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Abstract

The paper studies the problem of the spread of multi-competitive viruses across a (time-varying) population network and
an infrastructure network. To this end, we devise a variant of the classic (networked) susceptible-infected-susceptible
(SIS) model called the multi-competitive time-varying networked susceptible-infected-water-susceptible (SIWS) model.
We establish a sufficient condition for exponentially fast eradication of a virus when a) the graph structure does not
change over time; b) the graph structure possibly changes with time, interactions between individuals are symmetric,
and all individuals have the same healing and infection rate; and c) the graph is directed and is slowly-varying, and not
all individuals necessarily have the same healing and infection rates. We also show that the aforementioned conditions
for eradication of a virus are robust to variations in the graph structure of the population network provided the variations
are not too large. For the case of time-invariant graphs, we give a lower bound on the number of equilibria that our
system possesses. Finally, we provide an in-depth set of simulations that not only illustrate the theoretical findings of
this paper but also provide insights into the endemic behavior for the case of time-varying graphs.
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1. Introduction

Epidemics have been a longstanding feature of human
civilization. Some of the most prominent examples include
the Spanish flu 1918–1920, the Asian flu in the 1950s (Jack-
son, 2009), and the recent Covid-19 pandemic. The toll
of destruction that epidemics leave in their wake is enor-
mous. For instance, the Spanish flu resulted in around
50 million deaths, set back economies worldwide by a few
decades, and led to social unrest in several parts of the
world (Johnson and Mueller, 2002). The spread of dis-
eases has drawn the attention of the scientific community,
with the earliest work being a model for the smallpox virus
formulated and analysed by Daniel Bernoulli (Bernoulli,
1760). Mathematical epidemiology, as a discipline, wit-
nessed tremendous growth during the 20th century; see
(Becker, 1979; Hamer, 1906; Ross, 1911; Hethcote, 2000;
Bailey et al., 1975), with (Bailey et al., 1975) being a key
milestone. In recent years, problems in epidemiology have
been investigated by several disciplines such as physics
(Van Mieghem et al., 2008), computer science (Wang et al.,
2003), economics (Bloom et al., 2018), and automatic con-
trol (Nowzari et al., 2016). A fundamental quest behind
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such research efforts is to understand what causes a disease
to spread, and how the spreading can be mitigated.

To address the aforementioned quest, several models
have been developed in the literature. These models in-
clude, but are not limited to, susceptible-infected (SI),
susceptible-infected-recovered (SIR), susceptible-infected-
susceptible (SIS), and susceptible-exposed-infected-recovered
(SEIR) models. SIS models have been studied since (Ker-
mack and McKendrick, 1932); for a thorough review, see
(Hethcote, 2000). Notice that, while each of the epidemic
models has its inherent advantages, only the SIS class of
models admits reinfection. As such, it has been useful for
studying the spread of diseases such as gonorrhea (Laj-
manovich and Yorke, 1976), tuberculosis (Newman, 2003),
etc. The present paper deals with networked SIS models.

Networked SIS models have been analyzed extensively
in the literature. Substantial progress has been made
in the context of time-invariant networks; see, (Khanafer
et al., 2016; Fall et al., 2007; Van Mieghem et al., 2008;
Allen, 1994; Wang et al., 2003; Peng et al., 2010; Ahn
and Hassibi, 2013; Paré et al., 2020b; Chakrabarti et al.,
2008; Gómez et al., 2010; Han et al., 2015; Gracy et al.,
2020; Paré et al., 2020a). Time-invariant networked SIS
models, while contributing massively towards our under-
standing of epidemics, cannot account for more complex
settings, in particular one in which the agents are allowed
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to move. Overcoming this shortcoming, a series of pa-
pers, spanning across several scientific communities such
as automatic control, physics, complex networks, etc., have
tackled networked SIS models with time-varying topology;
see (Barrett et al., 2008; Vestergaard and Génois, 2015;
Sun et al., 2015; Liu et al., 2018; Prakash et al., 2010;
Bokharaie et al., 2010; Paré et al., 2021). The findings in
(Barrett et al., 2008; Vestergaard and Génois, 2015; Sun
et al., 2015; Liu et al., 2018) have only been supported
by simulations; no analytical results have been provided,
which greatly hampers our understanding of their behav-
ior, and, consequently, our ability to predict and reason
about system dynamics. On the automatic control side,
the vast majority of the literature on networked SIS epi-
demics (including (Prakash et al., 2010; Bokharaie et al.,
2010; Paré et al., 2018)) is centered on the case where there
is only one virus circulating in the population. Recently,
however, there has been significant attention on the more
general case where multiple viruses are simultaneously cir-
culating in a population. In fact, several scientific commu-
nities such as physics (Sahneh and Scoglio, 2014; Huang
et al., 2021; Sagar et al., 2018), complex networks (Karrer
and Newman, 2011), network science (Baingana and Gi-
annakis, 2016), mathematical biology (Martcheva, 2009),
have made significant advances on the topic of simultane-
ous spread of multiple competing viruses. However, note
that most of these works have certain limitations: The
paper (Martcheva, 2009) does not account for the pres-
ence of more than one node; the findings in (Karrer and
Newman, 2011; Huang et al., 2021; Sagar et al., 2018) are
based on simulations, and no analytical results have been
provided. The paper (Baingana and Giannakis, 2016), al-
though dealing with spreading processes over time-varying
networks, does not focus on questions pertaining to stabil-
ity. The paper (Sahneh and Scoglio, 2014) studies compet-
ing SIS epidemics but over time-invariant networks only.
The same can be said about most of the recent literature in
the automatic control community; see, for instance, (Jan-
son et al., 2020; Ye, Anderson and Liu, 2022; Liu et al.,
2019a; Paré et al., 2020c; Ye et al., 2023; Anderson and Ye,
2023). Paré et al. (2021) were the first to explore multiple
competing SIS viruses over time-varying networks.

All of this literature (except for (Paré et al., 2020c))
involves continuous-time SIS models. Disease outbreaks
are frequently recorded in epidemiological reports, which
are compiled per day (as was observed during the COVID-
19 crisis) (World Health Organization, 2021; Snow, 1855)
or per week WHO (n.d.). Hence, it is immediate that
the continuous-time spread process is sampled at discrete
time intervals. Said sampling of the system behavior mo-
tivates the need for a discrete-time SIWS model. Other
advantages of employing a discrete-time model are as fol-
lows: i) a discrete-time model possibly enables an easier
comparison of experimental data with the predictions of
a model, provided these predictions are given in discrete
form; and ii) the numerical exploration of discrete-time
epidemic models is fairly straightforward and consequently

can be immediately implemented by non-mathematicians.
The latter is of immense importance in the context of pub-
lic health (Brauer et al., 2009). The paper (Paré et al.,
2020c), while shedding more light on the behavior of the
discrete-time networked multi-virus SIS model, does not
account for the possibility of the interconnection graph be-
ing time-varying - hence, it is rather limited. Therefore, in
the present paper, the focus is on providing a rigorous the-
oretical analysis for competing, time-varying, discrete-time
networked SIS models. In particular, we seek to identify
parameter-based conditions for convergence to the disease-
free equilibrium. In so doing, the present paper substan-
tially differs from the works in (Sagar et al., 2018; Karrer
and Newman, 2011), where the analysis is, as previously
mentioned, based on simulations.

The SIS model assumes that the spread of a virus can
only happen due to individual-to-individual contact. How-
ever, (infectious) diseases could also spread due to the
presence of a shared infrastructure network, such as a
transportation network or a water distribution network.
A classic example that illustrates the aforesaid scenario is
the following: In Östersund in Northern Sweden, around
27, 000 people became ill and had a water-boil order for
more than two months due to Cryptosporidium contam-
ination of the drinking water (Widerström et al., 2014).
Therefore, there is a need for SIS models that also ac-
count for the possibility of the spread happening via mul-
tiple mediums. To this end, a time-invariant susceptible-
infected-water-susceptible (SIWS)1 model has been pro-
posed in (Liu et al., 2019b), which has been subsequently
expanded to account for the presence of multiple shared
resources (Paré et al., 2022); to account for (continuous-
time) time-varying dynamics with a single shared resource
(meaning that the infection at the infrastructure level is
just a scalar) by Gracy et al. (2022); and finally to also
factor in the presence of multiple viruses and an infras-
tructure network in (Cui et al., 2022). However, single-
virus SIWS model is limited, since it cannot capture the
following realistic scenario: Different lineages of avian in-
fluenza viruses, namely lineage A and lineage B, are known
to be competitive (Bahl et al., 2009). The typical means
of spread for avian influenza viruses are via close contact
with infected birds, and bodily fluid droplets. However, it
has recently been observed that water bodies can also act
as effective pathways for the spread of avian influenza. In
fact, the amount of droppings that an infected (with avian
influenza) duck sheds into water over a 24-hour period can
possibly infect more than 103 ducks; see (Ahrens et al.,
2022). To the best of our knowledge, there does not exist a
model that captures the aforedescribed scenario. The goal
of the present paper is to devise a discrete-time counter-
part to the model by Gracy et al. (2022) but also account
for the simultaneous presence of multiple viruses and mul-

1The “W” in SIWS denotes an arbitrary infrastructure network
contamination, not necessarily restricted to a water distribution net-
work.
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tiple shared resources, and, unlike (Cui et al., 2022), also
admit the possibility of the interconnection graph at the
population level is time-varying.

Paper Contributions

The paper makes the following contributions.

i) We devise a discrete-time model that allows for the
spread of multiple viruses both over a possibly time-
varying population network and over an infrastruc-
ture network.

ii) Assuming that the graph is time-invariant, we iden-
tify a sufficient condition for the exponential stability
of the eradicated state of virus r; see Theorem 1.

iii) For the case where the graph is time-varying, we
identify a sufficient condition for the exponential sta-
bility of the eradicated state of virus r both when the
spread is homogeneous2 and also when the spread
is heterogeneous but under the assumption that the
graph is slowly-varying; see Theorem 2 and Theo-
rem 3, respectively.

iv) We show that, for heterogeneous spread, the suffi-
cient condition for exponential stability of the erad-
icated state of virus r identified in Theorem 2 is ro-
bust to variations in the graph structure of the pop-
ulation network, provided that the variations are not
too large; see Theorem 4.

v) Assuming that the graph is time-invariant, we pro-
vide a lower bound on the number of equilibria that
our system possesses; see Proposition 4.

An auxiliary contribution of the present paper is as
follows: The sufficient condition for exponential eradica-
tion of a virus identified in Theorem 2 involves a strict
inequality - the relaxation of this inequality also assures
eradication of said virus except that the eradication is, in
this case, asymptotic; see Proposition 3. A preliminary
version of this paper has appeared in the proceedings of
the 2023 IFAC World Congress; see (Gracy et al., 2023).
In comparison to (Gracy et al., 2023), the present paper
differs in the following aspects:

i) Complete proofs of all results, except that of Theo-
rem 1.

ii) Theorem 4, Proposition 2, and Proposition 3 have
not appeared previously.

iii) Section 6, and in particular Proposition 4, was not
included in (Gracy et al., 2023).

iv) By allowing for the graph topology to change, we
present an extended and interpretable set of simula-
tions.

2We say that the spread of virus r is homogeneous if the healing
(resp. infection) rate with respect to virus r is the same for all nodes
in the network; otherwise, we say that the spread is heterogeneous.

Paper Outline

The paper is structured as follows: We conclude the
present section by gathering all the notations that would
be used in the sequel. We present the model and for-
mally state the questions that the present paper investi-
gates in Section 2. Section 3 deals with the case when the
graph is time-invariant, whereas Section 4 tackles the case
where the graph is time-varying. Section 5 explores the
robustness of the conditions for exponential eradication of
a virus even when there are variations in the graph struc-
ture, whereas Section 6 partially addresses the endemic
behavior when the graph structure remains fixed. The
theoretical findings are illustrated by numerical examples
in Section 7,. Finally, a summary of the paper, along with
some of the open questions of possible interest, is provided
in Section 8.

Notations: Let R (resp. Z≥0) denote the set of real
numbers (resp. non-negative integers). We denote the set
of positive integers by Z+. For any positive integer n, we
have [n] = {1, . . . , n} . Given a matrix A ∈ Rn×n, aij
denotes the ith row and jth column entry; ρ(A) denotes
its spectral radius, and λmin(A) (resp. λmax(A)) denotes
the minimum (resp. maximum) eigenvalue of A (real). A
diagonal matrix is denoted as diag(·). The transpose of
vector x ∈ Rn is denoted as x⊤. Euclidean norms are
denoted by ∥·∥. Given a matrix A, A ≺ 0 (resp. A ≼
0) indicates that A is negative definite (resp. negative
semidefinite), whereas A ≻ 0 (resp. A ≽ 0) indicates
that A is positive definite (resp. positive semidefinite).
The notation {A(k)}ba denotes a sequence of matrices A(k),
where k ∈ {a, a+ 1, . . . , b− 1, b}.

2. Problem Formulation

In this section, inspired by (Cui et al., 2022), we de-
tail a model of multi-virus spread across a population net-
work and a network of shared resources. Subsequently, we
formally state the problems being investigated. Finally,
we introduce pertinent assumptions and definitions that
would be required in the sequel.

2.1. Model

Consider m competing viruses spreading over a net-
work of n individuals. Suppose that these m viruses si-
multaneously spread also over an infrastructure network
of q resource nodes. Observe that if m = 1, then there is
no notion of competition. Hence, in the rest of this paper,
we will focus on the case where m ≥ 2. The spread of the
rth virus, where r ∈ [m], in individual i can be represented
as follows.

ẋr
i (t) =− δri x

r
i (t) +

(
(1−

∑m
ℓ=1 x

ℓ
i(t))×(∑n

j=1 β
r
ijx

r
j(t) +

∑q
j=1 β

wr
ij wr

j (t)
))

, (1)

where βr
ij = βr

i a
r
ij . The term βr

i (resp. δri ) denotes the in-
fection (resp. healing rate) of individual i with respect to
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virus r, while arij ≥ 0 denotes the strength of interconnec-
tion between nodes i and j for the spread of virus r. The
term βwr

ij is the resource-to-individual infection rate for in-
dividual i from resource j for virus r. Note that xr

i (t) is an
approximation of the probability of infection with respect
to virus r of individual i at time instant t.

Viruses mutate over time, and the prevalence of an
epidemic does not prevent the movement of people across
cities, districts, etc. which might lead to the healing (resp. in-
fection) rate changing over time. To account for such pos-
sibilities, we allow for the i) healing (resp. infection) rate
to be time-varying; and ii) the set of neighbors that a node
has to vary over time. Consequently, we need a more gen-
eral form of (1), viz.

ẋr
i (t) =− δri (t)x

r
i (t) +

(
(1−

∑m
ℓ=1 x

ℓ
i(t))×(∑n

j=1 βij(t)
rxr

j(t) +
∑q

j=1 β
wr
ij (t)wr

j (t)
))

, (2)

where βr
ij(t) = βr

i (t)a
r
ij(t), and the concentration of the

rth virus in the jth resource node at time t is described as:

ẇr
j (t)=−δwr

j wr
j (t)+

∑q
ℓ=1 α

r
ℓjw

k
ℓ (t)−wr

j (t)
∑q

ℓ=1 α
r
jℓ+∑n

ℓ=1 c
wr
jℓ (t)x

r
ℓ(t), (3)

where δwr
j denotes the healing rate of resource node j with

respect to virus r; αr
jℓ denotes the resource-to-resource

infection rate for resource node ℓ from resource node j;
and cwr

jℓ denotes the individual-to-resource infection rate
for resource node j from individual ℓ.

A time-varying graph can be used to represent the
spread of the m viruses over a possibly time-varying popu-
lation network and an infrastructure network. More specif-
ically, we define a m-layer graph G(k), where the vertices
denote the individuals and the shared resource nodes, and
layer r is the contact graph for the spread of virus r at
time instant k, with r ∈ [m]. More precisely, there exists
a directed edge from node j to node i in layer r, if indi-
vidual j (resp. shared resource ℓ, with ℓ ∈ [q]) can infect
individual i (resp. shared resource ℓ) with virus r. For
the sake of clarity of explanation, we define the following
sets: Er(k) = {(i, j) | i, j ∈ [n], arji(k) > 0}; Er

w = {(ℓ, j) |
ℓ, j ∈ [q], arℓj > 0}; Er

c = {(j, ℓ) | ℓ ∈ [n], j ∈ [q], cwr
jℓ (k) >

0}; and Er
b = {(i, j) | i ∈ [n], j ∈ [q], βwr

ij (k) > 0}. Finally,
we define Er(k) = Er(k)∪Er

w ∪Er
c (k)∪Er

b (k). Therefore,
layer r of graph G at time k, denoted by Gr(k) is as follows:
Gr(k) = (V, Er(k)), with |V | = n+ q.

By applying Euler’s method (Atkinson, 2008) to (2)
and (3), we obtain the following:

xr
i (k+1) = xr

i (k)+h
(
−δri (k)x

r
i (k)+(1−

∑m
ℓ=1 x

ℓ
i(k))×(∑n

j=1 β
r
ij(k)x

r
j(k) +

∑q
j=1 β

wr
ij (k)wr

j (k)
))

(4)

wr
j (k + 1) = wr

j (k) + h
(
− δwr

j wr
j +

∑q
ℓ=1 α

r
ℓjw

r
ℓ

− wr
j

∑q
ℓ=1 α

r
jℓ +

∑n
ℓ=1 c

wr
jℓ (k)x

r
ℓ

)
, (5)

where h is the sampling parameter (h > 0). Define xr =
[xr

1 xr
2 ... xr

n ],Dr(k) = diag(δri (k))
n
i=1, B

r(k) = [βr
ij(k)]n×n,

Dr
w = diag(δwr

j )nj=1, Br
w = [βwr

ij ]n×q, Cr
w = [cwr

jℓ ]q × n,
Ar

w = [arℓj ]q×q, and Xr = diag(xr). Therefore, in vector
form, equations (4) and (5) can be written as follows:

xr(k + 1) =xr(k) + h
(
((I −

∑m
ℓ=1 X

ℓ)Br(k)−Dr(k))xr(k))

+ (I −
∑m

ℓ=1 X
ℓ)Br

ww
r(k)

)
(6)

wr(k+1) =wr(k)+h(−Dr
ww

r(k)+Ar
ww

r(k)+Cr
w(k)x

r(k)).
(7)

Define the following.

zr(k) :=

[
xr(k)
wr(k)

]
, X(zr(k)) :=

[
diag(xr(k)) 0

0 0

]
,

Br
f (k) :=

[
Br(k) Br

w(k)
Cr

w(k) Ar
w − diag(Ar

w)

]
, and (8)

Dr
f (k) :=

[
Dr(k) 0

0 Dr
w − diag(Ar

w)

]
.

Consequently, system (6)-(7) can be more compactly writ-
ten as:

zr(k+1)=zr(k)+h
(
−Dr

f (k)+(I−
∑m

ℓ=1 X(zℓ))Br
f (k)

)
zr(k),
(9)

with r = 1, 2, . . . ,m.
It turns out system (9) has close connections to similar
models devised in (Cui et al., 2022; Liu et al., 2019b; Paré
et al., 2020a; Gracy et al., 2022). In order to explain those
in a formal manner, we introduce the following remarks.

Remark 1 By setting Aw = 0, and aij(k) = aij for all
k ∈ Z≥0, (9) coincides with the model in (Cui et al., 2022).
By setting Aw = 0, and aij(k) = aij for all k ∈ Z≥0,
m = 1, and q = 1, (9) is the discrete-time counterpart of
the model in (Liu et al., 2019b).

Remark 2 Note that specialized to the case wherem = 1,
and q = 1, (9) is the discrete-time counterpart of the model
in (Gracy et al., 2022), whereas specialized to the case
where m = 1, and aij(k) = aij for all k ∈ Z≥0, (9) is
the discrete-time counterpart of the model in (Paré et al.,
2022).

Remark 3 By setting wr(k) = 0 for r = 1, 2, . . . , q, and
m = 1, (9) collapses to the standard discrete-time time-
varying networked SIS model studied in (Gracy et al.,
2020).

The following remark provides additional intuition on the
need for directed graphs while modeling disease spread.

Remark 4 It is quite natural to assume that the nature
of disease transmission is undirected. Such an assumption
is applicable provided that everyone is susceptible to the
virus in the exact same fashion. That is, everyone gets
affected by the virus to the same extent. Thus, the as-
sumption of the graph being undirected is limited in the
sense that it cannot account for situations where different
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individuals have different susceptibility levels to the same
virus; for instance, some of the infected individuals might
require hospitalization, while the others might be able to
recover with only several days of rest. Hence, directed
infection networks are important for more realistic model-
ing. Consequently, there is a whole body of literature that
admits directed graphs in the modeling framework; please
see for instance (Ye, Anderson and Liu, 2022; Anderson
and Ye, 2023; Liu et al., 2019a; Gracy et al., 2020; Santos
et al., 2015; Mei et al., 2017; Lin et al., 2021).

This paper deals with the stability analysis of the healthy
state for the time-varying model in (9) and its time-invariant
version. To this end, we need the following:

Mr
f (k) :=I − hDr

f (k) + hBr
f (k) (10)

M̂r
f (k) :=I − hDr

f (k) + hBr
f (k)− h

∑m
ℓ=1 X(zℓ)Br

f (k).

Observe that the matrix Mr
f (k) is the state matrix ob-

tained by linearizing the dynamics of virus r around the
eradicated state of virus r (zr(k) = 0).

Define Dr := {zr(k) = [xr(k)⊤, wr(k)⊤]⊤ | xr(k) ∈
[0, 1]n, wr(k) ∈ [0, wr

max]
q}. Virus r is eradicated if zr(k) =

0. The discrete-time multi-competitive layered networked
SIWS model is in the disease-free equilibrium (DFE) if
zr(k) = 0, ∀r ∈ [m].

2.2. Problem Statements
With respect to system (9), we aim to answer the
following questions:

i) Suppose that, for some r ∈ [m], Gr(k) = Gr for all
k ∈ Z≥0. Can we identify a sufficient condition such
that, for any zr(0) ∈ Dr, zr(k) converges exponen-
tially to its eradicated state, i.e., zr(k) = 0?

ii) Suppose that for all k ∈ Z≥0

i) βr
i (k)=βr(k), and δri (k)=δr(k) ∀i ∈ [n];

ii) Ar(k)=Ar(k)⊤ and Br
w(k)=Cr

w(k)
⊤.

Can we identify a sufficient condition such that, for
any zr(0) ∈ Dr, zr(k) converges exponentially to its
eradicated state, i.e., zr(k) = 0?

iii) Suppose that Ar(k) ̸= Ar(k)⊤ for some k ∈ Z≥0, and
that βr

i (k) ̸= βr
j (k) for some i, j ∈ [n]. Can we iden-

tify a sufficient condition such that, for any zr(0) ∈
Dr, zr(k) converges exponentially to its eradicated
state, i.e., zr(k) = 0?

iv) Suppose that, for some r ∈ [m], for any zr(0) ∈ Dr,
zr(k) = 0 for all k ≥ k′, for some k′ ∈ Z+. Sup-
pose that system (9) is perturbed via some suitably-
defined additive perturbation. Can we identify a
condition such that even for the perturbed system,
for any zr(0) ∈ Dr, zr(k) converges exponentially to
its eradicated state, i.e., zr(k) = 0?

v) Suppose that, for some r ∈ [m], Gr(k) = Gr for all
k ∈ Z≥0. What is a lower bound on the number of
equilibria?

2.3. Standard stability notions and sufficient conditions

In this subsection, we will briefly recall some stability
notions and results that are essential for understanding
the findings in this paper. Consider a system, described
as follows:

x(k + 1) = f(k, x(k)), (11)

where f : Z≥0×Rn → Rn is locally Lipschitz. Let s(k, k0, x0)
denote the solution of (11) corresponding to the initial
condition x(k0) = x0. An equilibrium of (11) is said to be
(uniformly) asymptotically stable if it is (uniformly) stable
and (uniformly) attractive. Furthermore, an equilibrium
of (11) is endowed with the property of GAS (resp. glob-
ally uniformly asymptotically stable (GUAS)) if, besides
being asymptotically stable (resp. uniformly asymptoti-
cally stable), the system converges to that equilibrium for
any initial state. We recall a sufficient condition for GUAS
of an equilibrium of (11).

Lemma 1 (Vidyasagar, 2002, Section 5.9 Thm. 27) The
DFE of system (11) is GUAS if there is a function V :
Z+ × Rn → R such that i) V (k, 0) = 0, and, for all x ̸= 0,
V (k, x) > 0, ii) V is decrescent, and radially unbounded,
and iii) −∆V (where the forward difference function ∆V :
Z+ × Rn → R is defined as: ∆V (k, x) = V (k + 1, x(k +
1))− V (k, x)) is positive definite. ■

A stronger property is that of GES, which is defined as
follows:

Definition 1 An equilibrium point of (11) is GES if there
exist positive constants α and ω, with 0 ≤ ω < 1, such that

∥x(k)∥ ≤ α ∥x(k0)∥ω(k−k0) ∀k, k0 ≥ 0, ∀xk0
∈ Rn.

We recall a sufficient condition for GES of an equilib-
rium of (11) in the following proposition:

Lemma 2 (Vidyasagar, 2002, Theorem 28, Section 5.9)
Suppose there exists a function V : Z+×Rn → R, and con-
stants a, b, c > 0 and p > 1 such that a ∥x∥p ≤ V (k, x) ≤
b ∥x∥p, ∆V (k, x) := V (x(k + 1)) − V (x(k)) ≤ −c ∥x∥p,
∀k ∈ Z≥0, and ∀x ∈ Rn, then x = 0 is an exponentially
stable equilibrium of (11). ■

3. Analysis of the Time-Invariant Case

In this section, we consider the case where the inter-
connection graph is time-invariant and identify conditions
for exponential eradication of a virus.

3.1. Exponential eradication of a virus

Since the interconnection graph is time-invariant, i.e.,
Gr(k) = Gr for all k ∈ Z≥0, the spread dynamics for virus r
is as follows:

zr(k+1)=zr(k)+h
(
−Dr

f+(I−
∑m

ℓ=1 X(zℓ))Br
f

)
zr(k). (12)

We make the following assumptions so that system (12)
is well-defined.
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Assumption 1 For all i ∈ [n],
∑m

ℓ=1 x
ℓ
i(0) ∈ [0, 1].

Assumption 2 For all i, j ∈ [n], r ∈ [m] δri > 0, βr
ij ≥ 0,

βwr
ij ≥ 0. For all r ∈ [m], i ∈ [n], and j ∈ [m], δrwj > 0 and

crwij ≥ 0 with at least one i such that crwij > 0.

Assumption 3 For all r ∈ [m], i ∈ [n] and j ∈ [q],
wr

j (0)≥0 and wr
j (0)≤wr

max, and
∑n

ℓ=1 c
wr
jℓ /δ

wr
j ∈ [0, wr

max].

Assumption 4 For all i ∈ [n] (resp. j ∈ [q]), r ∈ [m],
hδri ∈ [0, 1] (resp. hδrj ∈ [0, 1]). Furthermore,

h
∑m

ℓ=1

(∑n
p=1 β

ℓ
ip +

∑n
p=1 β

wℓ
ip wℓ

max

)
∈ [0, 1].

The following lemma guarantees that the set Dr is pos-
itively invariant for system (12).

Lemma 3 (Cui et al., 2022, Lemma 1) Consider (12), and
let Assumptions 1-4 hold. Then, xr

i (k) ∈ [0, 1] for all i ∈
[n], and zrj (k) ∈ [0, wr

max] for all j ∈ [q], for all k ∈ Z≥0.

Recall that xr
i (k) is an approximation of the probability

of infection for virus r of individual i, whereas zrj (k) is
the concentration of virus r in resource j; hence, if the
states were to take values outside those in Dr, then those
states would not correspond to physical reality. Hence,
for our subsequent stability results, we prove the system’s
eradicated state of virus r is stable with the domain of
attraction Dr, which is equivalent to global stability for
this system. In particular, if the system’s eradicated states
are stable with the domain of attraction Dr for all r ∈ [m],
then the DFE is globally exponentially stable. Next, we
provide a sufficient condition for the eradication of virus r.

Theorem 1 Let Assumptions 1-4 hold, and consider sys-
tem (12). If ρ(Mr

f ) < 1, with r ∈ [m], then the eradicated
state of virus r is exponentially stable, with domain of
attraction Dr.

Proof: See the proof of (Gracy et al., 2023, Theorem 1).
The following result is immediate.

Corollary 1 Consider system (12) under Assumptions 1-
4. If ρ(Mr

f ) < 1, for all r ∈ [m], then the DFE is globally
exponentially stable.

We now explain how Corollary 1 is related to a similar
result in (Cui et al., 2022, Theorem 10). Corollary 1 pro-
vides guarantees for exponential convergence to the DFE,
whereas (Cui et al., 2022, Theorem 10) guarantees only
asymptotic convergence to the DFE. Thus, for the range
of parameters that satisfy the conditions in Corollary 1
and in (Cui et al., 2022, Theorem 10), Corollary 1 provides
stronger convergence guarantees (to the DFE). Moreover,
Corollary 1, unlike (Cui et al., 2022, Theorem 10), does
not require the graph to be strongly connected. On the
other hand, (Cui et al., 2022, Theorem 10) allows for the
spectral radius of Mr

f to be equal to one and yet achieves
convergence, albeit asymptotic, to the DFE. Consequently,
(Cui et al., 2022, Theorem 10) guarantees the eradication
of viruses for a larger range of model parameters.

3.2. Reproduction number

The term ρ(Mr
f ) can be interpreted as the reproduction

number for virus r. Define Mr := I − hD + hB; the
term ρ(Mr) denotes the reproduction number for virus r
assuming there is no infrastructure network. It is natural
to explore the relation between ρ(Mr

f ) and ρ(Mr). To this
end, we need the following assumption and proposition.

Assumption 5 The matrix Br
f is irreducible for r ∈ [m].

Proposition 1 (Cui et al., 2022, Proposition 4) Consider
system (12) under Assumptions 2, 4, and 5. The reproduc-
tion number of the multi-virus SIS network with an infras-
tructure network is greater than the reproduction number
of the multi-virus SIS network without the infrastructure
network, i.e., ρ(Mr

f ) > ρ(Mr).

4. Exponential Eradication of a Virus: Time-Varying
Case

This section studies the case where the population net-
work is time-varying, i.e, we allow for Gr(k0) ̸= Gr(k1) for
some k0 ̸= k1 ∈ Z≥0. We rely on the model in (9). Be-
fore proceeding with the analysis, we need the following
assumptions to ensure that (9) is well-defined.

Assumption 6 For all k ∈ Z≥0, i, j ∈ [n], r ∈ [m] δri (k) >
0, βr

ij(k) ≥ 0, βwr
ij (k) ≥ 0. For all r ∈ [m], i ∈ [n], and

j ∈ [m], δrwj > 0 and crwij ≥ 0 with at least one i such that
crwij > 0.

Assumption 7 For all k ∈ Z≥0, r ∈ [m], i ∈ [n] and
j ∈ [q], wr

j (0) ≥ 0 and wr
j (0) ≤ wr

max. Furthermore,∑n
ℓ=1 c

wr
jℓ (k)/δ

wr
j (k) ∈ [0, wr

max].

Assumption 8 For all i ∈ [n] (resp. j ∈ [q]), k ∈ Z≥0

and r ∈ [m], hδri (k) ∈ [0, 1) (resp. hδrj (k) ∈ [0, 1)). Fur-

thermore, h
∑m

ℓ=1

(∑n
p=1 β

ℓ
ip(k) +

∑n
p=1 β

wℓ
ip (k)wℓ

max

)
∈

[0, 1].

Assumptions 6, 7, and 8 imply Assumptions 2, 3, and 4,
respectively. The converse, however, is false. The following
lemma establishes positive invariance of the set Dr for (9).

Lemma 4 (Cui et al., 2022, Lemma 4) Let Assumptions 1, 6-
8 hold and consider (9). Then xr

i (k) ∈ [0, 1], ∀i ∈ [n], and
zrj (k) ∈ [0, wr

max], ∀j ∈ [q], ∀k ∈ Z≥0.

4.1. Homogeneous spread, symmetric undirected graphs

We focus on homogeneous virus spread (i.e., the infec-
tion rate for a virus is the same for every individual) in the
layered network. The following theorem identifies a suffi-
cient condition for the exponential eradication of a virus,
irrespective of the initial infection levels in the network of
individuals and in the network of shared resources, for the
virus.

6



Theorem 2 Consider system (9) under Assumptions 1, 6-
8. Suppose that, for all k ∈ Z≥0,

i) βr
i (k)=βr(k) ∀i ∈ [n]

ii) δri (k)=δr(k) ∀i ∈ [n]

iii) Ar(k)=Ar(k)⊤

iv) Br
w(k)=Cr

w(k)
⊤.

If supk∈Z≥0
ρ(Mr

f (k)) < 1, where r ∈ [m], then the eradi-
cated state of virus r is exponentially stable with a domain
of attraction Dr.

Proof: Consider the Lyapunov function candidate V (zr, k) =
1
2z

r(k)⊤zr(k). It is immediate that V (zr, k) > 0 for all
k and zr(k) ̸= 0. Define ∆V (zr, k) := V (zr(k + 1)) −
V (zr(k)). Hence, for all zr ̸= 0, we have the following:

∆V (zr) =
1

2

(
zr(k + 1)⊤zr(k + 1)− zr(k)⊤zr(k)

)
=
1

2

(
z⊤(Mr

f (k)−
∑m

ℓ=1 Z
ℓBℓ

f )
⊤ (13)

× (Mr
f (k)−

∑m
ℓ=1 Z

ℓBℓ
f )z

r − (zr)⊤zr
)

=
1

2

(
(zr)⊤(Mr

f (k)
⊤Mr

f − hMr
f (k)

⊤ ∑m
ℓ=1 Z

ℓBℓ
f

− hBr
f (k)

⊤ ∑m
ℓ=1 Z

ℓMr
f (k)

+ h2Br
f (k)

⊤ ∑m
ℓ=1 Z

ℓ
∑m

ℓ=1 Z
ℓBr

f (k))z
r − (zr)⊤zr

)
.

(14)

Observe that

(zr)⊤
(
h2Br

f (k)
⊤ ∑m

ℓ=1 Z
ℓ
∑m

ℓ=1 Z
ℓBr

f (k)

− 2hMr
f (k)

⊤ ∑m
ℓ=1 Z

ℓBr
f (k)

)
zr

= (zr)⊤
(
h2Br

f (k)
⊤ ∑m

ℓ=1 Z
ℓ
∑m

ℓ=1 Z
ℓBr

f (k)

− 2h2Br
f (k)

⊤ ∑m
ℓ=1 Z

ℓBr
f (k)

− 2h(I − hDr
f (k))

∑m
ℓ=1 Z

ℓBr
f (k)

)
zr

< (zr)⊤
(
h2Br

f (k)
∑m

ℓ=1 Z
ℓ
∑m

ℓ=1 Z
ℓBr

f (k)

− 2h2Br
f (k)

⊤ ∑m
ℓ=1 Z

ℓBr
f (k)

)
zr (15)

≤ (zr)⊤
(
h2Br

f (k)
∑m

ℓ=1 Z
ℓ
∑m

ℓ=1 Z
ℓBr

f (k)

− h2Br
f (k)

⊤ ∑m
ℓ=1 Z

ℓBr
f (k)

)
zr (16)

= −(zr)⊤
(
h2Br

f (k)
⊤ ∑m

ℓ=1 Z
ℓ(I −

∑m
ℓ=1 Z

ℓ)Br
f (k)

)
zr

≤ 0, (17)

where (15) follows by noting that i) due to Assumption 8
the matrix (I − hDr

f (k)) is positive; and ii) due to As-
sumption 6, the matrix Br

f (k) is nonnegative; thus, im-

plying that −(zr)⊤2h(I − hDr
f (k))

∑m
ℓ=1 Z

ℓBr
f (k)z

r < 0.
Inequality (16) is a direct consequence of Lemma 4 and
Assumption 6, whereas inequality (17) can be obtained by
extending the claim in (Janson et al., 2020, Lemma 6) for
m arbitrary, but finite, viruses, which is straightforward.
Plugging (17) into (14) yields the following:

∆V (zr, k) ≤ 1

2
(zr)⊤

(
Mr

f (k)
⊤Mr

f (k)− I
)
zr. (18)

It follows from the theorem assumptions that Mr
f (k) is

symmetric for all k, which implies that Mr
f (k)

⊤ = Mr
f (k).

Hence, it can be easily verified that
Mr

f (k)
⊤Mr

f (k) = Mr
f (k)M

r
f (k)

⊤. Therefore, from (Horn
and Johnson, 2012, page 114), we have that

ρ(Mr
f (k)

⊤Mr
f (k)) ≤ ρ(Mr

f (k)
⊤)ρ(Mr

f (k))

= ρ(Mr
f (k))ρ(M

r
f (k))

= ρ2(Mr
f (k))

< 1. (19)

Inequality (19) is due to the following reason: By assump-
tion, supk∈Z≥0

ρ(Mr
f (k)) < 1, which, due to the definition

of supremum, implies that ρ(Mr
f (k)) < 1 for all k ∈ Z≥0.

Therefore, it is clear that ρ2(Mr
f (k)) < 1.

Observe thatMr
f (k)

⊤Mr
f (k) is positive semi-definite, which

implies that λi(M
r
f (k)

⊤Mr
f (k)) ≥ 0 for all i ∈ [n + q].

Therefore, λmax(M
r
f (k)

⊤Mr
f (k)) = ρ(Mr

f (k)
⊤Mr

f (k)). Con-

sequently, from (19) we have that λmax(M
r
f (k)

⊤Mr
f (k)) <

1. Applying Weyl’s inequalities (Horn and Johnson, 2012,
Corollary 4.3.15) to M(k)⊤M(k) − I, we obtain, for i ∈
[n + q], λi(M

r
f (k)

⊤Mr
f (k) − I) ≤ λi(M

r
f (k)

⊤Mr
f (k)) − 1.

Since, for every k ∈ Z≥0, λmax(M
r
f (k)

⊤Mr
f (k)) < 1, it fol-

lows that, for each k ∈ Z≥0, λmax(M
r
f (k)

⊤Mr
f (k)−I) < 0.

Plugging λmax(M
r
f (k)

⊤Mr
f (k)− I) < 0 back into (18) and

applying RRQ yields: (zr)⊤
(
Mr

f (k)
⊤Mr

f (k)−I
)
zr < 0 for

zr ̸= 0 and k ∈ Z≥0. Hence, it follows that, for zr ̸= 0
and k ∈ Z≥0, ∆V (zr, k) < 0. Exponential eradication of
virus r with a domain of attraction Dr, then, follows from
(Vidyasagar, 2002, Theorem 28, Section 5.9). □

It turns out that there is an interesting ramification
that Theorem 2 has on the possibility of eradication of
virus r assuming there was no infrastructure network. We
need the following assumption.

Assumption 9 The matrix Br
f (k) is irreducible for all

r ∈ [m] and k ∈ Z≥0.

We have the following result.

Proposition 2 Consider system (9) under Assumptions 6-
9. It must be that sup

k∈Z≥0

ρ(Mr
f (k)) > sup

k∈Z≥0

ρ(Mr(k)).

Proof: Consider the matrix Mr
f (k) and notice that, due to

Assumption 9, it is irreducible, whereas due to Assump-
tions 6 and 8 it is nonnegative. Furthermore, it can be
expressed as follows:

Mr
f (k) =

[
Mr(k) hBr

w(k)
hCr

w(k) I − hDr
w(k) + hCr

w(k)

]
.

Note that Mr(k) is a principal square submatrix of Mr
f (k).

Therefore, for a fixed k, from (Varga, 2000, Lemma 2.6),
it follows that ρ(Mr

f ) > ρ(Mr). Note that the choice
of k is arbitrary. Hence, for every k ∈ Z≥0, it must be

7



that ρ(Mr
f (k)) > ρ(Mr(k)). Hence, by employing the

definition of supremum, we obtain supk∈Z≥0
ρ(Mr

f (k)) >

supk∈Z≥0
ρ(Mr(k)). □

Note that supk∈Z≥0
ρ(Mr(k)) < 1 is a sufficient condition

for exponential convergence to the DFE, assuming there
is no infrastructure network; see (Paré et al., 2020a, The-
orem 1). Hence, Proposition 2 implies that eradicating a
virus in the population network does not necessarily im-
ply eradication of said virus in the layered network; this
further underscores the challenges of combating epidemics
that spread through multiple mediums.

The following remark explains how Propositions 1 and 2
are related.

Remark 5 Note that Proposition 1 deals with
time-invariant spread, whereas Proposition 2 pertains to
time-varying spread. On the one hand, if for system (12)
we set βr

i = βr and δri = δr for all i ∈ [n], Ar = (Ar)⊤

and Br
w = Cr

w, then Proposition 2 implies Proposition 1.
On the other hand, the findings of Proposition 1 are also
applicable if, for instance, βr

i ̸= βr
j for some i, j ∈ [n],

while those of Proposition 2 do not apply for such cases;
thus, for a given time instant k, Proposition 1 subsumes
Proposition 2. To summarize, neither Proposition 2 nor
Proposition 1 subsume each other.

Observe that Theorem 2 insists on a strict inequality
for achieving (exponential) convergence to the DFE. It is
quite natural to ask whether (or not) convergence can be
achieved even if the inequality in Theorem 2 was relaxed
by, for instance, possibly letting at least some of the point-
wise eigenvalues of M(k) lie on the unit disk. We have the
following proposition.

Proposition 3 Consider system (9) under Assumptions 1, 6-
8. Suppose that, for all k ∈ Z≥0,

i) βr
i (k)=βr(k) ∀i ∈ [n]

ii) δri (k)=δr(k) ∀i ∈ [n]

iii) Ar(k)=Ar(k)⊤

iv) Br
w(k)=Cr

w(k)
⊤.

If supk∈Z≥0
ρ(Mr

f (k)) ≤ 1, where r ∈ [m], then the eradi-
cated state of virus r is asymptotically stable with a do-
main of attraction Dr.

In words, Proposition 3 says that for a virus with homo-
geneous infection parameters spreading over undirected
graphs, under Assumptions 1, 6-9, if none of the point-
wise eigenvalues of Mr

f (k) lie outside the unit disk, then
the healthy state is GAS.

Proof: Suppose that supk∈Z≥0
ρ(Mr

f (k)) ≤ 1, then ei-

ther a) supk∈Z≥0
ρ(Mr

f (k)) < 1, or b) supk∈Z≥0
ρ(Mr

f (k)) =
1. We will consider both cases separately.

Case a) From Theorem 2, we know that
supk∈Z≥0

ρ(Mr
f (k)) < 1 implies GES of the eradicated

state of virus r. Since GAS is a weaker notion than GES,
supk∈Z≥0

ρ(Mr
f (k)) < 1 also implies GAS of the eradicated

state of virus r.
Case b:) Consider the same Lyapunov function V (zr, k)

as in the proof of Theorem 2. Therefore, for zr(k) ̸= 0 and
for each k ∈ Z≥0, we obtain the following:

∆V (zr, k) = ((zr)⊤M̂r
f (k)

⊤M̂r
f (k)x− (zr)⊤zr)

= (zr)⊤(Mr
f (k)

⊤Mr
f (k)− I − 2hBr

f (k)
⊤X(zr(k))Mr

f

+ h2Br
f (k)

⊤X(zr(k))X(zr(k))Br
f (k))z

r. (20)

By applying the RRQ Theorem Horn and Johnson (2012)
to the matrix Mr

f (k)
⊤Mr

f (k)− I, we obtain

(zr)⊤(Mr
f (k)

⊤Mr
f (k)−I)zr ≤ λmax(M

r
f (k)

⊤Mr
f (k)−I) ∥zr∥2 .

(21)
By appealing to the same arguments employed for showing
that supk∈Z≥0

ρ(Mr
f (k)) < 1 implies negative definiteness

of Mr
f (k)

⊤Mr
f (k) − I in the proof of Theorem 2, we can

show that supk∈Z≥0
ρ(Mr

f (k)) = 1 implies, for each k ∈
Z≥0, λi(M

r
f (k)

⊤Mr
f (k)− I) ≤ 0 where i = 1, 2, . . . , n+ q.

Hence, from (21), it follows that (zr)⊤(Mr
f (k)

⊤Mr
f (k) −

I)zr ≤ 0 for zr ̸= 0 and for each k ∈ Z≥0. Therefore,
from (20), it follows that

∆V (zr, k)

≤ (zr)⊤(h2Br
f (k)

⊤X(zr(k))X(zr(k))Br
f (k)

− hBr
f (k)

⊤X(zr(k))Mr
f (k)

− hBr
f (k)

⊤X(zr(k))(I − hDr
f (k) + hBr

f (k)))z
r

= (zr)⊤(h2Br
f (k)

⊤X(zr(k))X(zr(k))Br
f (k)

− hBr
f (k)

⊤X(zr(k))Mr
f (k)

− h2Br
f (k)

⊤X(zr(k))Br
f (k)

− hBr
f (k)

⊤X(zr(k))(I − hDr
f (k)))z

r

< (zr)⊤(h2Br
f (k)

⊤X(zr(k))X(zr(k))Br
f (k)

− hBr
f (k)

⊤X(zr(k))Mr
f (k)

h2Br
f (k)

⊤X(zr(k))Br
f (k))z

r (22)

= (zr)⊤(−h2Br
f (k)

⊤X(zr(k))(I −X(zr(k)))Br
f (k)

− hBr
f (k)

⊤X(zr(k))Mr
f (k))z

r

≤ −(zr)⊤hBr
f (k)

⊤X(zr(k))Mr
f (k))z

r

≤ 0,

where inequality (22) is due to Assumptions 1 and 8. It is
immediate that if zr(k) = 0 then ∆V (zr, k) = 0. Since the
matrix X(zr) is a diagonal matrix where, for i = 1, . . . , n
X(zr)ii = xr

i , and, for i = n + 1, . . . , n + q, X(zr)ii = 0,
and since by Lemma 4 we know that xr

i (k) ∈ [0, 1] for
all k, it follows that the matrix X(zr) is non-negative. By
Assumptions 6-8, the matrices Br

f (k) andDr
f (k) are, for all

k ∈ Z≥0, non-negative and positive, respectively. Hence,
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if ∆V (zr, k) = 0, then zr(k) = 0. Thus, from Lemma 1,
the eradicated state of virus r is GAS. □

4.2. Directed networks and heterogeneous spread

We have the following result.

Theorem 3 Consider system (9) under Assumptions 1, 6-
8. Assume ∃ α1 > 0, L ∈ R+, κ ∈ R+, such that

i) supk∈Z≥0
ρ(Mr

f (k)) ≤ α1 < 1;

ii) ||Mr
f (k)|| ≤ L, ∀k ∈ Z≥0; and

iii) supk∈Z≥0
||Mr

f (k + 1)−Mr
f (k)|| ≤ κ.

If κ is sufficiently small, then the eradicated state of virus r
is exponentially stable, with a domain of attraction Dr.

We provide an explicit expression for κ later in the
proof. The proof of Theorem 3 closely mirrors that of
(Paré et al., 2020a, Theorem 2); it can be traced back to
the linear work in (Desoer, 1970; Rugh, 1996).

Proof: Consider the discrete-time Lyapunov equation:

(Mr
f )

⊤(k)Q(k + 1)Mr
f (k)−Q(k + 1) = −In+q. (23)

Observe that In+q is symmetric and positive definite. More-
over, by assumption supk∈Z≥0

ρ(Mr
f (k)) < 1. Therefore,

the solution to (23) (say, Q(k + 1)) exists, is unique, and
is positive definite for all k ∈ Z≥0; see (Rugh, 1996, The-
orem 23.7). Furthermore, from the proof of (Rugh, 1996,
Theorem 24.8), a closed-form expression for the solution
is as follows:

Q(k + 1) = In+q +
∑∞

j=1[(M
r
f )

⊤(k)]j(Mr
f )

j(k). (24)

Consider the Lyapunov function V (k, zr) = (zr)⊤Q(k)zr.
Given that, for each k ∈ Z≥0, Q(k) is positive definite,
it follows that V (zr, k) > 0 for all k ∈ Z≥0 and zr ̸= 0.
The rest of the proof can be broken down into three steps:
First, we find a constant γ1 > 0 such that γ1||zr||2 ≤
V (k, zr) for all k ∈ Z≥0. Second, we find a constant γ2 > 0
such that V (k, zr) ≤ γ2||zr||2 for all k ∈ Z≥0. Finally, we
prove that ∆V (k, zr) < 0 for all zr ̸= 0 and k ∈ Z≥0.

Step 1: From (24) it is immediate that Q(k) ≥ I for all
k. Therefore, (zr)⊤zr ≤ (zr)⊤Q(k)zr, and hence we have
for all k ∈ Z≥0: ||zr||2 ≤ V (zr, k)

Step 2: Our objective here is to find an upper bound on
V (k, x), which is independent of k. To this end, define µ :=
1−α1

2 . Therefore, the assumption supk∈Z≥0
ρ(Mr

f (k)) ≤
α1 implies that supk∈Z≥0

ρ(Mr
f (k)) ≤ 1 − 2µ. It can be

easily verified that 1−µ > 0. By using Dunford’s integral
(Dunford and Schwartz, 1958, page 568) with the circle of
radius 1− µ as contour, we have the following:

Mr
f (k)

P =
1

2πj

∮
C

sP (sIn+q −Mr
f (k))

−1ds

≤ 1

2πj
2π|s| max

|s|=1−µ
{sF (sIn+q −Mr

f (k))
−1}. (25)

By taking the norm of both sides of (25), and evaluating
at |s| = 1− µ one obtains:

||Mr
f (k)

P ||≤(1−µ) max
|s|=1−µ

(|s|P )|| max
|s|=1−µ

(sIn+q −Mr
f (k))

−1||

||Mr
f (k)

P || ≤ (1− µ)P+1|| max
|s|=1−µ

(sIn+q −Mr
f (k))

−1||

≤ (1− µ)P+1 max
|s|=1−µ

||(sIn+q −Mr
f (k))

−1||

≤ (1− µ)P+1 max
|s|=1−µ

{ ||(sIn+q −Mr
f (k))||n+q−1

|det(sIn+q −Mr
f (k))|

}
, (26)

where (26) is due to (Kato, 1960, Lemma 1).
From (Horn and Johnson, 2012, pg.55) it is clear that,

given a s ∈ C, det(sIn+q −Mr
f (k)) = (s− λj(M

r
f (k)))

n+q.
Notice that

|s− λj(M
r
f (k))| ≥ ||s| − |λj(M

r
f (k))|| (27)

≥ ||s| − (1− 2µ)| (28)

= µ, (29)

where (27) follows from the reverse triangle inequality. We
obtain inequality (28) in view of the following: Recall that
supk∈Z≥0

ρ(Mr
f (k)) ≤ 1− 2µ. By employing the definition

of supremum, it must be that, for every k, each pointwise
eigenvalue of Mr

f (k) ≤ 1 − 2µ, i.e., |λi(M
r
f (k))| ≤ 1 − 2µ,

where i = 1, 2, . . . n + q. Equality (29) is obtained by
evaluating (28) at |s| = 1 − 2µ, and, as a result, for |s| =
1− µ, |det(sIn+q −Mr

f (k))| ≥ µn+q.
By assumption there also exists an L such that ||Mr

f (k)|| ≤
L, for all k ∈ Z≥0. Consequently, ||(sIn+q − Mr

f (k))|| ≤
(1−µ+L). Therefore, given that |det(sIn+q −Mr

f (k))| ≥
µn+q, we can rewrite (26) as follows:

||Mr
f (k)

P || ≤ (1− µ)P+1

µn+q
(1− µ+ L)n+q−1. (30)

Define m1 := 1−µ
µn+q (1 − µ + L)n+q−1 and p1 := (1 − µ).

Therefore, (30) can be rewritten as:

||Mr
f (k)

P || ≤ m1p
P
1 ∀P, ∀k ∈ Z≥0. (31)

Observe that taking norms on both sides of (24), and tak-
ing recourse to the triangle inequality and the submulti-
plicativity of matrix norms, we obtain:

||Q(k + 1)|| ≤ 1 +
∑∞

j=1 m
2
1p

2j
1 ≤ m2

1

1−p2
1
, (32)

Note that p1 < 1, then p21 < 1, which implies (32). Since
Q(k) is symmetric ∀k ∈ Z≥0, by applying RRQ we have:

λmin(Q(k))I ≤ Q(k) ≤ λmax(Q(k))I,

which implies

λmin(Q(k))||zr(k)||2 ≤ zr(k)⊤Q(k)zr(k)

≤ λmax(Q(k))||zr(k)||2 ≤ ||Q(k)|| · ||zr(k)||2 (33)

≤ m2

1− p2
||zr(k)||2, (34)
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where (33) follows from (Horn and Johnson, 2012, Theo-
rem 5.6.9), and (34) is due to (32). Then, ∀k ∈ Z≥0,

V (k, zr) ≤ m2
1

1− p21
||zr||2. (35)

Step 3: Define ∆V (k, zr) := V (zr(k + 1)) − V (zr(k)).
Hence, for zr ̸= 0, and ∀k ∈ Z≥0, we obtain the following:

∆V (k, zr) = (zr)⊤(Mr
f (k)

⊤Q(k + 1)Mr
f (k)−Q(k))zr

− 2h(zr)⊤Mr
f (k)

⊤Q(k + 1)
∑m

ℓ=1 X(zℓ)Br
fz

r

+ h2(zr)⊤Br
f (k)

⊤ ∑m
ℓ=1 X(zℓ)Q(k + 1)

∑m
ℓ=1 X(zℓ)Br

fz
r.

(36)

The matrix Mr
f (k)

⊤Q(k+1)Mr
f (k)−Q(k) is negative defi-

nite. Subtracting two successive instances of (23) results in

Mr
f (k)

⊤Q(k+1)Mr
f (k)−Mr

f (k−1)⊤Q(k)Mr
f (k−1)

=Q(k+1)−Q(k). (37)

Adding and subtracting Mr
f (k)

⊤Q(k)Mr
f (k) to the LHS

of (37), and rearranging of terms, leads to

Mr
f (k)

⊤(Q(k + 1)−Q(k))Mr
f (k)− (Q(k + 1)−Q(k)) =

Mr
f (k − 1)⊤Q(k)Mr

f (k − 1)−Mr
f (k)

⊤Q(k)Mr
f (k). (38)

In a similar vein, by adding and subtracting
Mr

f (k − 1)⊤Q(k)Mr
f (k) to the RHS of (38), we obtain

Mr
f (k)

⊤(Q(k + 1)−Q(k))Mr
f (k)− (Q(k + 1)−Q(k))

= −((Mr
f (k)

⊤ −Mr
f (k − 1)⊤)Q(k)Mr

f (k)

+Mr
f (k − 1)⊤Q(k)(Mr

f (k)−Mr
f (k − 1))). (39)

Define R1 := ((Mr
f (k))

⊤− (Mr
f (k−1))⊤)Q(k)Mr

f (k)+

(Mr
f (k−1))⊤Q(k)(Mr

f (k)−Mr
f (k−1)). As a consequence,

we have the following:

||R1|| ≤ ||(Mr
f (k)

⊤ −Mr
f (k − 1)⊤))Q(k)Mr

f (k)||+
||M⊤(k − 1)Q(k)(M(k)−M(k − 1))|| (40)

≤ ||(Mr
f (k)

⊤ −Mr
f (k − 1)⊤)|| · ||Q(k)|| · ||Mr

f (k)||
+||Mr

f (k−1)⊤|| · ||Q(k)|| · ||Mr
f (k)

⊤−Mr
f (k−1)⊤)||. (41)

Note that inequality (40) comes from the triangle inequal-
ity of matrix norms, while inequality (41) follows from the
submultiplicativity of matrix norms.

Since, for all k ∈ Z≥0, i) by assumption, there ex-
ists κ such that ||Mr

f (k + 1) − Mr
f (k)|| ≤ κ, and ii) by

(32), ||Q(k)|| ≤ m2
1

1−p2
1
, it is clear from (41) that ||R1|| ≤

2κ
m2

1

1−p2
1
L. Notice that (39) is a discrete-time Lyapunov

equation; the solution for which is given by

Q(k+1)−Q(k) = R1+
∑∞

j=1[M
r
f (k)

⊤]jR1[M
r
f (k)]

j . (42)

Taking the norm of both sides of (42) leads to

||Q(k + 1)−Q(k)|| ≤ ||R1||(1 +
∑∞

j=1 m
2
1p

2j
1 ) (43)

≤ 2κ
m4

1

(1− p21)
2
L. (44)

where inequality (44) is a consequence of (43) being a
convergent series. Next, pick σ > 0 such that 1− σ < 1.

Hence, from inequality (44) it is clear that if κ ≤ (1−p2
1)

2

2m4
1L

(1−
σ), then ||Q(k + 1) − Q(k)|| ≤ 1 − σ. It turns out that
||Q(k+1)−Q(k)|| ≤ 1−σ implies, for zr ̸= 0 and k ∈ Z≥0,

zr(k)⊤Mr
f (k)

⊤Q(k + 1)Mr
f (k)−Q(k)zr(k) < 0. (45)

Indeed, note that (23) can be rewritten as: Mr
f (k)

⊤Q(k+
1)Mr

f (k)−Q(k) = −In+q+Q(k+1)−Q(k), for all k ∈ Z≥0.
Therefore, for all k ∈ Z≥0, (45), can be written as:

zr(k)⊤(−In+q +Q(k + 1)−Q(k))zr(k)

≤ −||zr(k)||2 + zr(k)⊤(Q(k + 1)−Q(k))zr(k)

≤ −||zr(k)||2 + λmax(Q(k + 1)−Q(k))||zr(k)||2 (46)

≤ −||zr(k)||2 + (1− σ)||zr(k)||2 (47)

= −σ||zr(k)||2 < 0, (48)

where (46) follows from the definition of the induced norm

of (Q(k+1)−Q(k))
1
2 , (47) is due to the following reasons:

a) the norm of a matrix is lower bounded by its spectral
radius (Horn and Johnson, 2012, Theorem 5.6.9), and b)
||Q(k + 1) −Q(k)|| ≤ 1 − σ, and finally (48) follows from
the assumption that σ > 0.
Therefore, by plugging (45) in (36), it is immediate that

∆V (k, zr) < −2h(zr)⊤Mr
f (k)

⊤Q(k + 1)
∑m

ℓ=1 X(zℓ)Br
fz

r

+ h2(zr)⊤Br
f (k)

⊤ ∑m
ℓ=1 X(zℓ)Q(k + 1)

∑m
ℓ=1 X(zℓ)Br

fz
r

= (zr)⊤
(
h2Br

f (k)
⊤ ∑m

ℓ=1 Z
ℓQ(k + 1)

∑m
ℓ=1 Z

ℓBr
f (k)

− 2h2Br
f (k)

⊤Q(k + 1)
∑m

ℓ=1 Z
ℓBr

f (k)

− 2h(I − hDr
f (k))Q(k + 1)

∑m
ℓ=1 Z

ℓBr
f (k)

)
zr

≤ (zr)⊤
(
h2Br

f (k)
∑m

ℓ=1 Z
ℓQ(k + 1)

∑m
ℓ=1 Z

ℓBr
f (k)

− 2h2Br
f (k)

⊤Q(k + 1)
∑m

ℓ=1 Z
ℓBr

f (k)
)
zr (49)

≤ (zr)⊤
(
h2Br

f (k)
∑m

ℓ=1 Z
ℓQ(k + 1)

∑m
ℓ=1 Z

ℓBr
f (k)

− h2Br
f (k)

⊤Q(k + 1)
∑m

ℓ=1 Z
ℓBr

f (k)
)
zr (50)

=−(zr)⊤
(
h2Br

f (k)
⊤(I−

∑m
ℓ=1 Z

ℓ)Q(k+1)
∑m

ℓ=1 Z
ℓBr

f (k)
)
zr

≤0, (51)

where inequality (49), (50), and (51) are obtained us-
ing the same line of reasoning as in inequality (15), (16),
and (17), respectively. Exponential eradication of virus r
with a domain of attraction Dr is a direct consequence of
(Vidyasagar, 2002, Theorem 28, Section 5.9). □

Note that the results in Sections 3 and 4 are reliant
on exact knowledge of the system parameters. However,
often times the system parameters could change over time
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due to a multitude of factors; in context, this would mean
that the healing (resp. infection) rate of individuals could
differ from the known values. This is referred to as pertur-
bation of system parameters. It is of interest to know that,
assuming a system with known virus dynamics is stable,
how well the stability guarantees (obtained so far) trans-
late to settings where there is some perturbation in the
virus dynamics. The next section deals with the same.

5. Perturbation Analysis

In this section, we allow for some perturbations in the
graph structure, i.e., the entries of Ar(k), and, supposing
that the unperturbed system is GES, we are interested
in understanding when the same holds for the perturbed
system. To this end, define B̄r(k) := diag(βr

i (k)) with i =
1, 2, . . . , n. Together with recalling that Ar(k) = [arij(k)],

it is immediate that Br(k) = B̄r(k)Ar(k). We have the
following result.

Theorem 4 Consider system (9) under Assumptions 1, 6-
8. Define the perturbed system as:

yr(k + 1) = (M̂r
f (k) + F r(k))yr(k), (52)

where F r(k) = h(I − X(zr(k)))Br(k)∆̄r(k),
∆̄r(k) = [∆

r(k) 0
0 0

], with ∆r(k) denoting the perturba-
tion in Ar(k), for all k ∈ Z≥0. Suppose that there exists
ζ ∈ R+ such that, for all k ∈ Z≥0, ||F r(k)|| ≤ ζ. If, for
system (9), the eradicated state of virus r is GES, and ζ
is sufficiently small, then for system (52) the eradicated
state of virus r is GES. ■

The proof is based on the techniques used for obtaining a
similar result for the linear case; see (Rugh, 1996, Theo-
rem 24.7).
Proof : Observe that by setting F r(k) = 0 in system (52),
we obtain system (9). By assumption, system (9) is GES.
Therefore, by (Vidyasagar, 2002, Definition 15, Page 266),
there exist constants η, α > 0 and σ < 1 such that the
following is satisfied:

||yr0|| ≤ η, k0 ≥ 0 =⇒ ||s(k0 + k, k0, y
r
0)||

≤ α||yr0||σk, ∀k ≥ k0 + 1, (53)

where yr(k0) = yr0. By viewing the term F r(k)yr(k) as an
input term, the complete solution to (52) is as follows:

yr(k) = s(k0 + k, k0, y
r
0)

+
∑k−1

j=k0
s(k, j + 1)F r(j)yr(j), ∀k ≥ k0 + 1. (54)

Taking norms on both sides of (54) yields:

||yr
(k)|| ≤ ||s(k0 + k, k0, y

r
0)|| + ||

∑k−1
j=k0

s(k, j + 1)F r(j)yr(j)|| (55)

≤ α · σ(k−k0)||yr
0 || +

∑k−1
j=k0

||s(k, j + 1)|| · ||F r(j)|| · ||yr(j)||,
(56)

where inequality (55) is due to the triangle inequality of
matrix norms, whereas inequality (56) is a consequence
of (53) and the submultiplicativity of matrix norms. There-
fore, by Bellman-Gronwall inequality for sequences (Rugh,
1996, Lemma 24.5), we obtain for k ≥ k0 + 1:

σ−k||yr(k)|| ≤ ασ−k0 ||yr0||
k−1∏
j=k0

[1 +
α

ρ
||F r(j)||]

≤ ασ−k0 ||yr0||
k−1∏
j=k0

[1 +
α

ρ
ζ], (57)

where inequality (57) is a consequence of the assumption
that there exists ζ ∈ R+ such that, for all k ∈ Z≥0,

||F r(k)|| ≤ ζ. Since
∏k−1

j=k0
[1 + α

σ ζ] ≤ [1 + α
σ ζ]

(k−k0), we
can rewrite (57) as

||yr(k)|| ≤ α(σ + αζ)k−k0 ||yr0||. (58)

Note that choosing ζ < 1−σ
α yields us a positive constant

ω as in Definition 1. Furthermore, since α > 0, it follows,
from Definition 1, that for system (52) the eradicated state
of virus r is GES. □

6. Endemic Behavior of the Model

The analysis so far has focused on identifying condi-
tions guaranteeing convergence to the eradicated state of a
virus. In this section, we will explore the endemic behavior
of our model. Specifically, for the time-invariant case, we
establish a lower bound on the number of equilibria that
our system possesses. The analysis for the time-varying
case is more complicated; we shed more light on the tech-
nical difficulties involved but provide no analytical results.

6.1. Time-invariant case

Assuming m = 1, if ρ(Mf ) > 1, then there exists an
endemic equilibrium, z̄, where z̄ ≫ 0. Furthermore, for all
initial conditions in D \ {0}, the dynamics of system (12)
asymptotically converges to z̄; see (Cui et al., 2022, The-
orem 3). For the multi-competitive case (i.e., m ≥ 1), we
have the following result.

Proposition 4 Consider system (12) under Assumptions 1-
5. If ρ(Mr

f ) > 1, for all r ∈ [m], then system (12) has at

leastm+1 equilibria, viz. 0, (z̄1,0 . . . ,0) . . ., (0 . . . ,0, z̄m),
where for each r ∈ [m] z̄r ≫ 0.

Proof: From (Cui et al., 2022, Theorem 3) we know that
for each r ∈ [m] such that ρ(Mr

f ) > 1, there exists an en-
demic equilibrium, (0 . . . ,0, z̄r,0, . . . ,0), where z̄r ≫ 0.
Hence, since, by assumption, ρ(Mr

f ) > 1, for all r ∈ [m], it
follows that there exists m such endemic equilibria. Cou-
pled with the observation that 0 is always an equilibrium
of system (12), it is clear that said system has at least
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m+ 1 equilibria. □
Note that Proposition 4, since it also accounts for the in-
fluence of infrastructure network, is a more general ver-
sion of (Paré et al., 2020c, Proposition 2). Proposition 4
provides a lower bound on the number of equilibria that
system (12) possesses. It, however, makes no comment
regarding the stability (or lack thereof) of the various en-
demic equilibria. It does imply that the healthy state is
an unstable equilibrium; see (Cui et al., 2022, Theorem 3).
An exact characterization of the endemic equilibria,
(0 . . . ,0, z̄r,0, . . . ,0), where z̄r ≫ 0, remains, to the best
of our knowledge, unavailable. For the special case, where
w(k) = 0, (in which case we have a multi-competitive
discrete-time networked SIS model), by leveraging the fact
that a) both a continuous-time dynamic system and its
discrete-time counterpart share the same equilibria ((Cui
et al., 2022)), and b) the equilibrium (0 . . . ,0, z̄r,0, . . . ,0),
where z̄r ≫ 0, is the endemic equilibrium corresponding
to the single-virus system obtained by setting zℓ = 0 for
all ℓ ∈ [m] \ r, an exact characterization of the equilib-
rium point (0 . . . ,0, z̄r,0, . . . ,0) has been provided in (Mei
et al., 2017, Theorem 4.3, statement (iii)(b)).

Suppose that m = 2. Then, another kind of equilib-
rium that could possibly exist is of the form (ẑ1, ẑ2) such
that ẑk ≫ 0 for k = 1, 2 and ẑ1 + ẑ2 ≪ 1. A sufficient
(resp. necessary) condition for the existence of such an
equilibrium (hereafter referred to as coexistence equilib-
rium) has been provided in (Cui et al., 2022, Theorem 12)
(resp. (Cui et al., 2022, Theorem 13)). Note that (Cui
et al., 2022, Theorem 12) guarantees existence, but makes
no comments on the stability of the coexisting equilib-
rium. Furthermore, it assumes that the equilibria, (z̄1,0)
and (0, z̄2) are unstable. It is unknown whether (or not)
any coexistence equilibrium could exist for other stability
configurations of the boundary equilibria. We will explore
this further in Section 7.

It turns out that it is impossible to have multiple co-
existence equilibria of system (12) that differ in one, and
only one, coordinate. We have the following result.

Lemma 5 Consider system (12) under Assumptions 1-5,
and suppose that m = 2. Suppose that (ẑ1, ẑ2) ∈ D and
(z̃1, z̃2) ∈ D be coexistence equilibria of system (12). If
ẑ1 = z̃1, then ẑ2 = z̃2.

Proof: By assumption, (ẑ1, ẑ2) ∈ D and (z̃1, z̃2) ∈ D are
coexistence equilibria. Therefore, by employing the defini-
tion of the fixed point of a discrete map to equation (12)
for r = 1 yields the following:

0 = −D1
f ẑ

1 + ((I − Ẑ1 − Ẑ2))B1
f ẑ

1 (59)

0 = −D1
f z̃

1 + ((I − Z̃1 − Z̃2))B1
f z̃

1. (60)

From (59) and (60), and since, by assumption, ẑ1 = z̃1

ẑ1 = (D1
f )

−1((I − Ẑ1 − Ẑ2)))B1
f ẑ

1

= (D1
f )

−1((I − Ẑ1 − Z̃2))B1
f ẑ

1,

which, since i) ẑ1 ≫ 0 and ii) by Assumption 5 it follows
that for each i ∈ [n + q],

∑n
j=1[B

1
f ]ij > 0, which implies

that Ẑ2 = Z̃2, i.e., ẑ2 = z̃2. □

6.2. Time-varying case

Endemic behavior for time-varying epidemics is quite
a challenging problem - even more so when m ≥ 1. As-
suming m = 1 and, for some p ∈ Z+, B(k) = B(k + p),
D(k) = D(k + p), setting wi(k) = 0 for all k ∈ Z≥0,
it has been shown that violation of a certain eigenvalue
condition results in the healthy state being unstable; see
(Gracy et al., 2020, Proposition 5). In fact, simulations
indicate that the aforementioned setting gives rise to the
existence of a limit cycle that contains p states. A suffi-
cient condition for the existence of limit cycles for switched
continuous-time SIS epidemics has been provided in (Ma-
son et al., 2014, Theorem 6.2), whereas for the case of
discrete-time time-varying SIS epidemics existence (or lack
thereof) of limit cycles remain open. One approach to-
wards solving this problem may possibly rely on the cele-
brated Poincaré-Hopf theorem for discrete-time nonlinear
systems; see (Ye, Liu, Anderson and Cao, 2022, Theo-
rem 6); the difficulty with this approach lies primarily in
identifying a compact and contractible manifold that ful-
fills the conditions in (Ye, Liu, Anderson and Cao, 2022,
Theorem 6). Due to the analytical difficulty of this prob-
lem, we explore it via simulations in Section 7.

7. Simulations

We consider 2 competitive viruses spreading over 10
population nodes with an infrastructure network of 5 re-
sources, i.e., n = 10, q = 5, m = 2. For all the simula-
tions we assume that all the resource nodes are connected
to all the population nodes. We set the sampling period
h = 0.001. For all simulations, we plot the infection level
of each node in the population and resource network for
both viruses. The blue (resp. red) and green (resp. black)
lines represent the infection level with respect to virus 1
(resp. virus 2) in the population and in the resource, re-
spectively. We split the simulations into two subsections:
1) the illustrative simulations where confirm the analytic
results in the paper, and 2) exploratory simulations where
we show unproven behavior of the model.

7.1. Illustrative Simulations

Time Invariant Case: First, we assume that arij = 1,
for all i, j ∈ [10], r ∈ [2], and αij = 1 for all i, j ∈ [5]. The
healing and infection rates for the population and infras-
tructure network are as follows: β1

i = 0.07, δ1i = 3, δw1
j = 2

for virus 1, and β2
i = 0.3, δ2i = 2, δw2

j = 1 for virus 2, for all
i ∈ [10], j ∈ [5]. We assume that all the resource nodes are
connected to all the population nodes. The individual-to-
resource infection rate for both viruses is cwr

jl =1 for all
j ∈ [5], l ∈ [10]. The resource-to-individual infection
rate for each virus are βw1

ij = 0.05 and βw2
ij = 0.01 for
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Figure 1: Since ρ(M1
f ) < 1, virus 1 is eradicated. For this simulation,

we allow ρ(M2
f ) > 1 and it converges to an endemic equilibrium.

Figure 2: Since ρ(M1
f ) < 1 and ρ(M2

f ) < 1 both viruses are eradi-

cated.

all i ∈ [10], j ∈ [5]. Note that, for a given virus, the rate
at which the population contaminates the infrastructure
network is different from how the resource nodes contam-
inate the individuals.

The aforementioned choice of parameters results in
ρ(M1

f ) = 0.9994 and ρ(M2
f ) = 1.0012. Consequently, con-

sistent with the result in Theorem 1, the virus 1 is asymp-
totically eradicated across the network. Since ρ(M2

f ) > 1,
virus 2 converges to some positive equilibrium which is
consistent with (Cui et al., 2022, Theorem 3); see Figure 1.

Choosing a lower infection rate for virus 2, specifically,
β2
i = 0.08, for all i ∈ [10], and keeping the same values

for the other parameters results in ρ(M1
f ) = 0.9994 and

ρ(M2
f ) = 0.9996. Therefore, consistent with Corollary 1,

both viruses are exponentially eradicated; see Figure 2.
Observe that, even when the spectral radius for a partic-
ular virus is close to the unit circle, the virus can still be
eradicated, thus indicating that the claim in Theorem 1
could possibly be established without the strict inequality.

Homogeneous spread in symmetric undirected
graphs: For this set of simulations, we still assume that
all the population nodes are connected to all the resource
nodes. However, the interconnection graph for the pop-
ulation and resource networks are changing at each time
step. At each layer, we randomly position each node in a 2-
dimensional plane and it is connected to only those nodes
that are within a given radius with an edge-weight of 1.
Thus, Ar(k) = Ar(k)⊤ and Ar

w(k) = Ar
w(k)

⊤. We also pe-
riodically change the infection and healing rates for each

Figure 3: Simulations with a periodic change of homogeneous heal-
ing and infection rates in a symmetric time-varying network. Since
supk∈Z≥0

(M1
f (k)) < 1, virus 1 is eradicated. Also, we allow

supk∈Z≥0
(M2

f (k)) > 1 and the infection level of virus 2 across the

population and resource nodes converges to an endemic equilibrium.

virus, where β1
i (k) ∈ [0.01, 0.1], β2

i (k) ∈ [0.2, 0.6], δ1i (k) ∈
[3, 4], δ2i (k) ∈ [0.5, 2] for all i ∈ [10], δw1

j (k) ∈ [3, 4], δw2
j (k) ∈

[0.01, 1] for all j ∈ [5], and βw1
ij (k) ∈ [0, 0.01], βw2

ij (k) ∈
[0.01, 0.3] for all i ∈ [10], j ∈ [5]. Note that we allow
virus 1 to not be transmitted at some time instances from
the resource to the population nodes. We use the same
values of βwr

ij (k) to construct the matrix Cr
w(k), so that

Br
w(k) = Cr

w(k)
⊤, for all r ∈ [2].

With the aforementioned choice of parameters , we ob-
tain supk∈Z≥0

(M1
f (k)) = 0.9972 and supk∈Z≥0

(M2
f (k)) =

1.0047. Therefore, virus 1 is eradicated both in the popu-
lation and resource network, consistent with the result in
Theorem 2; see Figure 3. Now, we change the set from
which the parameters are selected to β1

i (k) ∈ [0.1, 0.2],
β2
i (k) ∈ [0.2, 0.6], δ1i (k) ∈ [1, 3], δ2i (k) ∈ [0.5, 2] for all

i ∈ [10], δw1
j (k) ∈ [1, 4], δw2

j (k) = 1 for all j ∈ [5],

and βw1
ij (k) ∈ [0.01, 0.2], βw2

ij (k) ∈ [0.01, 0.3] for all i ∈
[10], j ∈ [5]. The new choices of parameters result in
supk∈Z≥0

(M1
f (k)) = 1 and supk∈Z≥0

(M2
f (k)) = 1.0047.

Again, the infection levels of virus 1 in both networks
attain the healthy state which is consistent with the re-
sult in Proposition 3; see Figure 4. However, in Fig-
ures 3 and 4, the contamination of virus 2 across both
networks asymptotically approaches an endemic equilib-
rium when supk∈Z≥0

(M2
f (k)) > 1. Through these two

cases, we illustrate that for time-varying networks with
homogeneous spread and symmetric graphs the eradicated
state of virus r, for some r ∈ [2], may possibly be stable
under a wider range of model parameters than that iden-
tified in Proposition 3 - this is not surprising since, in the
continuous-time setting, it suffices for the linearized sys-
tem to be Hurwitz on average; see Paré et al. (2018). A
corresponding result for the discrete-time setting is yet to
be obtained – it is an ongoing focus. Separately, there is a
possibility that when the reproduction number of virus r,
for some r ∈ [2], is larger than one, then virus r becomes
endemic.

Heterogeneous spread in directed networks: For
the simulation in Figure 5 we have that
β1
i (k) ∈ [0.01, 0.045], β2

i (k) ∈ [0.2, 0.6], δ1i (k) ∈ [2, 3], δ2i (k) ∈
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Figure 4: Simulation making changes in the healing and in-
fection rates in contrast to the system in Figure 3. Since
supk∈Z≥0

(M1
f (k)) = 1, virus 1 attains the DFE. As in the system

of Figure 3, supk∈Z≥0
(M2

f (k)) > 1 and the contamination of virus 2

becomes endemic across all population and resource nodes.

[0.05, 0.2] for all i ∈ [10], and δwr
j (k) ∈ [1, 2] for all j ∈

[5], r ∈ [2]. The entries in matrices Ar and Ar
w are uni-

formly picked at random from the sets [1, 4] and [1, 2],
respectively. Following the same strategy as in simula-
tion for Figures 3 and 4, the entries of these matrices are
changed at each step depending on how far the nodes are
from each other in the population and infrastructure net-
work. If they are beyond a certain radius, the correspond-
ing entries are set to zero. Moreover, we assume that all
the population nodes are connected to the resource nodes.
Choosing the parameters as described before results in
supk∈Z≥0

(M1
f (k)) = 0.9993 and supk∈Z≥0

(M2
f (k)) = 1.0091.

Thus, consistent with the result in Theorem 3, virus 1 is
eradicated. Observe that, virus 2 appears to converge to
an endemic equilibrium which is not necessarily the same
for all the nodes (e.g. the resource nodes converge to dif-
ferent endemic equilibrium while all the nodes in the pop-
ulation get the highest possible rate of infection with virus
2; see Figure 5).

To further explore the stability of the system, we in-
crease the infection rate of the population of virus 1 and
allow β1

i (k) = 0 at random time steps for some i ∈ [10].
That is, there will be some nodes in the population that
will only be contaminated with virus 1 by their interaction
with the resource nodes. Also, in some time instances, we
randomly pick population and resource nodes that are not
able to heal themselves from virus 2, i.e., δ2i (k), δ

w2
j = 0 for

some i ∈ [10], j ∈ [5]. With this parameter selection, The-
orem 3 does not apply since the condition in Assumption 6
is violated. We obtain that supk∈Z≥0

(M1
f (k)) = 1.0015,

and supk∈Z≥0
(M2

f (k)) = 1.0090. Two main insights can

be taken from this system: despite supk∈Z≥0
(M1

f (k)) > 1,
virus 1 is eradicated. Secondly, when the network is not ca-
pable of healing itself at some steps and supk∈Z≥0

(M2
f (k)) >

1, the infection levels for virus 2 converge to an endemic
equilibrium; see Figure 6. Given that the system in Fig-
ure 6 has much lower healing rates for virus 2 than the
system in Figure 5, the endemic equilibrium that the re-
source nodes attain is much higher.

Perturbation Analysis: Based on Theorem 4, we

Figure 5: Since supk∈Z≥0
(M1

f (k)) < 1, virus 1 is eradicated.

Still, virus 2 converges to an endemic equilibrium even when
supk∈Z≥0

(M2
f (k)) > 1. Observe that, in contrast to the systems

in Figure 3 and 4, the resource nodes converge to different equilib-
ria.

Figure 6: Simulations where some nodes in the network are not
capable of healing themselves from virus 2 at random time in-
stances. Nonetheless, even this system converges to some endemic
equilibrium for virus 2. Also, it is able to eradicate virus 1 having
supk∈Z≥0

(M1
f (k)) > 1.

consider a system with parameters chosen for the simu-
lations depicted in Figure 5. The entries of the matrix
∆r(k) are uniformly picked at random from the set [0, 1]
at each step k. We use a logarithmic scale to search what
is the maximum norm of ∆̄1(k) such that the eradicated
state of virus 1 is GES as in the system without pertur-
bation. With the given parameter selection, we obtain
that ∥F 1(k)∥ ≤ 0.0773 and ζ = 0.2361; see Figure 7.
Now, we deliberately increase the norm of the pertur-
bation matrix ∆1(k) to understand the behavior of the
system. As expected, for a higher perturbation in the
edges of the population network for the transmission of
virus 1, the condition on the norm of F 1(k) is violated
(e.g. ∥F 1(k)∥ ≤ 0.3313). With an increase of 4.24 times
the norm of ∆̄1(k), virus 1 becomes endemic across the
network and virus 2 is eradicated whereas in the original
system the opposite occurs; see Figure 8. In the case of this
system, we can argue that the network, despite the pertur-
bations, is still stable under a wider range of parameters
which is a behavior common to all the case studies we have
presented in this section. Therefore, for this general set-
ting with time-varying, asymmetric, heterogeneous spread,
we can argue that the sufficient conditions established in
this work guarantee the eradication of a virus, however,
results on the endemic behavior of competing viruses with
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Figure 7: Simulation employing the same parameters as the system
in Figure 5. For virus 1, ζ = 0.2361 and it is GES since ∥F 1(k)∥ ≤
0.0773 while virus 2 still reaches an endemic equilibrium across the
network.
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Figure 8: Resource nodes dynamics for virus 1 with the perturbation
matrix ∆1(k) increased by a factor of 4.24. As expected, the condi-
tion in Proposition 4 is violated (∥F 1(k)∥ > ζ). Virus 1 converges to
an endemic equilibrium, but virus 2 is eradicated as a consequence
of the perturbation.

infrastructure networks require future investigation.

7.2. Exploratory Simulations

Endemic Behavior for Time-Varying Case: So
far, we have illustrated sufficient conditions for a virus to
converge to the DFE for both types of virus spread (homo-
geneous/heterogeneous) and graphs (undirected/directed).
In the previous simulations, either both viruses die out or
one of the virus reaches an endemic equilibrium and the
other one dies out. However, the situation where mul-
tiple viruses simultaneously remain endemic in the sys-
tem is not considered. Hence, we now aim to investi-
gate if it is possible for both viruses to simultaneously
exhibit endemic behaviour when the graph is randomly
varying at each time step for both the population and in-
frastructure networks. To this end, we create indepen-
dently, identically sampled random graphs, the same way
graphs were created in Section 7.1 “Homogeneous spread
in symmetric undirected graphs.” For the viral param-
eters, we use the following intervals for the healing and
infection rates β1

i (k) ∈ [0.1, 50], β2
i (k) ∈ [0.2, 25], δ1i (k) ∈

[2, 3], δ2i (k) ∈ [2, 3] for all i ∈ [10] while δ1i (k), δ
wr
j (k) for

all i ∈ [5], j ∈ [5], r ∈ [2] are the same as in the simula-
tion in Figure 5. Also, the entries of the matrices Br

w and
Cr

w are uniformly picked at random from the sets [0, 0.4]
and [0.3], respectively. With the aforementioned param-
eter selection, we obtain that supk∈Z≥0

(M1
f (k)) = 1.3865

Figure 9: Simulation where the infection rates for both viruses are
increased with respect to those used for the system in Figure 5. Even
though the matrices Ar and Ar

w are randomly created at each step,
both viruses coexist and reach an endemic equilibrium on average
for both the population and infrastructure network.

and supk∈Z≥0
(M2

f (k)) = 1.1376. Both viruses coexist in
both the population and infrastructure network; see Fig-
ure 9. The key takeaway for this scenario is that even
though the spectral radius for each virus is greater than
one and the graph Gr(k) is randomly generated at each
time step k, the system does not become chaotic. Note
that Figure 9 is just one instantiation of the simulation.
For other iterations of the simulations, both viruses did
not always survive.

Periodic Epidemic Process: Next, we shift our fo-
cus to a particular class of time-varying systems, namely
periodic time-varying systems. In (Gracy et al., 2020),
a discrete-time periodic networked single-virus SIS model
was analyzed. The authors showed through simulations
the existence of a limit-cycle behavior when a sufficient
condition for convergence to the DFE is violated. Here,
we aim to check by simulations if it is the case that a limit
cycle could exist and that it is possible for our system to
reach this limit-cycle even when there are multiple (com-
petitive) viruses present and the spread also gets exacer-
bated due to the presence of an infrastructure network. To
this end, inspired by the example in (Gracy et al., 2020),
we use a 64-node population network (i.e., n = 64) and
we allow the adjacency matrix of this population network
to vary periodically with periodicity three. For simplicity,
we use homogeneous, non-mutating virus parameters with
β1
i (k) = 10, β2

i (k) = 3, δ1i (k) = 33 and δ2i (k) = 10 for all
i ∈ [64]. Also, δw1

j (k) = 1 and δw2
j (k) = 5 for all j ∈ [5].

We use the matrices Br
w and Cr

w, for r = 1, 2, from the sim-
ulation in Figure 9. It turns out that with such a choice of
model parameters, the system gives rise to a limit cycle.
Furthermore, it can be seen that the system converges to
the aforementioned limit cycle for both viruses at all the
nodes in the population network; see Figure 10. Also, the
infection level of both viruses attains a limit-cycle in the
resource nodes, however, virus 1 starts increasing with no
upper bound; see Figure 11.
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Figure 10: Infection level for the two viruses in the population net-
work whose adjacency matrix varies periodically with periodicity
three. Note that the infection levels converge to a limit cycle for
both viruses at all nodes.

Figure 11: Contamination levels of the resource nodes with a periodic
time-varying matrix Ar

w. The concentration of virus 1 in all the
resource nodes increases unboundedly.

8. Conclusion

We studied the spread of multiple competing viruses
over a population network and an infrastructure network
using a discrete-time time-varying multi-competitive lay-
ered networked SIWS model. We first provided a suffi-
cient condition for the eradication of a virus in exponential
time. By relaxing said condition, we showed that virus
eradication will still be possible, although it would hap-
pen asymptotically. Subsequently, for the case where the
graph structure varies over time, under the assumption of
homogeneous spread, we identified a sufficient condition
for the eradication of a virus in exponential time. There-
after, for the case when the graph is slowly varying, we
provided a sufficient condition for exponential eradication
of a virus even when the spread is not necessarily homoge-
neous. Moreover, we proved that the aforementioned suf-
ficient condition is robust to variations in the graph struc-
ture of the population network provided that the variations
are not too large. Finally, under the assumption that the
spread is time-invariant, we provided a lower bound on the
number of equilibria that our system possesses.

There are several interesting open problems. In no
particular order, first, one could, inspired by the simu-
lations in Section 7.2, aim to develop a comprehensive un-

derstanding of the endemic behavior for the time-varying
case viz. existence and attractivity of endemic equilibrium
and/or limit cycle, chaos, etc. Second, designing feedback
control schemes such that the virus gets eradicated ex-
ponentially quickly could be of interest. Another line of
research could involve identifying conditions for estimat-
ing the infection level in the population, given knowledge
of infection levels in (a part of) the infrastructure network.
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‘Analysis, estimation, and validation of discrete-time epidemic
processes’, IEEE Transactions on Control Systems Technology
28(1), 79–93.
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