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Abstract— The safe control of multi-robot swarms is a
challenging and active field of research, where common goals
include maintaining group cohesion while simultaneously avoid-
ing obstacles and inter-agent collision. Building off our pre-
viously developed theory for distributed collaborative safety-
critical control for networked dynamic systems, we propose a
distributed algorithm for the formation control of robot swarms
given individual agent dynamics, induced formation dynam-
ics, and local neighborhood position and velocity information
within a defined sensing radius for each agent. Individual
safety guarantees for each agent are obtained using rounds
of communication between neighbors to restrict unsafe control
actions among cooperating agents through safety conditions
derived from high-order control barrier functions. We provide
conditions under which a swarm is guaranteed to achieve
collective safety with respect to multiple obstacles using a
modified collaborative safety algorithm. We demonstrate the
performance of our distributed algorithm via simulation in a
simplified physics-based environment.

I. INTRODUCTION

Nature has always inspired scientists and engineers to
design elegant solutions for real-life problems. One of the
nature-inspired ideas in the field of automatic control comes
from the observation that collective behavior in nature is
often governed by relatively simple interactions among in-
dividuals [1]. The set of collaboration rules introduced by
Reynolds in 1987 [2] is one of the early attempts in the
literature to describe collective formation behavior in the
animal kingdom. While it is impossible to exhaustively
categorize every formation control-related research, we can
organize them in terms of the fundamental ideas behind the
control schemes [2], [3], sensing capability and interaction
topology of the formation controller [4], and the formation
control-induced problems of interest such as the consensus
reaching problem [5].

Some generalizations of the formation control-induced
problems also find their application in other multi-agent
cyber-physical systems outside the robotic community. Some
examples of critical multi-agent model applications include
the mitigation of epidemic-spreading processes [6], smart
grid management [7], and uncrewed aerial drone swarms
[8]. Since many of these multi-agent cyber-physical systems
have become ubiquitous in modern society, effective and safe
operation in multi-agent systems is crucial, as disruptions
in these interconnected systems can potentially have far-
reaching societal and economic consequences.
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Theoretical frameworks and techniques from the study of
safety-critical control are natural solutions to the problem of
collaborating safety requirements in the multi-agent forma-
tion problem. Foundational work on safety critical control
can be traced back to the 1940s [9]. Recently, the introduc-
tion and refinement of control barrier functions (CBFs) [10]
has induced new excitement in the field of safety-critical
control. Since their introduction, control barrier functions
have been used in numerous applications to provide safety
guarantees in various dynamic system models [11]. More-
over, multiple recent studies have reported CBFs’ practicality
and theoretical soundness in solving the multi-agent obstacle
avoidance problem [12], [13].

In this paper, we extend the work in [14] to design a
non-intrusive collaborative safety filter for formation control
with online obstacle avoidance guarantees. The problem
formulation and analysis are performed under the formality
of CBFs. The collaborative safety filter is realized by a
novel communication algorithm wherein agents share their
maximum safety capability within their neighborhood in the
formation. The maximum safety capability is computed from
each agents’ local distance-based sensor data, and therefore,
is flexible for a wide range of real-life implementation sce-
narios. We show in simulation that rounds of communication
between agents terminate in finite time with consensus on the
desired collaboratively safe control action if the underlying
centralized constraint optimization problem is feasible. The
proofs for all lemmas and theorems presented in this work
can be found in the full version of this paper at [15].

A. Notation

Let |C| denote the cardinality of the set C. R and N are
the set of real numbers and positive integers, respectively.
Let Cr denote the set of functions r-times continuously
differentiable in all arguments. We define ∥ · ∥2 and ∥ · ∥∞
to be the two-norm and infinity norm of a given vector
argument, respectively. We notate 0 and 1 to be vectors of
all zeros and all ones, respectively, of the appropriate size
given by context and [v]k to be the kth element of vector v. A
monotonically increasing continuous function α : R+ → R+

with α(0) = 0 is termed as class-K. We define [n] ⊂ N to be
a set of indices {1, 2, . . . , n}. We define the Lie derivative
of the function h : RN → R with respect to the vector field
generated by f : RN → RN as

Lfh(x) =
∂h(x)

∂x
f(x). (1)

We define higher-order Lie derivatives with respect to the
same vector field f with a recursive formula [16], where
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k > 1, as

Lk
fh(x) =

∂Lk−1
f h(x)

∂x
f(x). (2)

II. PRELIMINARIES

We define a networked system using a graph G = (V, E),
where V is the set of n = |V| nodes, E ⊆ V × V is the set
of edges. Let Ni be the set of all neighbors with an edge
connection to node i ∈ [n], where

Ni = {j ∈ [n] \ {i} : (i, j) ∈ E}. (3)

We further define xi to be the state vector for agent i ∈ [n],
xNi

to be the concatenated states of all neighbors to agent
i, i.e. xNi = (xj , ∀j ∈ Ni), and x to be the full state of the
networked system.

Recall the definition of high-order barrier functions
(HOBF) [17], where we define a series of functions in the
following form

ψ0
i (x) := hi(x)

ψ1
i (x) := ψ̇0

i (x) + α1
i (ψ

0
i (x))

...

ψk
i (x) := ψ̇k−1

i (x) + αr
i (ψ

k−1
i (x))

(4)

where α1
i (·), α1

i (·), . . . , αk
i (·) denote class-K functions of

their argument. These functions provide definitions for the
corresponding series of sets

C1i := {x ∈ RN : ψ0
i (x) ≥ 0}

C2i := {x ∈ RN : ψ1
i (x) ≥ 0}

...

Cki := {x ∈ RN : ψk−1
i (x) ≥ 0}

(5)

which yield the following definition.

Definition 1. Let C1i , C2i , . . . , Cki be defined by (4) and (5).
We have that hi is a node-level barrier function (NBF) for
node i ∈ [n] if hi ∈ Ck and there exist differentiable class-
K functions α1

i , α
2
i , . . . , α

k
i such that ψk

i (x) ≥ 0 for all x ∈⋂k
r=1 Cri .

This definition leads naturally to the following lemma (which
is a direct result of Theorem 3 in [17]).

Lemma 1. If hi is an NBF, then
⋂k

r=1 Cri is forward
invariant.

III. SAFE FORMATION CONTROL PROBLEM

In this section, we define a general version of the safe
formation control problem with respect to applying a safety
filter to control actions that affect individual agent behavior
governed by assumed formation dynamics. For the sake of
notational brevity, we use x, the full state of the network,
and (xi, xNi

), the concatenated states of agents in the
neighborhood centered on agent i ∈ [n], interchangeably
moving forward. Consider the first-order dynamics for a
single agent i

ẋi = fi(xi) + gi(xi)ui (6)

where ui ∈ Ui ⊂ RMi is some form of affine acceleration
controller for agent i. Let ufi (xi, xNi) be a distributed
feedback control law that induces some formation behavior.
We can treat these formation dynamics as part of the natural
dynamics of the system where ufi (xi, xNi

) is modified by
some safety filter control law as

ẋi = fi(xi) + gi(xi)(u
f
i (xi, xNi)− usi )

where usi is a modification to the formation control signal
to ensure agent safety. We can then rewrite the dynamics in
(6) as

ẋi = f̄i(xi, xNi
) + ḡi(xi)u

s
i (7)

where

f̄i(xi, xNi
) = fi(xi) + gi(xi)u

f
i (xi, xNi

) (8)

and
ḡi(xi) = −gi(xi). (9)

We assume each agent has positional safety constraints
with respect to a given obstacle o ∈ Oi(t), where Oi(t) is
the set of identifiers for obstacles within the sensing range
of agent i at time t. For convenience, we drop the notation
of time dependence on Oi moving forward. We define the
set of viable safety filter control actions as

Us
i (x) = {usi ∈ Ui : u

f
i (x)− u

s
i ∈ Ui}. (10)

In this paper, we assume safety conditions for each agent
are defined with respect to the relative position of agents to
obstacles. Therefore, since control is implemented through
acceleration, we construct a higher-order barrier function for
each agent i with respect to a given obstacle o as follows

ϕ0i,o(xi, xo) = hi(xi, xo)

ϕ1i,o(xi, xo) = ϕ̇0i,o(xi, xo) + α0
i (ϕ

0
i,o(xi, xo))

(11)

where xo is the state of obstacle o ∈ Oi. These functions
then define the corresponding safety constraint sets

C1i,o := {(xi, xo) ∈ RNi × RNo : ϕ0i,o(xi, xo) ≥ 0}
C2i,o := {(xi, xo) ∈ RNi × RNo : ϕ1i,o(xi, xo) ≥ 0}.

(12)

Given the definition of these constraint sets, we can define an
agent-level control barrier function and subsequent forward
invariant properties as follows.

Definition 2. We have hi,o(xi, xo) is an agent-level control
barrier function (aCBF) if for all (xi, xo) ∈ C1i,o ∩ C2i,o and
t ∈ T there exists a class-K function α1

i and usi ∈ Us
i (x)

such that

ϕ̇1i,o(x, xo, u
f
i (x), u

s
i ) + α1

i (ϕ
1
i,o(xi, xo)) ≥ 0. (13)

We see that (13) characterizes the first-order safety condition
for agent i with respect to obstacle o since the acceleration
control input appears in the second derivative of hi,o, which
is computed in ϕ̇1i,o. This barrier function definition naturally
leads to the following result on agent-level safety.

Lemma 2. If hi,o(xi, xo) is an aCBF, then C1i,o ∩ C2i,o is
forward invariant for all t ∈ T .
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With agent-level control barrier functions defined, we are
now prepared to state our formal problem for this work,
which is defined in our notation as follows:

min
us
i∈Us

i (x)

1

2

∥∥∥uf
i (xi, xNi)− us

i

∥∥∥2

2

s.t. ϕ̇1
i,o

(
x, xo, u

f
i , u

s
i

)
+ α1

i

(
ϕ1
i,o(xi, xo)

)
≥ 0

∀i ∈ [n], ∀o ∈ Oi.

(14)

IV. SAFE FORMATION CONTROL WITH COLLABORATION

We now present a method by which each agent can com-
municate safety needs to its neighboring agents to achieve
collective safety in a distributed manner. We define a relative
position safety constraint for each agent with respect to a
given obstacle as follows. Let pi and po be the position of
agent i ∈ [n] and obstacle o ∈ Oi, respectively. We define a
position based safety constraint as

hi,o(xi, xo) = ∥pi − po∥22 − r
2
i,o (15)

where ri,o ∈ R is the minimum distance agent i should
maintain from obstacle o. Assuming control inputs on the
acceleration of agent i, we use the second-order barrier
functions candidate from (11) to define the first derivative
safety condition

ϕ̇1i,o(x, xo, u
s
i ) = Lf̄iϕ

1
i,o(x, xo) + Lḡiϕ

1
i,o(xi, xo)u

s
i . (16)

If we define the next high-order barrier function as

ϕ2i,o(x, xo, u
s
i ) = ϕ̇1i,o(x, xo, u

f
i , u

s
i )+α

1
i (ϕ

1
i,o(xi, xo)) (17)

and

Φi,o(x, xo, u
s
i , u

s
Ni

) = ϕ̇2i,o(x, xo, u
s
i , u

s
Ni

)

+ α2
i (ϕ

2
i,o(x, xo, u

s
i )),

(18)

we begin to see neighbor dynamics and the subsequent effect
of neighbor control actions in the higher-order derivative
expressions. A more detailed discussion on the derivation
of (18) may be found in [14]; however, for our purposes, we
separate (18) into terms that are affected by neighbor control
and those that are not affected by neighbor control as follows

Φi,o(x, xo, u
s
i , u

s
Ni

) =
∑
j∈Ni

aij,o(x, xo)u
s
j + ci,o(x, xo, u

s
i ) (19)

where
aij,o(x, xo) = LḡjLf̄iϕ

1
i,o(x, xo) (20)

is the effect that modified control actions usj taken by agent
j ∈ Ni have on the formation dynamics and the subsequent
safety condition of agent i with respect to obstacle o ∈ Oi

and ci,o(x, xo, u
s
i ) collects all other terms including those

that are affected by its own control actions usi . Note that if
neighbors in Ni also implement control through acceleration
inputs then it is possible for aij,o = 0Mi since control
inputs for neighbors do not appear until the next order barrier
function. In this case, we can circumvent the need to com-
pute unnecessary derivatives by having agents communicate
safety needs in terms of velocity constraints, which may be
used to approximate acceleration constraints locally for each

agent. We will give an example of how this approximation
may be done in practice in Section V.

To compute ci,o more explicitly, we make the following
assumption,

Assumption 1. Let α1
i (z) := α1

i z and α2
i (z) := α2

i z where
z ∈ RNi and α1

i , α
2
i ∈ R>0 and define βi = α1

i + α2
i .

This assumption yields the full expression of ci,o as

ci,o(x, xo, u
s
i ) =

∑
j∈Ni

Lf̄jLf̄iϕ
1
i,o + L2

f̄i
ϕ1i,o

+ α1
iα

2
iϕ

1
i,o + βiLf̄iϕ

1
i,o + Lḡiϕ

1
i,ou̇

s
i

+ us⊤i L2
ḡiϕ

1
i,ou

s
i + βiLḡiϕ

1
i,ou

s
i

+
[
Lf̄iLḡiϕ

1⊤
i,o + LḡiLf̄iϕ

1
i,o

]
usi .

(21)

We may interpret (21) as the total safety capability of agent i
with respect to avoidance of obstacle o ∈ Oi, where if
ci,o(x, xo, u

s
i ) ≥ 0, then agent i is capable of remaining safe

given usi (assuming no negative action effects of neighbors).
Conversely, if ci,o(x, xo, usi ) < 0, then agent i is incapable
of remaining safe given usi and will require assistance from
its neighbor’s actions. Given our definition of a subsequent
higher-order barrier function in (17), we define another safety
constraint set as

C3i,o :=
{
(xi, xo) ∈ RNi × RNo : ∃usi ∈ Us

i s.t.

ϕ̇1i,o(x, xo, u
f
i , u

s
i ) + α1

i

(
ϕ1i,o(xi, xo)

)
≥ 0

} (22)

which collects all states where agent i is capable of main-
taining its first-order safety condition under the influence of
its induced formation dynamics. Given these definitions, we
are prepared to define a collaborative control barrier function
as follows.

Definition 3. Let C1i,o, C2i,o, and C3i,o be defined by (12) and
(22). We have that hi,o is a collaborative control barrier
function (CCBF) for node i ∈ [n] if hi,o ∈ C3 and
∀(xi, xo) ∈ C1i,o ∩ C2i,o ∩ C3i,o and ∀t ∈ T there exists
(usi , u

s
Ni

) ∈ Us
i × Us

Ni
such that

Φi,o(x, xo, u
s
i , u

s
Ni

) ≥ 0, ∀o ∈ Oi. (23)

Lemma 3. Given a distributed multi-agent system defined by
(7) and constraint sets defined by (12) and (22),

⋂
o∈Oi

C1i,o∩
C2i,o ∩C3i,o is forward invariant ∀t ∈ T if hi,o is a CCBF for
all o ∈ Oi.

With set invariance defined with respect to neighbor in-
fluence, we can leverage these properties to construct an
algorithm to implement collaborative safety through rounds
of communication between neighbors.

A. Multi-Agent Collaboration Through Communication

In this section, we introduce the collaborative safety
algorithm, modified from our previous work in [14]. The
major additional contribution to the algorithm in this work
is the additional handling of multiple safety constraints from
each agent, which requires a new definition of maximum
safety capability with respect to multiple safety conditions.

3412

Authorized licensed use limited to: Purdue University. Downloaded on February 14,2025 at 22:28:32 UTC from IEEE Xplore.  Restrictions apply. 



For the formation control problem scenario, we make the
following assumptions.

Assumption 2. Let usi (t) be piecewise constant ∀t ∈ T .

This assumption includes zero-hold controllers that imple-
ment control decisions in a bang-bang fashion, allowing us
to set u̇si = 0 in the analysis.

Assumption 3. Let L2
ḡiϕ

1
i,o(xi, xo) = 0Mi×Mi , ∀o ∈ Oi.

In words, we assume that the control exerted by agent i
does not have a dynamic relationship with its ability to
exert control (e.g., the robot’s movement is implemented
identically no matter its position in a defined coordinate
system). Since each agent may be actively avoiding multiple
obstacles, we may compute the vector describing the second-
order safety condition with respect to each obstacle under
Assumptions 1-3 as follows

Φi =

 aij1,o1(x, xo1) · · · aij|Ni|,o1
(x, xo1)

...
. . .

...
aij1,oK (x, xoK ) · · · aij|Ni|,oK

(x, xoK )


︸ ︷︷ ︸

Ai

 us
j1
...

us
j|Ni|



+

 Lf̄i
Lḡiϕ

1⊤
io1 + LḡiLf̄i

ϕ1
io1 + βiLḡiϕ

1
io1

...
Lf̄i

Lḡiϕ
1⊤
ioK

+ LḡiLf̄i
ϕ1
ioK

+ βiLḡiϕ
1
ioK


︸ ︷︷ ︸

Bi

us
i

+


∑

j∈Ni
Lf̄j

Lf̄i
ϕ1
io1 + L2

f̄i
ϕ1
io1 + α1

iα
2
iϕ

1
io1 + βiLf̄i

ϕ1
io1

...∑
j∈Ni

Lf̄j
Lf̄i

ϕ1
ioK

+ L2
f̄i
ϕ1
ioK

+ α1
iα

2
iϕ

1
ioK

+ βiLf̄i
ϕ1
ioK


︸ ︷︷ ︸

qi
(24)

where K = |Oi(t)| is the number of obstacles within the
sensing range of agent i at time t. Note our early remark
that other agents in the formation within the sensing range
of agent i will also be included in this vector to account for
inter-agent collision avoidance. Further, note that the length
of this vector is time-varying according to |Oi(t)|. We can
express (24) more compactly as

Φi(x, xo, ∀o ∈ Oi) = Aiu
s
Ni

+Biu
s
i + qi (25)

where Ai ∈ RK×MNi , with MNi =
∑

j∈Ni
Mj , Bi ∈

RK×Mi , and qi ∈ RK . Under (24), we have the following
result on its relationship to the problem stated in (14).

Lemma 4. Under Assumptions 1-3, any set of agent control
inputs usi ∈ Us

i , ∀i ∈ [n] that satisfies

Φi(x, xo, u
s
i , u

s
Ni
, ∀o ∈ Oi) ≥ 0; ∀i ∈ [n] (26)

are also a solution to

ϕ̇1i,o(x, xo, u
f
i , u

s
i )+α

1
i

(
ϕ1i,o(xi, xo)

)
≥ 0; ∀i ∈ [n], ∀o ∈ Oi

(27)

We now describe the collaborative safety algorithm and
how it may be used to communicate safety needs to neigh-
boring agents in the formation control problem. See [14]

for a more detailed discussion on the construction of the
collaborative safety algorithm with respect to a single safety
condition for each agent. The central idea of this algorithm
involves rounds of communication between agents, where
each round of communication between agents, centered on
an agent i ∈ [n], involves the following steps:

1) Receive (send) requests from (to) neighbors in Ni

2) Process requests and determine needed compromises
3) Send (receive) adjustments to (from) neighboring

nodes in Ni.
The end result of this algorithm will be some set of con-
strained allowable filtered actions for each agent Us

i ⊆ Us
i ,

where any safe action selected from this set will also be safe
for all neighbors in Ni. In order to determine what requests
should be made of neighbors, each agent must compute its
maximum safety capability with respect to the second-order
safety condition as defined by (18). However, since the safety
capability of agent i with respect to multiple obstacles is
represented as a vector, rather than a scalar value for a single
condition [14], we must carefully define the maximum safety
capability for agents in the context of formation control with
multiple obstacles.

B. Maximum Capability Given Multiple Obstacles

To define the maximum capability of an agent i with
respect to multiple obstacles, we begin by making the
following assumption.

Assumption 4. Let Us
i be a non-empty convex set which is

defined by Us
i = {usi ∈ RMi : Giu

s
i − li ≤ 0}.

In order to determine the “safest” action agent i may take
given multiple obstacles, we want to choose the action usi
that maximizes the minimum entry of the vector Biu

s
i from

(25), which is defined by the following max-min optimization
problem:

max
us
i∈Us

i

min
1≤k≤|Oi|

[Biu
s
i ]k. (28)

This problem characterizes the optimal control strategy u∗i
that attempts to satisfy the safety constraint (19) imposed on
agent i for each obstacle o ∈ Oi that is at most risk of being
violated (or being violated the worst). We can reduce (28)
to a linear programming problem:

min
ξi

d⊤ξi

s.t.
[
0 Gi

1 −Bi

]
ξi −

[
li
0

]
≤ 0, (29)

where d⊤ =
[
−1 0⊤

Mi

]
, ξ⊤i =

[
γi us⊤i

]
, and γi ∈ R

is a scalar that captures the performance of the optimal
strategy u∗i . The next proposition formally characterizes the
equivalency of Problem (28) and Problem (29).

Proposition 1. Given Assumptions 1-4, the optimal solution
of (28):

u∗i = arg max
us
i∈Us

i

min
1≤k≤|Oi|

[Biu
s
i ]k

γ∗i = max
us
i∈Us

i

min
1≤k≤|Oi|

[Biu
s
i ]k
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exists if and only if there exists an optimal solution in (29),

ξ
(∗)
i =

[
γ
(∗)
i u

(∗)
i

⊤
]⊤

, and γ(∗)i = γ∗i , u(∗)i = u∗i .

Thus, we have a method for computing a vector that
represents the maximum capability of agent i with respect
to multiple obstacles Oi. If γi is negative, then agent i will
make a request to its neighboring agents that will limit their
control actions Us

j to those that will satisfy [Φi]k ≥ 0, ∀k ∈
Oi, assuming agent i takes the action u∗i . In the following
section, we describe how our modified collaborative safety
algorithm incorporates this capability vector at a high level.

C. Collective Safety Through Distributed Collaboration

Given our addition to the collaborative safety algorithm
from [14] to incorporate multiple safety constraints, the com-
putation steps and convergence properties of our algorithm
remain largely unchanged in Algorithm 1 due to the fact
that communication of multiple safety constraints from one
neighbor is equivalent to multiple neighbors communicating
a single constraint in the computation of control restrictions.

Algorithm 1 Modified Collaborative Safety

1: c̄ij ← 0, ∀j ∈ Ni

2: Us

i ← Us
i

3: repeat
4: c̄i ← Compute maximum capability by solving (29)
5: δi ← c̄i −

∑
j∈Ni

c̄ij
6: c̄ij , U

s

i ← Perform SPRU [14]
7: until c̄ij remains constant and [δi]k∈[|Oi|] ≥ 0

We denote SPRU as an abbreviation of (S)end/receive
requests, (P)rocess requests, (R)ecieve/send adjustments,
(U)pdate constraints w.r.t. adjustments as detailed in [14].
We yield the following result on the collective safety of a
formation under the modified collaborative safety algorithm.

Theorem 1. Let Assumptions 1-4 hold for all i ∈ [n]. If
Algorithm 1 is convergent and Us

i (x(t)) ̸= ∅, ∀i ∈ [n], ∀t ∈
T , then (14) yields

⋂
o∈Oi

C1i,o∩C2i,o forward invariant during
t ∈ T for all i ∈ [n].

In words, we have that if Algorithm 1 always terminates
with a feasible set of safe actions for all agents, then
Theorem 1 guarantees that using (14) to choose safe actions
for individual agents renders all agents safe for all time.
Note that (14) filters the agent’s actions according to their
individual safety constraints, where the set of allowable
actions Us

i is given by Algorithm 1.
V. APPLICATION EXAMPLE

We now illustrate the application of our collaborative
safety algorithm to the safe cooperative formation control
of a simplified two-dimensional agent system and simulate
a multi-obstacle avoidance scenario.

A. Virtual Mass-Spring Formation Model

Consider a two-dimensional multi-agent system with dis-
tributed formation control dynamics defined by a virtual

mass-spring model, with xi = [px⃗i , p
y⃗
i , v

x⃗
i , v

y⃗
i ]

⊤

ẋi =


vx⃗i
vy⃗i
0
0

+

0 0
0 0
1 0
0 1

(
uf
i (x)− us

i

)
(30)

where

uf
i (x) =

[
u
fx⃗
i

u
fy⃗
i

]
=

1

mi

[
−
∑

j∈Ni
kijsij sin θij − bijv

x⃗
i

−
∑

j∈Ni
kijsij cos θij − bijv

y⃗
i

]
(31)

describes the desired formation behavior of the system,
where agents behave as if coupled by mass-less springs with
kij and bij being the spring and dampening constants for the
virtual spring from agent j to agent i, respectively, and

sij = Lij −Rij

denoting the stretch length of a given spring connection with
resting length Rij and

Lij = ∥pi − pj∥2
being the current length of the spring. We compute the x⃗
and y⃗ components of the stretched spring as

sin θij =
px⃗i − px⃗j
Lij

, cos θij =
py⃗i − p

y⃗
j

Lij
.

Thus, our induced coupling model then becomes

f̄i(x) =
[
vx⃗i vy⃗i u

fx⃗
i u

fy⃗
i

]⊤
, ḡi =

 0 0
0 0
−1 0
0 −1

 (32)

with the first-order safety condition for a given obstacle using
the barrier function candidate (15) computed as

ϕ1
i,o(xi, xo) = 2

[
vx⃗i (p

x⃗
i − px⃗o ) + vy⃗i (p

y⃗
i − py⃗o)

]
+ α0

i (hi,o(xi, xo)).

(33)
It should be noted that given this mass-spring network

formation control law, when computing the effect of control
by agent j on the safety conditions of agent i yields

LḡjLf̄iϕ
1
i,o(xi, xo) = 0Mj (34)

since the control input of agent j does not appear until
the next derivative of Φi. In order to avoid unnecessary
computations of additional partial derivatives, each agent
computes the effect of neighboring control as if neighbors
directly control their velocities, i.e.,

ḡj =

−1 0
0 −1
0 0
0 0

 , ∀j ∈ Ni. (35)

This assumption is non-physical since it would require infi-
nite acceleration for neighbors to achieve such a discontinu-
ous instantaneous jump in velocity. However, if we assume
a finite time interval τ > 0 during which our acceleration
controller might achieve such a change in velocity, we can
approximate the necessary acceleration constraints during
that time. Therefore, if the velocity constraints communi-
cated are

Uv = {u ∈ RM : Gu+ l ≤ 0}, (36)
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Fig. 1: The trajectories of a 3-agent formation through an
obstacle field, where a leader agent (blue) is given a constant
control signal directing it straight through the field. Each
agent implements safety filtering according to Algorithm 1
and (14) to avoid obstacles while maintaining a formation
behavior, according to (30) and (31).

u
s
,x⃗

i

u
s
,y⃗

i

Fig. 2: The safety-filtered control signals for each agent in the
x⃗ component (left) and y⃗ component (right) of usi , which are
computed using Algorithm 1 and (14), during the traversal of
the formation through the obstacle field shown in Figure 1.
Note that a constant control signal is given to agent 0 (blue),
which is included in the modified control signal.

then we may compute the acceleration constraints for a given
time interval τ > 0 as

Ua = {u ∈ RM :
1

τ
Gu+ l ≤ 0}. (37)

B. Simulations

We construct an example of multi-obstacle avoidance for
a fully connected 3-agent formation where the parameters
of the virtual mass-spring system are mi = 0.5, ri,o = 1,
Kij = 3, Rij = 3, and bij = 1 for all i ∈ [n], j ∈ Nj ,
and o ∈ O. Further, we set control magnitude limits for
each agent i as Ui = {ui ∈ R2 : ∥ui∥∞ ≤ 15}. We
then apply a constant control signal to a single agent which
leads the formation through an obstacle field, where the
initial and final positions of each agent and their respective
trajectories through the obstacle field are shown in Figure 1.
Each agent uses the modified collaborative safety algorithm
described in Algorithm 1 to communicate its safety needs
and accommodate safety requests to and from neighbors,
respectively. Each agent then implements a first-order safety
filter on their control actions as described by (14) while
incorporating the control constraints Us

i computed using
Algorithm 1. We plot the safety filter control signal including
the constant leader control signal for agent 0 in Figure 2,
which shows the safety filter control signal usi for both the x⃗
and y⃗ components over time. For a video of this simulation,
see https://youtube.com/shorts/aRki-Mbna3w. To view our
simulation code, see [18].

VI. CONCLUSIONS

In this paper, we have presented a method for applying
safety-filtered control to arbitrarily distributed formation

control algorithms through active communication of safety
needs between neighboring agents in formation. We have
modified a collaborative safety algorithm from our previous
work [14] to account for the communication and processing
of multiple safety conditions and shown that, if the algo-
rithm is convergent for all agents, then the formation is
guaranteed to remain safe. Further, it should be noted that
we make no assumptions about the real-time computation
and communication of safety requests between neighbors
and that the computation load for each agent increases as
more obstacles are added to the environment, including other
neighboring agents. Therefore, to bring this safety-filtering
algorithm to real-time applications, in future work we must
consider several real-world challenges in the implementation
of active collaboration between communicating agents.
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