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Abstract— Modeling epidemic spread is critical for in-
forming policy decisions aimed at mitigation. Accordingly,
in this work we present a new data-driven method based
on Gaussian process regression (GPR) to model epidemic
spread through the difference on the logarithmic scale of
the infected cases. We bound the variance of the predic-
tions made by GPR, which quantifies the impact of epi-
demic data on the proposed model. Next, we derive a high-
probability error bound on the prediction error in terms
of the distance between the training points and a testing
point, the posterior variance, and the level of change in the
spreading process, and we assess how the characteristics
of the epidemic spread and infection data influence this
error bound. We present examples that use GPR to model
and predict epidemic spread by using real-world infection
data gathered in the UK during the COVID-19 epidemic.
These examples illustrate that, under typical conditions, the
prediction for the next twenty days has 94.29% of the noisy
data located within the 95% confidence interval, validating
these predictions. We further compare the modeling and
prediction results with other methods, such as polynomial
regression, k-nearest neighbors (KNN) regression, and neu-
ral networks, to demonstrate the benefits of leveraging GPR
in disease spread modeling.

Index Terms— Epidemic Modeling, Epidemic Prediction,
Error Bound, Gaussian process regression

[. INTRODUCTION

ODELING and predicting the spread of diseases is crit-
ical for understanding spreading patterns and decision-
making for epidemic mitigation [1], [2]. Existing epidemic
modeling and prediction techniques typically construct com-
partmental models by selecting model structures and param-
eters to fit spreading data [3], [4], e.g., in the susceptible-
infected-recovered (SIR) model. Distinct from existing works,
we leverage Gaussian process regression to model spreading
trends by studying the number of infected cases directly,

without using any particular compartmental model.
Gaussian process regression excels at capturing complex,
nonlinear relationships without relying on predefined func-
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tional forms and can effectively handle small datasets, which
are common in measuring disease spreading [5], [6], [7]. For
instance, [5] employs a spatio-temporal covariance function
and data from various states and all weeks of the year to
model influenza-like illness forecasting. Meanwhile, [7] trains
individual Gaussian process (GP) models for each forecast
based on a relatively small set of features from previous weeks,
resulting in small, but reliable prediction intervals. Moreover,
although existing works leverage Gaussian processes to model
daily infected cases, they often overlook the fact that both the
daily infected cases and the associated noise cannot follow
a normal or log-normal distribution [8]. Therefore, applying
Gaussian process regression directly to daily infected cases
may not produce accurate results. In addition, these studies
typically focus on empirical results of applying GPR to model
and predict disease dynamics in time-series data, without
delving into theoretical aspects.

To address these challenges, we introduce an approach to
modeling the change on the logarithmic scale of the number
of infected cases using Gaussian process regression, while
also providing insights into model uncertainty. We propose
an upper bound on posterior variance to assess the impact
of epidemic data and develop a high-probability error bound
to examine how epidemic spread and infection data influence
the accuracy of predictions and confidence in them. These
results help bridge the gap between theoretical analyses and
practical applications in epidemic modeling, paving the way
for predictive control methods in future efforts.

To illustrate this framework, we apply it to real COVID-
19 infection data from the United Kingdom. These results
show that by selecting appropriate parameters in the modeling
process, predictions for twenty days into the future capture
94.29% of the actual data from those days within a 95%
confidence interval, which validates the prediction accuracy in
practice. As we show, most prediction errors arise from either
drastic changes in the spreading trend or a limited number of
available data samples, both of which increase uncertainty.
We further use the same dataset to compare the modeling
and prediction results with other methods, such as polynomial
regression, k-nearest neighbors (KNN) regression, and neural
networks, to demonstrate the benefits of leveraging GPR for
disease spread modeling.

The rest of the paper is organized as follows: Section II
provides background and problem statements; Section III
proposes the model, analyzes prediction uncertainty, and il-
lustrates the results with examples; Section IV concludes.



Notation: We use R and N to denote the sets of reals
and naturals, respectively. We define n = {1,2,...,n} for
n € Nso. We use |S| to denote the cardinality of a finite set S.
A compact interval T is of the form [a,b], where a,b € R>
and @ < b. Its length is given by T = b—a. For v € R", we use
diag{v} € R™*" for the diagonal matrix whose *" diagonal
entry is v;, for 4 € n. For a real symmetric matrix A € R™*",
let [A];; denote its i*" j'" entry and Apax(A) denote its largest
eigenvalue. We write I, € R™ "™ for the identity matrix.
Let AV (u,0?) denote the one-dimensional normal distribution
with mean y and variance 0. We use exp(-) and log(-) to
denote the exponential function and the natural logarithmic
function, respectively. We use p(-) to represent the probability
distribution of a random variable.

[I. BACKGROUND AND PROBLEM FORMULATION

This section introduces the Gaussian process regression and
states the problems that we solve in the rest of the paper.

A. Gaussian process regression

We briefly introduce the one-dimensional Gaussian process
regression [9]. Consider an unknown function f : R — R and
n inputs captured by X = [zq,... ,xn]T € R™, where z; € R,
1 € n, and n € N5(. The corresponding outputs are given by
the vector F' = [f(x1),..., f(z,)]" € R™, where the n out-
puts in F' follow a joint Gaussian distribution. The mean of the
distribution is given by m(X) = [m(z1), - ,m(z,)]" € R™
Suppose that the observation of each output f(x;) is corrupted
with zero-mean independent Gaussian noise, i.e., y(z;) =
f(z;) + €i, where &; ~ N(0,02), and 0? > 0 denotes the
variance of g;. Then, the covariance matrix of the noise is
Y = diag{o?,...,02} € R™*" Using the noisy training
dataset {(z;,y(z;))}",, we can employ GPR to model the
input-output relation f : R — R at a training location z;, for
i € n, as well as to predict the output f(z*) € R at some
testing location z* € R, where z* is not necessarily one of
the x;’s.

Gaussian process regression is a kernel-based approach. We
use k(-,-) : R x R — Rx¢ to represent the potential kernel
function [10]. Let K(X, X) € RL5" denote the kernel matrix
of the training points, where [K (X, X)];; = k(z;,z;) denotes
the covariance between two training points x; and z;, for
i,7 € n. For a testing point z*, we define K (z*, X) € R%"
as the kernel vector such that [K(z*, X)]; = k(z*,z;), for
J € n. Therefore, K (z*, X) captures the covariances between
the testing point z* and all training points. As Gaussian
process regression operates as a Bayesian inference approach,
we consider a zero-mean prior for generality [9], though the
results we develop can be generalized for any other prior.

Consider the posterior distribution for the predicted random
variable f(z*) at the testing location z* conditioned on
the noisy training data {(x;,y(z;))}"_,. The posterior mean
m(x*) and posterior variance o?(z*) at the testing location
x* are given by the following result [9, Equation (2.22)].

Proposition 1. Let Y = [y(z1), - ,y(x,)]". Then we have
p(f(@*) [{y(@)Hoy) = N(my (2%), 0% (2)), where

my (z*) = K(z*, X)(K(X,X) + )7,
0% (z*) = k(x*, %)

— K X)(K(X,X)+2) ' K(z*, X)".

B. Problem Formulation

As discussed in the introduction, critical metrics such as
the number of infected cases are essential for assessing epi-
demic spread. However, both these cases and their associated
noise do not follow a normal or log-normal distribution [8].
Furthermore, epidemic severity is typically monitored through
population testing and data reporting, where observation noise
is unavoidable. However, existing works often overlook these
limitations and use Gaussian processes to model the spread by
directly focusing on the trend of time-series infection cases.
Additionally, missing cases frequently arise due to insufficient
testing or underreporting. Therefore, in this work, we solve
the following problems:

Problem 1. Develop a new model that uses Gaussian process
regression to model epidemic spread, and show the effective-
ness of this approach analytically and numerically.

Problem 2. Quantify how noise and data sample size affect
the prediction results when using the model from Problem 1.

Problem 3. Develop a high-probability error bound on the
prediction error to analyze the impact of data, and validate
this result on real-world data.

Problem 4. Compare the GPR modeling and prediction results
with other methods to demonstrate its benefits using real-world
spread data.

I1l. GAUSSIAN PROCESS REGRESSION FOR MODELING
AND PREDICTING EPIDEMIC SPREAD

In Section III-A, we model epidemic spread using Gaussian
process regression, and then quantify its accuracy in a lemma
and an example. This solves Problem 1. In Section III-B,
we establish an upper bound on the prediction variance to
assess the impact of infection data, which solves Problem 2.
Section III-C presents a high-probability error bound, explain-
ing the relationship between the spreading dynamics, data,
and prediction error, solving Problem 3. We compare GPR
with other modeling methods, through Examples 1 and 2,
addressing Problem 4.

A. Modeling the Spread Using Gaussian Process
Regression

We first solve Problem 1 by introducing a model to capture
disease spreading trends. For an epidemic spreading process,
we use I(t) to denote a noisy observation of the number of the
infected cases at time step ¢ > 0, i.e., I(t) equals the number
of infected cases at time ¢ plus some noise. We use I(t)
to denote the true infected cases without observation noise.
Consider the datasets {I(t1),I(t2),...,I(t,)} and {I(¢t; —
n),I(ta—n),...,I(t,—n)} of an epidemic spreading process,
measured at times {t1,t2,...,t,} and {t1 —n,ta—n, ..., tn—
n}, respectively, where n > 0, t —n > 0, and n € N5. We
assume that the change in the logarithmic scale of the number
of infected cases between consecutive time steps approximates
a Gaussian process. Thus, for ¢ € n, we define



A(t;) = log(I(t:)) — log(I(t; — n)) +e(ti).
A(ti)

Remark 1. We mentioned in Section Il that infected cases
typically do not follow a Gaussian or even a log-normal dis-
tribution. As discussed in [11], both the cases and the noise are
often better modeled using Poisson or negative binomial distri-
butions. The phenomenon where differences of log-transformed
variables can approximate a Gaussian distribution is rooted
in statistical principles such as variance stabilization [12],
the Central Limit Theorem, and the Delta Method [13].
While the log-transformation of Poisson-distributed data may
introduce skewness, differencing tends to normalize highly-
skewed distributions. This behavior is often leveraged in fields
like epidemiology and economics to model relative changes
in data empirically, including changes in disease counts [14],
[15], [16]. For example, studies such as [14] and [15] confirm
that modeling differences on the logarithmic scale of case
counts improves predictability and aligns with Gaussian-based
inference methods. Widely-used tools (e.g., [16] for COVID-
19 modeling) rely on relative changes in case counts, often
log-differenced, to ensure statistical validity under Gaussian
assumptions. Therefore, we provide an analysis based on the
first-order differences on the logarithmic scale of the infected
cases in (1).
Proposition 2. Consider A(t;) = log(I(t;)) —log(I(t; —n)),
and I(t) > 0, for all (t; —n) € Rq. If the number of infected
cases increases during the time interval [ty,ts], then for any
time t; such that t;, t; —n € [t1,ts], we have A(t;) > 0, and
vice versa. If the number of infected cases remains unchanged,
then A(t;) = 0.
Remark 2. The proof of Proposition 2 is in the Appendix [17].
Proposition 2 is a direct result of the definition of A(t;) and
the properties of the logarithmic function. Note that A(t;) =
log(I(t;)/1(t; —n)) captures the ratio between the number of
infected cases at time step t; and time step t; —n, for n > 0.
We use the function A : R>o — R to model and analyze
spreading trends. Similar to the reproduction number [18],
which uses the threshold of one to determine whether infected
cases are increasing or decreasing, we can use the threshold
of zero for A to assess epidemic spread. If A is greater than
zero, the spread is increasing; if it is less than zero, the spread
is decreasing.

ey

To simplify the analysis, we consider I(t) > 0 for all ¢ > 0.
In addition, we use i.i.d. noise £(¢;) ~ N(0,0?) to capture
the noise term in (1). Thus, the covariance matrix of the noise
terms is ¥ = o21,. For an epidemic spreading process, we
consider a set of n time steps T = {t1,t2,...,t,} as the
input batch, for n € N (. The corresponding output batch of n
entries is given by {A(t1), A(t2), ..., A(t,)}. We define A =
[A(t1), A(ts), ..., A(t,)] T, where A(t;) is defined in (1), for
t; € T and n > 0. Our goal is to model and predict the
first-order difference on the logarithmic scale of the infected
cases. Hence, let the testing location be the time step t* € T,
T = [a, b]. We can apply Proposition 1 to this model and the
results are in Proposition 3.

Proposition 3. Consider an unknown function A : R>q —
R. The posterior mean at time t* is given by ma(t*) =

K@, T)(K(T,T)+0%I,)"'A, and the posterior variance is
ok (t) = k(t*,t*) - K", T)(K(T,T)+0%1,) 'K (t*,T)",
where K(T,T) is the kernel matrix between the training
points, k(t*,T) is the vector of covariances between the
testing point t* and all training points, k(t*,t*) is the variance
at the testing point, and o1, is the covariance matrix of the
i.i.d noise.

For analysis, we specify the kernel function as the squared
exponential kernel to capture the covariance between any pair
of points a,b € R>g. The kernel itself is )

a—>b
(2—2) : 2)
where 3 > 0 is the length scale of the kernel, and o? is the
signal variance.

k(a,b) = o exp <—

Remark 3. While our results can extend to other stationary
kernels that are Lipschitz continuous, we use the squared
exponential kernel due to its effectiveness in modeling epi-
demics [19]. The squared exponential kernel, commonly used
in Gaussian process regression, depends on the distance be-
tween variables rather than their absolute positions, promoting
smoothness and Lipschitz continuity in the modeled functions.
These properties are essential for deriving error bounds [9],
and we will use them below.

The Gaussian process model in Proposition 3 and the spread

modeling approach in (1) together address Problem 1. We
use the following example to illustrate the proposed Gaussian
process model for modeling epidemic spread, which partially
addresses Problem 4..
Example 1. We use Gaussian process regression to model
the real-world epidemic spread of COVID-19 in the United
Kingdom, using infection data from March 1°¢, 2022, to
February 28", 2023 [20]. Figure 1 shows the daily number of
infected cases per million people in the UK population during
this period. This dataset is chosen due to its multiple waves of
infection and the variability in data size over time. To better
capture the changes in daily infected cases, we preprocess the
data by applying a thirty-day rolling average. For example, the
average number of cases on March 30", 2022, is calculated
by averaging the cases from March 1°* to March 30'".

By indexing March 30", 2022 as day one, we represent
the daily infected cases on day t as I1(t), with t € 335. We
set 1 = 7. Then the difference on the logarithmic scale of
consecutive daily observed infected cases is defined as A(t) =
log(I(t)) — log(I(t — 7)), where t > 8 and t € 335. For
example, A(8) on April 6!, 2022, is calculated by subtracting
the logarithmic scale of the infected cases on April 6! from
the logarithmic scale of those of March 31¢. We plot A(t),
fort > 8 and t € 335, from April 6", 2022 to February 28",
2023 in Figure 2 (dotted yellow line). Comparing Figure 2 to
Figure 1, we see that A(t) effectively captures the trend in the
spread. For instance, when A(t) is less than zero from April
2022 to May 2022, the trend in the number of infected cases
decreases, as shown in Figure 1. This example demonstrates
that when A is positive, daily infected cases are increasing,
and when it is negative, they are decreasing.

Next, we apply GPR to model the spread. The training time
steps are {8,9,...,365}, corresponding to the training data
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Fig. 2. Gaussian process regression model for A (¢t).

{A(8),A(9),...,A(365)}, as depicted by the dotted yellow
line in Figure 2. Using the GPR algorithm from Proposition 3,
we visualize the posterior means at the training time steps in
Figure 2. We use € ~ N(0,0.002) to ensure that 98.18% of
the noisy training data points fall within the 95%-confidence
interval. The red solid line in Figure 2 represents the posterior
mean, denoted as m\(t), at the training locations t € 365
and t > 8. We compute the mean square error (MSE)
using the posterior mean and the training data, resulting in
an MSE of 0.000069 for the Gaussian process regression
model. The example shows how modeling the difference on
the logarithmic scale of the infected cases effectively captures
the spread dynamics and highlights the utility of Gaussian
process regression in doing so'.

To validate the GPR model, we compare it with polyno-
mial regression, k-nearest neighbors (KNN), and a neural
network, commonly used in disease spread modeling [5]. For
polynomial regression, we use a degree of 20, achieving an
MSE of 0.000048, with 93.64% of training data within the
95% confidence intervals, represented by a dashed blue line
and blue-shaded areas. For KNN, setting v = 15 results
in an MSE of 0.000080 and 95.78% of the data within the
intervals, represented by a dotted purple line and purple-
shaded areas. The neural network employs sinusoidal feature
generation to capture periodic patterns, using a three-layer
structure (200 — 150 — 100 neurons) and achieves an MSE of
0.000090 with 93.33% of data within the intervals, represented
by a dash-dotted green line and green-shaded areas.

All four methods produce similarly accurate models, with
MSEs on the same order of magnitude and most data within
the 95% confidence intervals. GPR stands out for its flexi-

IWe perform a sensitivity analysis in GPR modeling by varying the
averaging window size ({1, 3, 5, 10, 20, 30, 50}) and observe that shorter
windows capture short-term perturbations, while longer windows highlight
periodic patterns. Regardless of the window size, GPR models retain at least
92.48% of the training data within the 95% confidence intervals. Additionally,
fixing the window size at 30, we vary 7 from the set {3, 7,14, 21, 28}. Higher
values of 7 yield narrower confidence intervals by better capturing long-
term spreading trends and reducing short-term noise. Details of the sensitivity
analysis are available at https://github.com/baikeshe/GPR_Epi_
Modeling.git.

bility in kernel selection, such as adapting periodic kernels
when necessary [5], while the other methods require careful
parameter tuning—polynomial degree, k, or neural network
architecture. Notably, without sinusoidal feature augmenta-
tion, the neural network would underfit, yielding an MSE three
orders of magnitude higher. Although effective, the alternative
models’ complexity can lead to overfitting, as explored in
Example 2.

B. The Impact of Spread Data on Prediction Variance

We next propose an upper bound for the prediction variance
to study the impact of data on predictions.

Lemma 1. Consider a set of time steps T = {t1,ta,...,tn}.
Let T,.(t*) represent all points in T that lie within a
ball of radius r, centered at the testing location t*, i.e.,
T,.(t*)={teT:|t—t*| <r}. Consider the squared expo-
nential kernel from (2) for the Gaussian Process model in
Proposition 3. The posterior variance o3 (t*) at the testing
time step t* obeys the bound o3 (t*) < o — %
o

The proof of Lemma 1 is provided in the Appendix [17].
Lemma 1 provides a data-dependent posterior variance bound
on oZ (t*) at the testing time step t* in terms of the number
of the training data points around the testing location. The
bound on the prediction variance given by Lemma 1 shows that
more training data in T, (¢*), captured by |T,(¢*)|, leads to a
lower variance bound. Additionally, higher variance noise in
the data, captured by o2, increases the bound on the posterior
variance. In the absence of observation noise or with infinitely
many data points near t*, the variance bound approaches zero.
Lemma 1 illustrates how the available data, the spreading
trend, and noise can affect the posterior variance bound, and
it solves Problem 2.

C. High Probability Error Bound on the Prediction

Having discussed the impact of data on the upper bound
of the posterior variance, we now analyze the error bound on
the prediction error. We first introduce the Lipschitz constant
of the squared exponential kernel [21]. We consider the space
of sample functions corresponding to the space of continuous
functions on the time interval T C [t,,tp], where t,,t, € R,
such that the input batch 7' C T.

Lemma 2. /21, Corollary 8] Consider ti,tg- € T. Then for
all t, k(-,t) is Ly-Lipschitz, where Ly, = ﬁ

We see that Ly is determined by the kernel parameters «
and S in (2). In addition, consider our continuous unknown
function A from Remark 2, where A : T>o — R with Lips-
chitz constant Lz, such that |A(t;) — A(ts)| < La |t1 — to
for all t;,t, € T. The Lipschitz continuity of A(t) indicates
that the change in spread over some time interval is limited
by the length of that interval.

Recall the training dataset {(¢;, A(¢;))}., where t; € T.
We consider the training dataset to be within a specific time
interval of interest, i.e., T' C T, and the testing point is also in
this interval, i.e., t* € T. The time interval of interest may be
extensive, causing the testing location t* to be far from any
of the training points in the dataset 7.
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Fig. 3. Atime interval T with M (7, T) = 7.

To address this issue when studying the posterior mean, we
consider a set of grid points M that are evenly distributed on
R>¢. We define the radius associated with the point ¢’ € M
as 7, such that T _(¢') := [t' — 7,¢' + 7] for all ' € M.
Then we consider T C TC {t|te U [t' —7,¢ +7]}. To

M

ensure that the union of the intervals of leength 27 can cover the
continuous-time interval T, the length of the interval between
any two neighboring points in M must be smaller than 27.
We define the covering number of T, denoted by M (7, T), as
the cardinality of the set M with the minimum number of grid
points to satisfy T C {¢ |t € U [¢' — 7,¢ + 7]}. Figure 3
t'eM

illustrates a time interval T with EM (r,T)=T1.

We derive the following theorem in part by using results

from [22]. This result gives a high-probability bound on
prediction accuracy, and it solves Problem 3.
Theorem 1. Consider a zero-mean Gaussian process defined
through the kernel k(-,-) in (2) with Lipschitz constant Ly,
on time interval T. Consider a continuous unknown function
A T>o — R that that captures the spreading process through
the difference on the logarithmic scale of the infected cases,
with Lipschitz constant L 5. The posterior mean of a Gaussian
process conditioned on the training dataset {(t;, A(t;))}1y,
for all t; € T, at the testing time step t* is given by mna (t*).
Consider a set of grid points M. If, for all t* € T, there exists
t; € T and t' € M such that t; € T (t') and |t* — ;] < T,
then

P (|A@) = ma()] < Vas(roalt') +&(r)) > 1- 4,

for all § € (0,1). Note that A(t*) is the noise-free variable
at the testing time step t*, and ma(t*) and oa(t*) are
the posterior mean and posterior standard deviation from
Proposition 3, respectively. Further, we have

%(r )210g<21r6 ;)

&(7) = (La + Lm)7 + )

where Lx is the Lipschitz constant of the function A,
2

L, = #\/EH(K(T,T) + 0%1,,)"YA|| is the Lipschitz

constant of the posterior mean function ma, and L,2 =

;:32 || (T,T) +o%I,) 1 H is the Lipschitz constant of the

posterior variance functton oX.

3

Y5 (T)Lo2T,

The proof of Theorem 1 is provided in the Appendix [17].
This theorem gives a high-probability error bound on the
prediction error, which depends on the distance between
training and testing points, captured by the length of the time
interval T. A larger T results in a larger error bound, and vice
versa. The bound also shows that higher posterior variance
at the testing time step oa(t*) increases the error bound.
Additionally, a lower Lipschitz constant of the spreading

function L x5 reduces the error bound, as smaller changes in the
spreading process correspond to a lower Lipschitz constant.
While Proposition 3 provides an analytical solution for the
posterior mean and variance of the GPR model, the bounds
from Lemma 1 and Theorem 1 offer valuable insights for
selecting datasets and data collection methods, helping to
improve modeling outcomes.

Example 2. Consider the dataset representing the difference
on the logarithmic scale of the infected cases in the UK,
shown by the solid red line in Figure 2. As in Example 1,
the dataset is preprocessed using a thirty-day rolling average,
with 1 set to 7. Then, we use a moving window of 30 days
of data to train the GPR model and predict the posterior
mean for the subsequent 20 days. For example, data from
April 6" to May 6", 2022, is used to predict the spread
from May 7" to May 27", 2022. In Figure 4, the solid red
line represents the posterior mean of the predictions, with the
shaded red area showing the 95% confidence interval. The
dotted yellow line represents the noisy data. Around 94.29%
of noisy data are located within the 95% confidence interval.
Most predictions that fail to include the data within the 95%
confidence interval arise from either abrupt changes in the
spreading trend and/or the limited number of available data
samples. This figure illustrates that the prediction captures the
trend of the spread when compared to the noisy observations.
Note that the confidence interval represents the uncertainty in
predicting the true value, which is not directly available *

We compare the GPR prediction results with polynomial
regression, KNN, and neural networks using adjusted param-
eters to prevent overfitting, given the prediction task’s smaller
dataset (30 training points predicting 20 future points). For
polynomial regression with degree 3, the MSE is 0.0183, with
72.00% of the testing data within the 95% confidence inter-
vals, represented by a dashed blue line with blue-shaded areas.
The KNN model (v = 3) achieves an MSE of 0.0046, with
51.00% of data within the intervals, shown as a dotted purple
line with purple-shaded areas. A neural network (50 —25—10
neurons) yields an MSE of 0.0070, with 43.67% of data within
the intervals, represented by a dash-dotted green line with
green-shaded areas.

To address overfitting, we reduce model complexity com-
pared to Example 1. Polynomial regression and KNN models
previously optimized for higher orders (20 and 15, respec-
tively) led to overfitting in prediction tasks, necessitating order
reduction. Similarly, the neural network’s architecture was
simplified, and sinusoidal feature augmentation was excluded
to suit the smaller dataset lacking periodic patterns. Despite
these adjustments, the GPR model remains superior, capturing
the spread without parameter tuning and achieving higher
proportions of data within the 95% confidence intervals. In
contrast, the other methods, while achieving MSEs of similar

2A 30-day moving average of the data provides an optimal balance
for data preprocessing, capturing periodic trends while filtering short-term
noise. Shorter windows (1, 3,5 days) retain detail but risk overfitting, while
moderate windows (10, 20 days) struggle to capture both short- and long-term
dynamics. Overly long windows (50 days) oversmooth the data, reducing
model adaptability. Detailed sensitivity analysis and insights on smoothing
window effects on GPR prediction accuracy are available at https://
github.com/baikeshe/GPR_Epi_Modeling.git.


https://github.com/baikeshe/GPR_Epi_Modeling.git
https://github.com/baikeshe/GPR_Epi_Modeling.git
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Fig. 4. Posterior mean of the prediction on spreading trend. Since we
lack additional information when modeling the spread, such as periodic
spreading patterns, we observe lower prediction accuracy when A shifts
from increasing to decreasing, or vice versa.
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Fig. 5. Probability upper bound with § = 0.05. The upper bound

changes depending on how far into the future the prediction length
extends. For the same twenty-day period, the further into the future, the
larger the prediction error bound will be.

magnitude, require significant parameter adjustments, making
them less robust at capturing the complex dynamics of disease
spread with limited data.

In addition to comparing to other prediction models, Fig-
ure 5 illustrates the difference between the posterior mean and
the noisy observations at each prediction, shown by the solid
red line. The upper bound, computed based on Theorem 1, is
plotted in blue. We assume that M (T,7) = 5, where T = 5
and T = 50. We assume that the Lipschitz constant of the
Sunction A is Lg = 0.01 and 6 = 0.05. We observe that,
during each twenty-day prediction period, the bound increases
monotonically as the prediction time steps move further away
from the training data. By comparing the bound from April
2022 to September 2022 with the bound from September 2022
to March 2023, we find that the bound is looser during periods
of significant changes in the spread (April 2022 to September
2022), leading to a more conservative bound. Conversely,
when the spread is more consistent (September 2022 to March
2023), the bound tightens. The bound is generally larger
when considering a longer time interval into the future. The
bound can guide us in selecting appropriate datasets and data
collection methods to improve prediction results.

[V. CONCLUSION

In this work, we propose an approach to modeling epidemic
spreading processes by using Gaussian process regression.
We model and predict the spread through the difference on
the logarithmic scale of the infected cases. We provide an
upper bound on the posterior variance and mean error, high-
lighting the impact of the spreading trend and available data.
Additionally, we discuss the impact of data preprocessing on
modeling and prediction performance. We further highlight the
benefits of using GPR methods by empirically comparing them
with other modeling and prediction approaches, including

polynomial regression, KNN, and neural networks. In future
work, we plan to utilize this model and prediction mechanism
to design a new data-driven predictive control strategy for
epidemic mitigation.
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