications, in practice, d(ui) may be
approximated using discrete-time methods. Given the structure
of (8), which includes the 1-hop neighborhood controlled
dynamics, we define a series of functions under Assumption 1

ψ0
i (xi) := hi(xi) (9)

ψ1
i (xi, ui) := ψ̇0

i (xi, ui) + ηi(ψ
0
i (xi))

ψ2
i (x

+
i , ui, uN+

i
) := ψ̇1

i (x
+
i , ui, uN+

i
) + κi(ψ

1
i (xi, ui)),

where ηi, κi are class-K functions. We can also express
ψ2
i (x

+
i , ui, uN+

i
) in terms of hi as

ψ2
i (x

+
i , ui, uN+

i
) = ḧi(x

+
i , ui, uN+

i
) + η̇i(hi(xi),xi, ui)

+ κi
(
ḣi(xi, ui) + ηi(hi(xi))

)
. (10)

Further, we may rewrite (10) by collecting the terms that are
independent of uj as

ψ2
i (x

+
i , ui, uN+

i
) =

∑
j∈N+

i

aij(xi)uj + ci(x
+
i , ui), (11)

where
aij(xi) = LgjLfihi(xi) (12)

and
ci(x

+
i , ui) =

∑
j∈N+

i

LfjLfihi(x
+
i ) + L2

fi
hi(xi) + u⊤

i L2
gi
hi(xi)ui

+
(
LfiLgihi(xi)

⊤ + LgiLfihi(xi)
)
ui + Lgihi(xi)d(ui)

+ η̇i
(
hi(xi),xi, ui

)
+ κi

(
ḣi(xi, ui) + ηi(hi(xi))

)
.

(13)
In this form, we may consider aij(xi) ∈ RMj to be the effect
that node j ∈ N+

i has on the safety of node i ∈ [n] via its own
control inputs uj , and ci(x+

i , ui) is the effect that node i ∈ [n]
has on its own safety combined with the uncontrolled system
dynamics. The functions in (9) in turn define the constraint
sets

C1i = {xi ∈ RNi+N+
i : ψ0

i (xi) ≥ 0}

C2i = {xi ∈ RNi+N+
i : ∃ui ∈ Ui s.t. ψ1

i (xi, ui) ≥ 0}.
(14)

We define a collaborative control barrier function for node i
that takes into account the control actions of its incoming
neighbors j ∈ N+

i .



Definition 1. Let C1i and C2i be defined by (9) and (14), under
Assumption 1. We have that hi is a collaborative control
barrier function (CCBF) for node i ∈ [n] if hi ∈ C2 and
∀xi ∈ C1i ∩ C2i there exists (ui, uN+

i
) ∈ Ui × UN+

i
such that

ψ2
i (x

+
i , ui, uN+

i
) ≥ 0, (15)

where ηi, κi are class-K functions and ηi ∈ Dr, with r ≥ 1.

In [20], we prove the forward invariance of C1i ∩ C2i given
the existence of a CCBF and use this property to construct a
decentralized algorithm for collaborative safety among cooper-
ating network agents. A high-level pseudo-code description of
this procedure is given in Algorithm 1, where, for a given agent
i ∈ [n], safety commitments c̄ij and c̄ki are initialized for
incoming neighbors j ∈ N+

i and outgoing neighbors k ∈ N−
i ,

respectively, as well as the set of allowable actions for agent i,
U i. Then, for each round of collaboration τi, agent i computes
its maximum safety capability as

c̄i = max
ui∈Ui

ci(x
+
i , ui), (16)

which is used as input for the Collaborate function on
Line 5, defined in [20], to negotiate safety requests between
neighbors Ni using the collaborative safety condition as
defined in (15). After each round of collaboration, a safety
deficit/surplus δi is returned along with the updated set of
allowed actions for agent i that can satisfy the safety re-
quirements of both agent i and its neighbors, as well as the
current safety commitments for all neighbors. If δi ≥ 0,
indicating their safety requirement is met, then Algorithm 1
returns the set of feasibly safe actions U i for agent i and its
neighbors N−

i . In [20], we provide conditions under which
Algorithm 1 will converge asymptotically to at least one safe
action for all agents, if it exists. In this paper, we explore
the scenario where there is potential error, or non-compliance,
in the safety commitments c̄ij given by each neighbor j ∈
N+

i and how resilient each agent is to the collective non-
compliance of all neighbors.

Algorithm 1 Collaborative Safety

1: Initialize:
i← i0; U i ← Ui; τi ← 0
c̄ij ← 0, ∀j ∈ N+

i ; c̄ki ← 0, ∀k ∈ N−
i

2: repeat
3: τi ← τi + 1
4: c̄i ← maxui∈Ui

ci(x
+
i , ui)

5: δi, U i, {c̄ij}j∈N+
i
, {c̄ki}k∈N−

i

← Collaborate
(
c̄i,U i, {c̄ij}j∈N+

i
, {c̄ki}k∈N−

i

)
[20]

6: until δi ≥ 0
7: return U i

IV. RESILIENCE TO NON-COMPLIANCE

In this section, we explore properties of resilience in the
context of collaborative safety via Algorithm 1. For our
discussion, we consider the choice of class-K functions ηi(·)
and κi(·) as a part of ψ1

i (xi, ui) and ψ2
i (x

+
i , ui, uN+

i
) and

their effect on the behavior of neighbors with respect to com-
municating safety needs to neighbors and choosing actions that
guarantee individual node safety. To simplify our discussion,
we consider the set of linear class-K functions.

Assumption 2. Let ηi(z) := ηiz and κi(z) := κiz, where
z ∈ RNi and ηi, κi ∈ R≥0.

The selection of ηi and κi may be used to determine
the qualitative behavior of a given node, where large ηi
(κi) will prevent the first (second) derivative safety condition
in (9) from activating until xi approaches much closer to the
boundary of C1i (C2i ). In other words, we can use ηi and κi
to tune how conservative node i is in avoiding the boundary
of its safety constraints. Additionally, we make the following
assumption on the control constraints for node i ∈ [n].

Assumption 3. Let Ui ⊂ RMi be a closed set.

Finally, we define a first-order approximation of d(ui) to be
used in the computation of the safety capability of node i as

d(ui) ≈ d̃(ui) =
u0i − ui
∆t

, (17)

where u0i is the last chosen control action for node i and
∆t > 0 is the time difference between the last action and the
current action ui. Note that a key step in collaborative safety
via Algorithm 1 is the evaluation of the maximum capability
of node i ∈ [n] through (13) and (16). Under Assumption 2
and (17), we may express (13) as

ci(x
+
i , ui, νi) =

∑
j∈N+

i

LfjLfihi(x
+
i ) + L2

fi
hi(xi) + u⊤

i L2
gi
hi(xi)ui

+ κiηihi(xi) + νiLfihi(xi) + Lgihi(xi)d̃(ui)

+
(
LfiLgihi(xi)

⊤ + LgiLfihi(xi) + νiLgihi(xi)
)
ui,

where νi = ηi+κi. Thus, solving (16) is equivalent to solving
the constrained quadratic program

max
ui∈Ui

u⊤i Qi(xi)ui + [qi(x) + νiLgihi(xi)]ui + Lgihi(xi)d̃(ui),

(18)with
Qi(xi) = L2

gihi(xi)and
qi(xi) = LfiLgihi(xi)

⊤ + LgiLfihi(xi).

Notice, however, that this maximization problem may not
necessarily represent the true maximum capability of node i
in satisfying its own safety conditions depending on the
properties of Qi(xi) ∈ RMi×Mi , i.e., when Qi(xi) is negative
definite, positive definite, or indefinite. In other words, we
must also consider the maximization of ψ1

i (xi, ui) with respect
to its local control input

max
ui∈Ui

Lgihi(xi)ui. (19)

We also consider the following assumption on Lgihi(xi).

Assumption 4. For a given xi ∈ RNi , let all entries of
Lgihi(xi) ∈ RMi be non-zero.

In other words, assume that each control input for node i
has some effect on the safety dynamics of hi. Using the above
assumptions, we derive the following results.



Lemma 1. Given Assumption 3, U i ̸= ∅, and |Lgihi(xi)| >
0 for some xi ∈ RNi , (19) must have a maximal solution
u∗i ∈ ∂U i, with u∗i = argmaxui∈Ui

Lgihi(xi)ui. Further, if
Assumption 4 holds, then u∗i is unique.

Proof. By [20, Algorithm 3], we have that U i is computed by
taking the intersection of Ui with UN−

i
=

⋂
k∈N−

i
Uki, where

Uki = {ui ∈ RMi : aki(xk)ui + c̄ki + δki ≥ 0}.

Thus, since UN−
i

is the intersection of closed half-spaces,
and Ui is closed by Assumption 3, we have that U i = Ui ∩
UN−

i
must also be closed. Thus, the expression Lgihi(xi)ui

evaluated at some xi ∈ RNi describes a closed hyper-
plane in RMi with at least one non-zero gradient. There-
fore, if we define u∗i = [u1∗i , . . . u

Mi∗
i ]⊤, Lgihi(xi) =

[Lgihi(xi)
1, . . . ,Lgihi(xi)

Mi ], and U i = U
1

i ×· · ·×U
Mi

i ̸= ∅,
then, for each m ∈ [Mi],

um∗
i = argmax

um
i ∈∂Um

i

Lgihi(xi)
mumi . (20)

Further, if |Lgihi(xi)
m| > 0 for all m ∈ [Mi], i.e., if

Assumption 4 holds, then um∗
i is unique for m ∈ [Mi]

since (20) is maximizing linear variables with non-zero gradi-
ents constrained by the closed set U i ⊂ RMi .

Since Lgihi(xi)ui is a term in (18), we gain the following
insight on the relationship between (18) and (19).

Lemma 2. Let Assumptions 1-4 hold for some xi ∈ RNi and
xN+

i
∈ RN+

i . Further, let

u∗i := argmax
ui∈Ui

Lgihi(xi)ui (21)

and

uci (νi) := argmax
ui∈Ui

u⊤i Qi(xi)ui + Lgihi(xi)d̃(ui)

+ [qi(xi) + νiLgihi(xi)]ui,
(22)

where the optimizer uci (νi) is a continuous function of νi.
Then, we have that limνi→∞ uci (νi) = u∗i .

Proof. Note that in (22) as we increase νi the linear term
Lgihi(xi) will begin to dominate the expression for the
capability of node i ∈ [n]. Therefore, by Assumptions 2 and
3 we have

lim
νi→∞

1

νi

(
u⊤
i Qi(xi)ui + qi(xi)ui + Lgihi(xi)d̃(ui)

)
+ Lgihi(xi)ui

= Lgihi(xi)ui.

Thus, since uci (νi) is a continuous function of νi, we have,
by [26, Theorem 4.1], that limνi→∞ uci (νi) = u∗i , where u∗i is
unique by Lemma 1.

Given these results, we may quantify the discrepancy be-
tween the communicated capability and the actual capability
of node i with respect to a chosen νi. We define the quantity
of neighbor compliance as follows. First, define the minimum
assistance requested from neighbor j ∈ N+

i by node i as the
set of control actions

Um
j (x) = {uj ∈ U j : aij(xi)uj + c̄ij = 0}, (23)

where c̄ij is the safety commitment allocated to node j by
node i according to Algorithm 1. We compute the amount of

compliance by neighbor j to requests by node i given any
action uj ∈ Uj as

eij(xi, uj) := aij(xi)(u
m
j − uj), (24)

where we may choose any umj ∈ Um
j (xi) without loss of

generality.

Definition 2. If eij(xi, uj) < 0, then neighbor j is non-
compliant. The neighborhood compliance of incoming neigh-
bors to node i is given by ei(xi, uN+

i
) =

∑
j∈N+

i
eij(xi, uj),

where if ei(xi, uN+
i
) < 0, then the incoming neighborhood of

node i is non-compliant.

Note that, in our definition of non-compliance, we consider
any action uj for neighbor j ∈ N+

i to be non-compliant if
it violates the safety requirement of node i. We make the
following assumption.

Assumption 5. There exists ν∗i <∞ such that uci (ν
∗
i ) = u∗i .

We may then compute the upper bound on the total non-
compliance agent i is resilient to as follows.

Theorem 1. For a given xi ∈ RNi+N+
i , let νi ≤ ν∗i , under

Assumption 5, with u∗i and uci be computed via (21) and (22),
respectively. If Assumptions 1-4 hold and ei(xi) < 0, then
node i will be capable of satisfying its safety constraints in the
presence of non-compliance from its incoming neighborhood
up to
|ei(xi, uN+

i
)| ≤ (u∗i − uci )

⊤Qi(xi)(u
∗
i − uci ) + qi(xi)(u

∗
i − uci )

+ Lgihi(xi)(d̃(u
∗
i )− d̃(uci ))

+ ν∗i Lgihi(xi)u
∗
i − νiLgihi(xi)u

c
i . (25)

Proof. By Assumption 4 and Lemma 1 we that u∗i ∈ ∂U i

is unique and therefore Lgihi(xi)u
∗
i > Lgihi(xi)ui, ∀ui ∈

U i \ {u∗i }. Thus, for all νi ≤ ν∗i , we have

ci(x
+
i , u

∗
i , ν

∗
i ) ≥ ci(x+

i , u
c
i , νi) (26)

for a given x ∈ RN . Consider when

ci(x
+
i , u

∗
i , ν

∗
i ) ≤ 0

and there exists νi > 0 such that

ψ2
i (x

+
i , u

c
i , u

c
N+

i

, νi) = ψ2
i (x

+
i , u

∗
i , u

∗
N+

i

, ν∗i ). (27)

Thus, by (27), we have∑
j∈N+

i

aij(u
∗
j − ucj) + ci(x

+
i , u

∗
i , ν

∗
i )− ci(x+

i , u
c
i , νi) = 0

and by (26) we have∑
j∈N+

i

aij(u
∗
j − ucj) ≤ 0.

In this way, we characterize the difference between the true
maximum capability of node i and its communicated maxi-
mum capability as

ϵi(xi, νi) := (u∗i − uci )⊤Qi(xi)(u
∗
i − uci ) + qi(xi)(u

∗
i − uci )

+ Lgihi(xi)(d̃(u
∗
i )− d̃(uci ))

+ ν∗i Lgihi(xi)u
∗
i − νiLgihi(xi)u

c
i ≥ 0,

(28)



where, by Assumptions 2-4 and Lemma 2, we have if νi ≥ ν∗i ,
then ϵi(xi, νi) = 0. Therefore, if we consider any deficiency
between the minimum requested assistance via Algorithm 1
and the actual actions of neighbors eij = aij(u

m
j −uj) for j ∈

N+
i , if

∣∣∣∑j∈N+
i
eij

∣∣∣ ≤ ϵi(xi, νi) then there exists a u∗i ∈ U i

and ν∗i such that
∑

j∈N+
i
aij(xi)uj + ci(x

+
i , u

∗
i , ν

∗
i ) ≥ 0.

Note that u∗i is a function of xi and uci is a function of
xi and νi, making (25) an implicitly time-varying function.
Thus, by Theorem 1 we may compute the resilience that node i
has to neighborhood non-compliance with respect to a given
neighborhood state and choice of νi = ηi + κi. Further, note
that if νi ≥ ν∗i , then uci = u∗i and (25) becomes |ei| = 0. Thus,
we can use ν∗i to characterize a kind of resilience boundary for
a given 1-hop neighborhood state xi at a given time, where any
νi ≥ ν∗i characterizes a system with no resilience. Note that,
given the time-varying nature of (25), a given ν∗i that induces
resilience for node i at one state xi may not induce resilience
for another state, meaning that ν∗i is also time-varying (see
Figure 3).

This measure of resilience may be useful in considering
parameter selection for each node in the network, depending
on the reliability of neighboring nodes and the consequences
of node failure. However, it should also be noted that, as (28)
increases, node i will place a greater burden of its safety on
its neighbors j ∈ N+

i , which could lead to an over-taxing
of neighbor control resources and under-utilization of the
resources of node i. Therefore, the context and consequences
of over-requesting by neighbors in specific applications should
be considered when selecting ηi and κi. We illustrate these
behaviors on networked epidemic processes in the following
section.

V. SIMULATIONS

We define an SIS networked epidemic spreading process [5]
with n nodes where xi is the proportion of infected population
at node i ∈ [n], with the infection dynamics defined by

ẋi = −(γi + ui)xi + (1− xi)
∑

j∈N+
i

βijxj , (29)

where γi > 0 is the recovery rate at node i, ui ∈ Ui ⊂ R≥0 is
a control input boosting the healing rate at node i, and βij ≥ 0
is the networked connection going from node j to node i (note
βii is simply the infection rate occurring at node i).

Let Ui = [0, ūi], where ūi is the upper limit on boosting the
healing rate at node i. We let each node define its individual
safety constraint as

hi(xi) = x̄i − xi, (30)

where x̄i ∈ (0, 1] is the defined safety threshold for the
acceptable proportion of infected individuals at node i. Thus,
the individual safe sets for each node are given by

Ci = {xi ∈ [0, 1] : hi(xi) ≥ 0}. (31)

For this example, we construct a simple 3-node system
where βij = 0.25 and βii = 0.5, for all j ̸= i and j = i,
respectively. To induce an endemic state, we set the healing

Fig. 1: Simulated networked SIS model from (29), with
each node implementing the collaborative safety framework
from [20], where n = 3 and ηi = 10, κi = 1 for all i ∈ [3].
Each node’s safety constraint x̄i is represented by the dotted
line of corresponding color and the input constraint Ui(t) for
all nodes i ∈ [3] is shown by the black dotted line, where
Ui(t) = [0, 0.75] if t < 10 and Ui(t) = [0, 0.6] if t ≥ 10. Note
that the system failure at t = 10 causes node 1 to violate its
safety constraint.

rate γi = 0.3, for all nodes. We set the safety constraints for
each node as x̄1 = 0.1, x̄2 = 0.12, and x̄3 = 0.18 and set the
initial infection levels at x = [0.04, 0.01, 0.02].

To illustrate how νi = ηi + κi can be used to increase
resilience to sudden changes or system failures, we simulate
the same system for both large νi (ηi = 10 and κi = 1)
and small νi (ηi = 0.3 and κi = 0.3), for all i ∈ [3], in
Figures 1 and 2, respectively. In both simulations, we set
the control limits Ui(t) = [0, 0.75] for t < 10 and then
perturb the system by suddenly reducing the control ability
to Ui(t) = [0, 0.6] for t ≥ 10, for all i ∈ [3]. Note that
the collaborative safety framework maintains safety for both
instances up to t = 10, and when the system experiences the
failure at t = 10 the dynamics react accordingly. For the less
resilient system, shown in Figure 1, we see node 1 violates
its safety requirement after the system failure at t = 10. By
contrast, we see in Figure 2 that when νi is small for all
i ∈ [3], it causes node 1 to over-request assistance from its
neighbors, leaving increased control ability for node 1 that
allows it to be resilient to the network failure, consistent with
the result in Theorem 1. Thus we see that the network is able
to operate reliably even after experiencing some failures when
νi is sufficiently small for all i, i.e., when νi ≪ ν∗i .

Recall from Assumption 5 that ν∗i is the minimum νi such
that uci = u∗i , where u∗i and uci are computed via (21) and (22),
respectively. To visualize the resilience boundary, ν∗i , of node
1 for a given network state, we fix x2 = x3 = 0.1 and
approximate ν∗1 in Figure 3 by incrementing ν1 by δν = 0.01
until u∗1 = uc1 for x1 = [0, x̄1]. In Figure 3, we see that, as
x1 approaches x̄1, the resilience boundary increases to include
larger values of ν1 that would enable resilience for node 1 to
non-compliant neighbors. We then use this approximation of
ν∗i to generate the surface in Figure 4 by computing ϵi(x, νi)
using (28) for xi ∈ [0, x̄1] and ν1 ∈ [0, 0.8]. Note that for small
x1 we have that the linear term q1(x) = LgiLfihi(xi)

⊤ +
LgiLfihi(xi) overpowers the negative definite quadratic term
Q1(x1), thereby setting ν∗1 = 0. Therefore, we see that
the tolerance for neighborhood non-compliance grows as ν1
decreases, and as x1 approaches the barrier of its safety
constraints it will require a larger amount of error tolerance
from its neighbors.



Fig. 2: The same simulation from Figure 1 except ηi = κi =
0.3 for all i ∈ [3]. Note that, unlike in Figure 1, node 1 is able
to satisfy its safety constraint for all t.

Fig. 3: A numerical approximation of ν∗1 for x2 = x3 = 0.1
with x1 ∈ [0, x̄1], where ν1 is incremented by δν = 0.01
until u∗1 = uc1. Notice as x1 approaches x̄1, the resilience
boundary increases to include larger values of ν1 that would
enable resilience for node 1 to non-compliant neighbors.

Fig. 4: The error tolerance in neighbor request fulfillment
ϵi(xi, νi), defined by (28), computed for x2 = x3 = 0.1 with
x1 ∈ [0, x̄1] and ν1 ∈ [0, 0.8]. Notice as x1 approaches the
barrier of its safety constraints it requires a larger amount of
error tolerance from its neighbors.

VI. CONCLUSION

In this letter, we have explored properties of resilience
for coupled agents with respect to non-compliance to safety
requests made to neighbors under a collaborative safety
framework. We have proposed an upper bound on the total
non-compliance each agent may tolerate while still being
able to satisfy their individual safety needs, given its 1-hop
neighborhood states and knowledge of networked dynamics.
Future work includes computing the time-varying upper bound
ν∗i explicitly, incorporating this bound directly into the im-
plementation of Algorithm 1, and extending this property
of non-compliance to include general uncertainty and noise
in the coupled dynamic system. Additionally, thus far our
collaborative framework assumes all agents are cooperative;
however, since the notion of non-compliance naturally implies
scenarios where some agents may act maliciously, further work
will account for such non-cooperative agents.
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