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Abstract— We consider a susceptible-infected-
susceptible (SIS) epidemic model in which a large
group of individuals decide whether to adopt partially
effective protection without being aware of their individual
infection status. Each individual receives a signal which
conveys noisy information about its infection state, and
then decides its action to maximize its expected utility
computed using its posterior probability of being infected
conditioned on the received signal. We first derive the
static signal which minimizes the infection level at the
stationary Nash equilibrium under suitable assumptions.
We then formulate an optimal control problem to determine
the optimal dynamic signal that minimizes the aggregate
infection level along the solution trajectory. We compare
the performance of the dynamic signaling scheme with
the optimal static signaling scheme, and illustrate the
advantage of the former through numerical simulations.

Index Terms— Game theory, Agents-based systems, De-
centralized control

I. INTRODUCTION

Effective containment of spreading processes or epidemics
is a challenging problem. Prior works have developed op-
timal control techniques for containing epidemics via non-
pharmaceutical interventions (such as wearing masks or social
distancing) [1], [2], allocation of limited medical resources in-
cluding vaccines and testing kits [3], [4], and limiting mobility
among individuals [5]. However, implementing the optimal
control actions in the above settings is not straightforward
since the suggested actions often require a large number of
individuals to adhere to them, many of whom may not even
be aware of their true infection status.

Past works have investigated the impacts of decentralized
decision-making by a large group of selfish and strategic
individuals on epidemic containment in the framework of
game theory [6]–[9]. In most of these prior works, the agents
were assumed to be aware of their true infection status.
However, there are epidemics with asymptomatic infections
and in some cases, similar symptoms are observed for multiple
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diseases; both the above characteristics were true for the
recent COVID-19 pandemic. In addition, limited availability
of testing kits made it difficult for individuals to learn about
their true infection status in frequent intervals.

Consequently, individuals often relied on certain smart-
phone applications [10] to learn about their infection status.
These applications collected information about several health
indicators (such as pulse rate, body temperature, and sleep
patterns) from the user, and whether the user was in proximity
to other infected users to determine its risk of infection.
However, the information conveyed by such applications is not
free from error, and is potentially biased. Nevertheless, these
applications provide a scalable manner in which individuals
can be influenced to adopt protection measures and limit the
spread of the epidemic. In this letter, we investigate how to
design suitable signals to influence the behavior of strategic
individuals towards the optimal containment of SIS epidemics
in the framework of Bayesian persuasion [11], [12].

Although the Bayesian persuasion and information design
frameworks have been applied in diverse settings, such as
routing games [13], [14], resource allocation games [15],
and modeling deception and privacy [16], there are only a
few works that explore their application in the context of
epidemics. Early attempts in this direction include [17] and
[18], neither of which consider any specific compartmental
epidemic model. In a recent work [19] by a subset of authors of
this letter, the authors consider a game-theoretic setting where
a large population of individuals adopt protection against the
SIS epidemic with asymptomatic infections by relying on a
noisy signal they receive from the sender. The authors char-
acterize the stationary Nash equilibrium (SNE) of the game
when the signaling scheme remains unchanged throughout the
duration of the epidemic.

In this work, we build upon [19] and investigate the optimal
signaling scheme to minimize the proportion of infected
individuals. First we derive the optimal static signal that
minimizes the proportion of infected individuals at the SNE
under suitable assumptions. We then formulate an optimal
control problem which aims to minimize the integral of the
time-varying infected proportion subject to constraints that
include the SIS epidemic dynamics as well as an evolutionary
learning dynamics that capture the evolution of the actions
by the individuals. We numerically illustrate the trajectories
of infected proportion obtained under the optimal static and
dynamic signaling schemes. The results show that the tra-



jectory of infected proportion is smaller under the dynamic
(time-varying) signaling scheme compared to the optimal static
signaling scheme, though the difference reduces with time as
the trajectories converge to the corresponding SNE.

II. SIS EPIDEMIC UNDER BAYESIAN PERSUASION

In this section, we briefly review the setting and main result
from [19]. We consider a large group of agents, each of whom
is either susceptible (S) or infected (I) at a given point of time,
but is unaware of its exact infection state. The proportion of
infected individuals at time t is denoted by y(t). Each agent
receives a noisy signal x from the sender from the set {S̄, Ī}.
The signaling scheme is governed by two parameters µS, µI ∈
[0, 1] with

µS := P[x = S̄ | S], µI := P[x = Ī | I].

The agents are aware of the signaling scheme, i.e., the values
of µS and µI. After receiving the signal, each agent computes
its posterior probability of being infected as

π+[I|x] = P[x|I]y(t)
P[x|I]y(t) + P[x|S](1− y(t))

,

with π+[S|x] = 1− π+[I|x] and y(t) acts as the prior.
Each individual chooses among two available actions:

adopting protection and remaining unprotected, denoted by
a ∈ {P,U}. Adopting protection comes with a cost CP > 0
while an infected individual that remains unprotected incurs
cost CU > 0. An infected agent that adopts protection (or
remains unprotected) spreads infection with probability βP
(respectively, βU), with 0 < βP < βU < 1. A susceptible agent,
upon adopting protection, reduces its likelihood of becoming
infected by a factor α ∈ (0, 1). Further, γ ∈ (0, 1) represents
the recovery rate from the disease. Let zS̄(t) (respectively,
zĪ(t)) denote the proportion of agents who remain unprotected
among the agents that receive signal S̄ (respectively, Ī) at time
t. Consequently, the proportion of infected agents evolves as

ẏ = ((1− y)[βP + (βU − βP)(zĪµI + zS̄(1− µI))]

× [α+ (1− α)(zS̄µS + zĪ(1− µS))]− γ)y (1)
=: ((1− y)βeff(zS̄, zĪ;µS)− γ)y,

where the dependence on t is omitted for better readability.
Analogous to the classical SIS epidemic model [20], the

above dynamics has two equilibrium points: a disease-free
equilibrium, yDFE = 0 which always exist; and an endemic
equilibrium, yEE(zS̄, zĪ;µS) := 1 − γ

βeff(zS̄,zĪ;µS)
which exists

only when βeff(zS̄, zĪ;µS) > γ, and is strictly positive. We
now impose the following assumptions.

Assumption 1: The signal revealed to infected agents is
truthful, i.e., µI = 1; CP < CU, which incentivizes infected
agents to adopt protection; and the recovery rate satisfies
γ < αβP.

The assumption µI = 1 is motivated by the fact that during
an actual pandemic, the signaling scheme will err on the side
of being safe at the expense of a larger false alarm rate. Since
0 < βP < βU < 1, α ∈ (0, 1), and (µS, µI, zS̄, zĪ) ∈ [0, 1]4,
it follows from (1) that αβP ≤ βeff(zS̄, zĪ;µS). Thus, the

assumption γ < αβP guarantees the existence of the endemic
equilibrium yEE with a nonzero infected proportion.1

The expected utility (with respect to posterior π+) received
by an agent upon receiving signal x ∈ {S̄, Ī} and choosing
action a ∈ {P,U} is denoted by U [x, a], and the dependence
of U [x, a] on the tuple (y, zS̄, zĪ) is suppressed for better
readability. Following [19, Section III], the difference in the
expected utilities for each x is given by

∆U [S̄] = (1− α)L[βP + (βU − βP)zĪ]y − CP,

∆U [Ī] = π+[S|Ī]((1− α)L[βP + (βU − βP)zĪ]y − CU)

+ CU − CP, (2)

where L > 0 is the loss incurred by an agent upon infection.2

Since the utility of an agent depends on the strategies chosen
by all other agents (zS̄, zĪ), we study their interaction within
a game-theoretic framework. A tuple (y⋆, z⋆S̄ , z

⋆
Ī) is said to be

a stationary Nash equilibrium (SNE) when (i) y⋆ is the unique
nonzero endemic equilibrium of (1) with zĪ = z⋆Ī and zS̄ = z⋆S̄ ,
and (ii) the following mixed complementarity conditions are
satisfied:

∆U [S̄] ⊥ (0 ≤ z⋆S̄ ≤ 1), ∆U [Ī] ⊥ (0 ≤ z⋆Ī ≤ 1).

A more elaborate discussion on the SNE is provided in [19].
Before stating the main result on the characterization of SNE,
we state the following notation from [19]:

yEE(zS̄, zĪ;µS) := 1− γ

βeff(zS̄, zĪ;µS)
, (3)

h(zĪ, µS) := (1− α)L(βP + (βU − βP)zĪ)yEE(1, zĪ;µS)

− CP,

g(zĪ, µS) := yEE(1, zĪ;µS)(CU − CP)

− (1− µS)(1− yEE(1, zĪ;µS))(−h(zĪ, µS)). (4)

The quantity µmax
S is defined in [19, Equation (11)] as:

µmax
S :=

{
0, if g(0, 0) ≥ 0,

µ⋆
S, where g(0, µ⋆

S) = 0, µ⋆
S ∈ (0, 1).

(5)

Finally, we define

y∗P := 1− γ

αβP
, y∗INT :=

CP

L(1− α)βP
,

z†S̄ :=
γ − αβP(1− y∗INT)

βP(1− α)(1− y∗INT)µS
,

µmin
S := 1− (βU − γ)(CU − CP)

γ(CP − (1− α)L(βU − γ))
.

With the above notations in hand, the characterization of the
SNE (y⋆, z⋆S̄ , z

⋆
Ī) as established in [19] is stated below.

Theorem 1: ([19, Theorem 1]) Under Assumption 1, we
have the following characterization of the SNE:

1) (y∗P, 0, 0) is the SNE if and only if y∗P > y∗INT.

1Since the infected proportion is zero at the disease-free equilibrium, our
main objective is to minimize the nonzero infected proportion at the endemic
equilibrium.

2A summary of important notations introduced above is provided in Table
I of the extended version of this work [21].



2) (y∗INT, z
†
S̄
, 0) is the SNE if and only if z†

S̄
∈ (0, 1) or

equivalently,

1− γ

αβP
< y∗INT < 1− γ

βP(α+ (1− α)µS)
.

3) (yEE(1, 0;µS), 1, 0) is the SNE if and only if

µS ∈ [µmax
S , 1], 1− γ

βP(α+ (1− α)µS)
≤ y∗INT.

4) (yEE(1, z
†
Ī;µS), 1, z

†
Ī) with z†Ī ∈ (0, 1) being the unique

value satisfying g(z†Ī, µS) = 0 is the SNE if and only if
µS < µmax

S , and either of the following two conditions
are satisfied:

L(1− α)(βU − γ) < CP with µS > µmin
S , or

L(1− α)(βU − γ) > CP.

5) (1− γ
βU
, 1, 1) is the SNE if and only if L(1−α)(βU−γ) <

CP, and µS < µmin
S .

The above result characterizes the SNE for a given set of
game parameters and a given value of µS.

III. OPTIMAL STATIC SIGNAL

In this section, we consider the case where the principal or
the sender chooses the signaling scheme in order to minimize
the infected proportion at the SNE. The optimal static signal
µS that achieves the smallest proportion of infected individuals
at the SNE is denoted by µ⋆

S(stat). Our analysis holds under
the following assumption.

Assumption 2: The protection cost CP satisfies CP > (1−
α)L(βU − γ).

Remark 1: Note that Assumption 2 implies

CP >(1− α)L(βU − γ) =⇒ CP

(1− α)LβU
> 1− γ

βU

=⇒ y∗INT :=
CP

(1− α)LβP
>

βU
βP

− γ

βP
> 1− γ

αβP
=: y∗P,

where the last inequality follows since βU > βP and α ∈ (0, 1).
Consequently, the SNE (y∗P, 0, 0) (Case 1 of Theorem 1) does
not exist under Assumption 2. Now, observe that a necessary
condition for existence of the SNE (y∗INT, z

†
S̄, 0) is

CP

(1− α)LβP
< 1− γ

βP(α+ (1− α)µS)
< 1− γ

βU
,

which is not possible under Assumption 2. Nevertheless, at
these two SNEs, the proportions of infected agents are y∗P
and y∗INT, both of which do not depend upon µS, and hence
there is no notion of an optimal signal. More importantly,
the existence of the remaining three SNEs, whose infected
proportion depends on µS is not affected by Assumption 2.

We start with the following lemma.
Lemma 1: Suppose Assumptions 1 and 2 hold. Let µmax

S >
0 and µmin

S < µmax
S . Then, the endemic infection level

yEE(1, z
†
Ī;µS) is strictly decreasing in µS over the range µS ∈

(µmin
S , µmax

S ).
Proof: It follows from Theorem 1 that when µmax

S >
0 and µS ∈ (µmin

S , µmax
S ), the SNE is given by

(yEE(1, z
†
Ī;µS), 1, z

†
Ī). In addition, CP > (1 − α)L(βU − γ)

implies µmin
S < 1. Further, it can be shown that µmax

S ∈ (0, 1).
The infected proportion at the SNE is given by

yEE(1, z
†
Ī;µS) = 1 (6)

− γ

(βP + (βU − βP)z
†
Ī)(α+ (1− α)(z†Ī + (1− z†Ī)µS))

,

where z†Ī ∈ (0, 1) is the unique value satisfying g(z†Ī, µS) = 0.
As µS varies in the range (µmin

S , µmax
S ), z†Ī ∈ (0, 1) varies

while preserving g(z†Ī, µS) = 0. In the rest of the proof, we
denote z†Ī(µS) to indicate that z†Ī is a function of µS.

With a slight abuse of notation, we use yEE(µS) to denote
the endemic infection level yEE(1, z

†
Ī;µS) at the SNE. It should

be noted that yEE(µS) is a function of only µS, since z†Ī(µS)
itself is a function of µS. We now introduce the following
functions:

βz†
Ī
(µS) := βP + (βU − βP)z

†
Ī(µS),

αz†
Ī
(µS) := α+ (1− α)(z†Ī(µS) + (1− z†Ī(µS))µS),

Leq(µS) := (1− α)L(βU − βP)(1− µS)(1− yEE(µS)),

w(µS) := βz†
Ī
(µS) · αz†

Ī
(µS).

Note that when α ∈ (0, 1), µS ∈ (0, 1) and 0 < βP < βU < 1,
w(µS) is a non-zero, continuous and differentiable function of
µS. Therefore, yEE(µS) = 1 − γ

w(µS)
is also continuous and

differentiable in µS. We now introduce the operator ∇a(b)
to denote the derivative of b w.r.t a, i.e., ∇a(b) := d

da (b).
By applying the operator ∇µS(·) on both sides of the above
identity, we obtain ∇µS(yEE) =

γ
(w(µS))2

∇µS(w). Thus, when
w(µS) is strictly decreasing in µS, yEE(µS) is also strictly
decreasing in µS.

By substituting h(z†Ī(µS), µS) in g(z†Ī(µS), µS), and equat-
ing g(z†Ī(µS), µS) = 0, we obtain

z†Ī(µS) =
CPw(µS)

L(w(µS)− γ)(1−α)(βU − βP)
− CU−CP

Leq(µS)

− βP
βU − βP

. (7)

The R.H.S. of the above equation is well-defined, and contin-
uous in µS over the specified range. Differentiating the above
equation, we obtain ∇µS(z

†
Ī) as

− γ∇µS(w(µS))
( CP

L(w(µS)− γ)2(1− α)(βU − βP)

+
CU − CP

γw(µS)Leq(µS)

)
− CU − CP

(1− µS)Leq(µS)
. (8)

Detailed derivation of both the above equations is provided in
the extended version [21].

Now, differentiating w(µS) = βz†
Ī
(µS) ·αz†

Ī
(µS), we obtain

∇µS(w) = ∇µS(z
†
Ī)[βz†

Ī
(µS)(1− α)(1− µS)+

αz†
Ī
(µS)(βU − βP)] + βz†

Ī
(µS)(1− α)(1− z†Ī(µS)).

Substituting ∇µS(z
†
Ī) from (8) into the above equation yields

∇µS(w) =
[
βz†

Ī
(µS)(1− α)(1− µS) + αz†

Ī
(µS)(βU − βP)

]



×
[
− γ∇µS(w)

( CP

L(w(µS)− γ)2(1− α)(βU − βP)

+
CU − CP

γw(µS)Leq(µS)

)
− CU − CP

(1− µS)Leq(µS)

]
+ βz†

Ī
(µS)(1− α)(1− z†Ī(µS)).

By rearranging the terms, we can write ∇µS(w) =
N
D where

N =−
[
βz†

Ī
(µS)(1− α)(1− µS)

+ αz†
Ī
(µS)(βU − βP)

] CU − CP

(1− µS)Leq(µS)

+ βz†
Ī
(µS)(1− α)(1− z†Ī(µS)),

D =1 +
[
βz†

Ī
(µS)(1− α)(1− µS) + αz†

Ī
(µS)(βU − βP)

]
× γ

( CP

L(w(µS)− γ)2(1− α)(βU − βP)

+
CU − CP

γw(µS)Leq(µS)

)
. (9)

Note that the denominator (9) is a positive quantity. There-
fore, for w(µS) to be a strictly decreasing function of µS, we
must have N < 0, or equivalently

βz†
Ī
(µS)(1− α)

(
1− z†Ī(µS)−

CU − CP

Leq(µS)

)
< αz†

Ī
(µS)(βU − βP)

CU − CP

(1− µS)Leq(µS)
. (10)

We now show that (10) is satisfied under Assumption 2.
Since, CP > (1− α)L(βU − γ) holds and yEE(µS) < 1− γ

βU
,

the following holds true:

CP

(1− α)LyEE(µS)
> βU

=⇒ CPw(µS)

(1− α)L(w(µS)− γ)
> βU

=⇒ βU
βU − βP

− CPw(µS)

(1− α)L(w(µS)− γ)(βU − βP)
< 0

=⇒ 1 +
βP

βU − βP
− CPw(µS)

(1− α)L(w(µS)− γ)(βU − βP)

+
CU − CP

Leq(µS)
<

CU − CP

Leq(µS)
. (11)

On careful examination of (7) and (11), we find that the L.H.S.
of (11) is equal to 1 − z†Ī(µS), which implies 1 − z†Ī(µS) <
CU−CP

Leq(µS)
. Substituting this inequality into (10), we obtain the

L.H.S. of (10) is a negative quantity, whereas, the R.H.S. is a
positive quantity.

As a result, ∇µS(w) < 0, and consequently, ∇µS(yEE) < 0.
Thus, the endemic infection level yEE(µS) is strictly decreasing
in µS within the interval µS ∈ (µmin

S , µmax
S ).

Now we state our main result which reveals the optimal
static persuasion signal.

Theorem 2: Suppose Assumptions 1 and 2 hold. Then, the
optimal static signal which leads to the smallest proportion of
infected individuals at the SNE is µ⋆

S(stat) = µmax
S .

Proof: It follows from Remark 1 that the SNEs described
in the first two cases of Theorem 1 do not exist under
Assumption 2. We now focus on the remaining equilibria.

First, we observe that µS < µmin
S cannot be the optimal

signal, since it results in the SNE (1− γ
βU
, 1, 1), which has the

highest infection level compared to other SNEs; note that the
entire population remains unprotected in this SNE.

It follows from Lemma 1 that when µS increases from µmin
S

till µmax
S , the infected fraction yEE(1, z

†
Ī;µS) is monotonically

decreasing in µS. Thus, the range µS ∈ (µmin
S , µmax

S ) does not
contain the optimal signal.

Now, at the SNE (yEE(1, 0;µS), 1, 0), the infection level

yEE(1, 0;µS) = 1− γ

βP(α+ (1− α)µS)

is strictly increasing in µS ∈ [µmax
S , 1]. In other words, the

infected proportion at the SNE is monotonically decreasing in
µS when µS ∈ (µmin

S , µmax
S ) and monotonically increasing

when µS ∈ [µmax
S , 1]. Finally, leveraging the monotonicity

and continuity of g(zĪ, µS) in both of its arguments, it can
be shown3 that as µS approaches µmax

S from below, z†
Ī
(µS)

approaches 0. Consequently, the infected proportion at the
SNE is continuous at µmax

S .
The above analysis for µS ∈ [µmax

S , 1] also subsumes
the corner case where µmax

S = 0, under which the SNE is
(yEE(1, 0;µS), 1, 0) for the entire range of µS ∈ [0, 1]. In this
case, (yEE(1, 0;µS), 1, 0) is monotonically increasing in µS for
µS ∈ [0, 1]. Thus, µmax

S is the optimal static signal.
The above result can be interpreted as the Stackelberg

equilibrium where the principal or the leader aims to minimize
the infected proportion, and the agents act as followers who
respond to the signaling scheme of the leader by playing the
SNE strategy profile. In Section V, we numerically show that
when Assumption 2 is violated, then µmax

S is not necessarily
the optimal signal.

IV. OPTIMAL DYNAMIC SIGNAL

We now introduce the dynamic signaling scheme where the
sender is allowed to vary or modulate the persuasive signal
over time depending on the states. To this end, we formulate
a finite-horizon optimal control problem where the goal is to
minimize the integral of the infected proportion y(t) subject to
the epidemic dynamics (1) and evolutionary learning dynamics
adopted by the individuals to update their strategies zS̄, zĪ.
Specifically, we adopt the Smith dynamics [22] to capture the
evolution of the strategies since the stationary points of the
Smith dynamics corresponds to the Nash equilibrium of the
game, and vice versa [23].

However, the Smith dynamics is not smooth due to the
presence of a max operator. Consequently, we relax this
operator with a soft-max function with parameter σ ∈ [0,∞);
when σ increases, the relaxed dynamics closely approximates
the Smith dynamics. We now formally state the finite-time
horizon optimal control problem as

min
µS

∫ T

0

y(t) dt

s.t. ẏ = ((1− y)[βP + (βU − βP)zĪ]

× [α+ (1− α)(zS̄µS + zĪ(1− µS))]− γ)y,

3Please refer to the extended version [21] for a more detailed proof.
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Fig. 1. Evolution of proportion of infected individuals (left), the proportions of individuals who remain unprotected (middle), and the signal µS (right)
under both the static (dashed) and dynamic (solid) signaling schemes.

żS̄ =
1− zS̄

1 + e(σ∆U [S̄])
− zS̄

1 + e(−σ∆U [S̄])
,

żĪ =
1− zĪ

1 + e(σ∆U [Ī])
− zĪ

1 + e(−σ∆U [Ī])
,

0 ≤ µS ≤ 1, (12)

where e(·) is the exponential function and ∆U [S̄] and ∆U [Ī]
are defined in (2). We denote the optimal dynamic signal by
µ⋆
S(dyn)(t), and omit t when required for better readability.

V. NUMERICAL RESULTS

We now compare the state trajectory under the static and
dynamic signaling schemes via numerical simulations. The
parameters whose values remain unaltered throughout this
section are given in the following table.

α γ L y(0) zS̄(0) zĪ(0) σ

0.45 0.2 80 0.01 0.5 0.5 20

We choose the value of L to be large enough to capture
the adverse health and financial impacts of infection. For
σ = 20, dynamics of zS̄ and zĪ closely approximate the Smith
dynamics. In [24], the authors showed that an ideal surgical
mask reduces COVID-19 infection risk by approximately 70%.
In order to model partial effectiveness, we choose α = 0.45
which corresponds to 55% reduction.
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Fig. 2. Infected proportion at the SNE with respect to µS when
Assumption 2 is satisfied (left); and not satisfied (right).

1) Static Signaling: Here, we vary µS from µS = 0.01
to µS = 0.96, and at each value of µS, we obtain the
infected proportion at the SNE. First, we choose the following
parameter values: βU = 0.65, βP = 0.5, CP = 25, CU = 32,
which satisfy Assumption 2. For these parameters, we have
µmin
S = −2.028 and µmax

S = 0.566. The left panel of Figure 2
shows the infection level at the SNE with respect to µS under
the above parameters. When µS ∈ [0.01, 0.566), the SNE is
given by (yEE(1, z

†
Ī;µS), 1, z

†
Ī) following Theorem 1, and the

equilibrium infection level decreases as µS increases from 0.01
to 0.566. As µS grows beyond µS = µmax

S = 0.566, the SNE
has the form (yEE(1, 0;µS), 1, 0), with y⋆ strictly increasing
in µS. Thus, under Assumption 2, the infected proportion at
the SNE is smallest when µS = µmax

S .
We now consider parameter values which violate Assump-

tion 2. We choose βU = 0.9, βP = 0.7, CP = 19, CU = 20
under which µmax

S = 0.349. The right panel of Figure 2 shows
that the infected proportion at the SNE is not minimized at
µS = µmax

S ; rather increasing with µS.
2) Dynamic Signaling: We now illustrate the effectiveness

of the optimal dynamic signaling scheme compared to the
optimal static signaling scheme. We set the time horizon
T = 23 and parameters βU = 0.65, βP = 0.5, CP = 20,
and CU = 25 in accordance with Assumption 2. For the above
parameters, the reproduction number is 2.5 under protection
and 3.25 when protection is not adopted. These values fall
within the empirically estimated range of the reproduction
number for COVID-19 [25, Figure 1].

For the above set of parameters, we obtain µ⋆
S(stat) =

µmax
S = 0.548, and determine the corresponding SNE fol-

lowing Theorem 1. We then solve the optimal control problem
(12) via the numerical solver Quasi-Interpolation based Trajec-
tory Optimization (QuITO) [26] which uses a direct multiple
shooting (DMS) technique. We plot y(t), zS̄(t), zĪ(t), and the
optimal control input under both static and dynamic signaling
in Figure 1. The dashed (respectively, solid) lines represent the
quantities corresponding to the static (respectively, dynamic)
signaling scheme. The rightmost plot in Figure 1 shows the
optimal signal chosen by the sender under both schemes;
the optimal dynamic signal converges to the optimal static
signal µmax

S towards the end of the simulation. The middle
panel of Figure 1 represents the evolution of strategies zS̄
and zĪ, whereas the left panel plot shows the trajectory of
the infected proportion under both schemes. As expected, the
infected proportion under the dynamic signaling scheme is
smaller than the infected proportion under the static signaling
scheme throughout the simulation; indeed the former aims to
minimize the infection level along the entire trajectory while
the latter is only concerned with the SNE.

Remark 2: While we discuss numerical solutions of (12) in
this section, the nonlinearity in the dynamics of y, zS̄, and zĪ
(particularly in the denominators in the dynamics of zS̄ and
zĪ), renders the analysis of the Lagrangian function extremely
challenging. Thus, deriving closed-form analytical solutions of
the optimal dynamic signal is beyond the scope of this letter,



and remains a challenging open problem.
3) Relaxing the Assumption µI = 1: We now examine the

consequence of relaxing the assumption µI = 1. We discretize
both µS and µI in steps of 0.005 over the interval [0.01, 1].
For each µI, we compute the infected proportions at the SNE
over all possible values of µS, denoted by yEE(µS, µI) with
a slight abuse of notation. On the left panel of Figure 3, we
plot µopt

S (µI) := argminµS
yEE(µS, µI), i.e., the value of µS

that results in the smallest infected proportion at the SNE
with respect to µI. The corresponding infected proportion
(minµS yEE(µS, µI)) is shown on the right panel for three
combinations of βP and CP satisfying Assumptions 1 and
2. All other parameter values are kept identical to those in
Section V.1 that satisfy Assumption 2.
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Fig. 3. Variation of µopt
S (µI) (left), and the infected proportion at the

SNE under (µopt
S (µI), µI) (right) with respect to µI.

As expected, the optimal µS at µI = 1 coincides with the
corresponding µmax

S . Now observe that as µI decreases below
1, µopt

S (µI) does not see significant change compared to µmax
S .

Thus, the optimal signal µS is somewhat robust with respect
to µI. However, the magnitude of the minimum infection level
(minµS yEE(µS, µI)) increases as µI decreases from 1 to 0.5.
Furthermore, the plots exhibit symmetry around µI = 0.5
because the posterior probabilities satisfy

π+[s | S̄]
(
µS, µI

)
= π+[s | Ī]

(
1− µS, 1− µI

)
,

for s ∈ {S,I}. Finally, we note that the smallest value of
yEE(µ

opt
S (µI), µI) is obtained at µI = 1. Establishing the

optimality of µI = 1 remains an open problem.

VI. CONCLUSIONS

In this work, we investigated SIS epidemic containment
via Bayesian persuasion of a large population of agents who
strategically adopt a partially effective protection measure. We
first derived the optimal static signal which minimizes the
infected proportion at the stationary Nash equilibrium. We
then formulated a finite-horizon optimal control problem to
determine the optimal dynamic signaling scheme to minimize
the infected proportion along the solution trajectory. Simula-
tion results show that the dynamic signaling scheme is more
effective in containing the infection prevalence over the entire
trajectory. This work can be extended along several directions,
including to networked epidemic models, and to settings where
the parameters of the epidemic dynamics and cost functions
of the players are not known to the sender.
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