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Abstract— The basic reproduction number of a networked
epidemic model, denoted R0, can be computed from a network’s
topology to quantify epidemic spread. However, disclosure of
R0 risks revealing sensitive information about the underlying
network, such as an individual’s relationships within a social
network. Therefore, we propose a framework to compute and
release R0 in a differentially private way. First, we provide a
new result that shows how R0 can be used to bound the level
of penetration of an epidemic within a single community as
a motivation for the need of privacy, which may also be of
independent interest. We next develop a privacy mechanism to
formally safeguard the edge weights in the underlying network
when computing R0. Then we formalize tradeoffs between the
level of privacy and the accuracy of values of the privatized
R0. To show the utility of the private R0 in practice, we
use it to bound this level of penetration under privacy, and
concentration bounds on these analyses show they remain
accurate with privacy implemented. We apply our results to
real travel data gathered during the spread of COVID-19, and
we show that, under real-world conditions, we can compute R0

in a differentially private way while incurring errors as low
as 7.6% on average.

I. INTRODUCTION

Compartmental epidemic models have been used to model
the spread of epidemics, assess pandemic severity, pre-
dict spreading trends, and facilitate policy-making [1]. This
progress has been in part propelled by advancements in
network science [2]–[5]. Due to their complexity, it can be
difficult to communicate the intricate details and conclusions
of these models [6], though the basic reproduction number
of a spreading process has emerged as one concise way to
convey information about the spread of epidemics [7], [8].

The basic reproduction number of a spreading process,
denoted R0, is the average number of individuals that an in-
fected person will infect in a fully susceptible population [7].
Intuitively, higher R0 values indicate greater transmissibility.
For example, the basic reproduction numbers for diseases
like measles, SARS-CoV-1, and the Ebola virus are approx-
imately 14.7, 3.1, and 1.9, respectively [8].

Researchers have defined basic reproduction numbers for
networked epidemic models [2], which capture not only the
transmissibility of the epidemic process but also the effect of
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the graph structure. For example, in a networked susceptible-
infected-susceptible (SIS) model, basic reproduction num-
bers less than or equal to 1 ensure that the size of the infected
population eventually converges to zero [2]. Thus, R0 can
be used to forecast the future behavior of an epidemic and
communicate with the public in a concise way.

Unfortunately, it is well-known that sharing even scalar-
valued graph properties like R0 can pose privacy threats [9]–
[12]. In particular, one can initiate a reconstruction attack, in
which an attacker combines released graph properties (here,
R0) with other information to reconstruct the underlying
graph information, such as the weights in a weighted graph,
which can be sensitive. For example, consider a residential
community of a small number of households, whose inter-
actions with other communities contribute to the modeling
of graph weights. Then one may be able to infer the travel
habits of a person by reconstructing these graph weights;
see [9]–[12] for additional discussion of privacy threats for
graphs. In addition, this type of privacy risk extends to large
regions as well [13]. Thus, despite the importance of R0, it
is undesirable to publish R0 without any protections.

In this work, we provide these protections by using differ-
ential privacy [14] to protect graph weights when computing
R0. Our implementation uses an input perturbation approach,
which first adds noise directly to the matrix of graph weights,
then computes R0 from this private matrix. Differential
privacy provides strong, formal privacy protections for sen-
sitive data, and it is desirable here because differentially
private data may be freely post-processed without harming
its guarantees [15]. In particular, after privatizing the matrix
of weights, we can compute R0 and use it for epidemic
forecasting without harming privacy.

To ensure that private values of R0 enable useful analy-
ses, we use the bounded Gaussian mechanism [16], which
only generates private outputs within specified ranges. We
follow this approach because R0 and graph weights are non-
negative, which ensure that their private forms are as well.
Moreover, as a motivating example, we present a new way to
use R0 to bound the level of penetration of an epidemic into
a community, which may also be of independent interest.
Specifically, we bound the size of the uninfected population
in a community at equilibrium, and this bound is a function
of only R0.

Our specific contributions in this work are:
1) A result to use values of R0 to analyze the spread

of an epidemic in terms of the eventually remaining
susceptible population.

2) A mechanism for differential privacy that protects the
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underlying graph weights when publishing the basic
reproduction number R0.

3) Privacy-accuracy tradeoffs that quantify both (i) the ex-
pected deviation from the true value of R0 and (ii) the
accuracy of predictions of the remaining susceptible
population as functions of the strength of privacy.

We use travel data from Minnesota during the COVID-19
pandemic show that a real-world deployment of this privacy
framework leads to errors as low as 7.6% on average.

Relation to prior work: There exist numerous differen-
tial privacy implementations for graph properties, including
counts of sub-graphs and triangles [9], [10], degree distri-
butions [11], and algebraic connectivity [12], [17]. In many
of these prior works, differential privacy has been applied
with edge and node adjacency [18]–[20] to obfuscate the
absence and/or presence of a pre-specified number of edges
or nodes. In contrast, we consider graphs with node and edge
sets that are publicly known. We do so because networked
epidemic models often use vertices to represent communities
and/or cities and use edges to represent connections such as
highways or flights, all of which are publicly known. We
instead use weight adjacency [14] and protect the weights in
a weighted graph.

Differential privacy has been used to protect the eigenval-
ues of certain types of matrices [12], [17], [21]. We differ
by privatizing matrices of weights in weighted graphs, which
those works do not consider. Work in [22] adds noise drawn
from a matrix-variate Gaussian distribution to a matrix for
privacy protection. However, such noise is unbounded and
our work instead adds bounded noise to ensure that privatized
weights and values of R0 remain non-negative.

II. BACKGROUND AND PROBLEM FORMULATION

A. Notation

We use R to denote the real numbers, R≥0 to denote the
non-negative reals, and R>0 denote the positive reals. For a
random variable X , E[X] denotes its expectation and Var[X]
denotes its variance. Let 1T (·) denote the indicator function
of set T . We use [n] to denote {1, 2, . . . , n}. For any two
matrices A,B ∈ Rn×n, we write A ≥ B if aij ≥ bij ,
A > B if aij ≥ bij and A 6= B, and A � B if aij >
bij , for all i, j ∈ [n]. These comparison notations between
matrices apply to vectors as well. For a vector v ∈ Rn,
we write diag(v) to denote the diagonal matrix whose ith

diagonal entry is vi for each i ∈ [n]. We use || · ||F to denote
the Frobenius norm of a matrix.

Let [a, b]n be the Cartesian product of n copies of the
same interval [a, b]. For graphs, let G = (V,E,W ) denote
an undirected, connected, and weighted graph with node set
V , edge set E, and weight matrix W , where wij ≥ 0 denotes
the ith, jth entry of the weight matrix W . Let | · | denote
the cardinality of a set. For a given weight matrix W , we
use nw = |{wij > 0 : i, j ∈ [n]}| to denote the number
of positive entries in W . We use Gn to denote a set of
all possible undirected, connected, weighted graphs G on

n nodes. We also use the special functions

ϕ(x) =
1√
2π

exp

(
−1

2
x2

)
, (1)

Φ(x) =
1

2

(
1 +

2√
π

∫ x√
2

0

exp(−t2)dt

)
, (2)

which are the probability density function and the cumulative
distribution function of the standard normal distribution,
respectively.
B. Networked Epidemic Models

We consider networked susceptible-infected-susceptible
(SIS) and susceptible-infected-recovered (SIR) models. Let
Ḡ = (V,E,B) ∈ Gn denote a connected and undirected
spreading network that models an epidemic spreading pro-
cess over n connected communities. Let V and E denote
the communities and the transmission channels between
these communities, respectively. We use s(t), x(t), r(t) ∈
[0, 1]n to represent the susceptible, infected, and recovered
state vectors, respectively. That is, for all i ∈ [n], the
value of si(t) ∈ [0, 1] is the portion of the population of
community i that is susceptible at time t; the values of xi(t)
and ri(t) are the sizes of the infected and recovered portions
of community i, respectively. We use B ∈ Rn×n≥0 , with
bij ∈ [0, 1] for all i, j ∈ [n], to denote the transmission
matrix and Γ = diag(γ1, γ2, . . . , γn), with γi > 0 for
all i ∈ [n], to denote the recovery matrix. Thus, the value of
bij captures the transmission process from the community
j to community i, while γi captures the recovery rate of
community i. The networked SIS and SIR models are{

ṡ(t) = −diag(s(t))Bx(t) + Γx(t),

ẋ(t) = diag(s(t))Bx(t)− Γx(t),
(3)

and

ṡ(t) = −diag(s(t))Bx(t),

ẋ(t) = diag(s(t))Bx(t)− Γx(t),

ṙ(t) = Γx(t),

(4)

respectively. For all i ∈ [n], si(t) + xi(t) + ri(t) = 1 [2].
For networked SIS and SIR spreading models, researchers

have defined the next generation matrix W = Γ−1B to
characterize the global behavior of networked SIS and SIR
models in (3) and (4) [2]–[4]. One can then compute the
basic reproduction number from W via R0 = ρ(W ).
Remark 1. Developments in [4], [23] suggest that the basic
reproduction number in compartmental models is linked
to the remaining susceptible population at the disease-free
equilibrium, which represents the level of penetration in a
community. This level of penetration quantifies the virus’
impact, namely how many individuals will become infected.

To safeguard the weights in W , it is essential to provide
privacy for W when publishing ρ(W ). Since R0 is defined in
terms of W rather than B, we will privatize W directly. To
reflect our focus, we define a weighted graph for a spreading
network as G = (V,E,W ), with W = Γ−1B, and we focus
on this class of graphs going forward.

4423

Authorized licensed use limited to: Purdue University. Downloaded on February 14,2025 at 22:30:30 UTC from IEEE Xplore.  Restrictions apply. 



C. Differential Privacy
Differential privacy is enforced by a randomized map,

called a privacy mechanism, which must ensure that nearby
inputs to the mechanism produce outputs that are statistically
approximately indistinguishable from each other. In this
paper, we adopt weight adjacency [14], which formalizes
the notion of “nearby” for weighted graphs.

Definition 1. [14] Fix an undirected weighted graph G =
(V,E,W ) ∈ Gn. Then another undirected weighted graph
G′ = (V,E,W ′) is weight adjacent to G, denoted G ∼ G′,
if ||W −W ′||F =

√∑n
i=1

∑n
j=1(wij − w′ij)2 ≤ k, where

k > 0 is a user-specified parameter. ♦

Definition 1 states that two graphs are weight adjacent if
they have the same edge and node sets, and the distance be-
tween their weight matrices is bounded by k in the Frobenius
norm. We next introduce the definition of differential privacy
in the form in which we will use it in this paper.

Definition 2 (Differential Privacy [15]). Let ε > 0 be given
and fix a probability space (Ω,F ,P). Then a mechanism
M : Ω×Rn×n≥0 → Rn×n≥0 is ε-differentially private if, for all
weight adjacent graphs G = (V,E,W ) and G′ = (V,E,W ′)
in Gn, it satisfies P

[
M(W ) ∈ S

]
≤ eε ·P

[
M (W ′) ∈ S

]
for

all sets S in the Borel σ-algebra over Rn×n≥0 . ♦

The privacy parameter ε controls the strength of privacy
and a smaller ε implies stronger privacy. Differential privacy
even with large ε, e.g., ε > 10, provides much stronger
empirical privacy than no differential privacy [24]–[27]. For
a weighted graph G = (V,E,W ), the privacy mechanism
first privatizes W itself by randomizing it, then computes R0

from the private W . Due to differential privacy’s immunity to
post-processing, the resulting R0 is also differentially private.

D. Setup for Private Analysis
In this subsection, we formalize the information that the

sensitive graph G discloses to epidemic analysts and the
information it should conceal.

We assume epidemic analysts have access to a graph’s
vertex set V and edge set E. However, we do not share the
transmission matrix B, the recovery matrix Γ, or the next
generation matrix W with them since these are sensitive. In
addition, it is well-known that publishing even scalar-valued
graph properties can pose substantial privacy threats [9]–[12].
As a result, the value of R0 is not shared with epidemic
analysts either. Instead, they will only receive a differentially
private version of R0, denoted by R̃0.

Lastly, we assume that each entry wij lies in an interval
(wij , w̄ij ], where wij and w̄ij are known lower and upper
bounds and will be shared with analysts. It should be noted
that while sharing these bounds conveys some information
about the underlying graph, it is not highly sensitive infor-
mation. Other publicly available data sources or databases,
such as the number of highways connecting communities
or community population statistics, can be used to infer
information of this kind. In practice, one can therefore group
values of wij into certain ranges without harming privacy,

which is possible precisely because approximate ranges of
these values can be inferred from publicly available data.
E. Problem Statement

We next state the problems that we will solve.
Problem 1. Build an upper bound on the level of penetration
of a community (in the sense of Remark 1) within a spreading
network by using its basic reproduction number R0.

Problem 2. Develop a differential privacy mechanism to
provide differential privacy in the sense of Definition 2 for
the next generation matrix W when computing R0.

Problem 3. Given a reproduction number R0, for private
values R̃0 generated by the proposed mechanism, develop
bounds on the expected accuracy loss E[|R̃0 − R0|] of the
developed mechanism as a function of privacy level.

Problem 4. Analytically evaluate the utility of the private
reproduction number R̃0 in modeling the level of penetration
of networked spreading processes.
F. Probability Background
Definition 3. [28] The truncated Gaussian random variable,
written as TrunG(µ, σ, l, u), that lies within the interval (l, u],
where −∞ < l < u < +∞, and centers on µ ∈ (l, u] is
defined by the probability density function pTG with

pTG(x) =

 1
σ

ϕ( x−µσ )
Φ(u−µσ )−Φ( l−µσ )

if x ∈ (l, u]

0 otherwise,

and σ > 0, where φ(·) is from (1) and Φ(·) is from (2). ♦

III. PENETRATION ANALYSIS WITH R0

In this section, we illustrate the value of R0 in epidemic
analysis by demonstrating one type of information that can be
obtained from R0. As previously mentioned in the problem
formulation, it is possible to use R0 to infer the remaining
susceptible population within a community, referred to as the
level of penetration of an epidemic. This information enables
us to determine the total number of individuals within a given
community who will be infected by a virus over time.

In particular, we will quantify the relationship between R0

and the proportion of the susceptibles within community i
at a disease-free equilibrium, denoted s∗i , for all i ∈ [n]1.
To do so, we first rewrite the dynamics of the networked
SIS and SIR models in (3) and (4) each with two separate
components: (i) nonlinear dynamics [23, Eq.(2)] to model
the susceptible states s(t), which are

ṡ(t) = f(s(t), x(t)), (5)
u(t) = Idiag{s(t)}Bx(t);

(ii) linear dynamics [23, Eq.(3)] with external input to model
the infected states x(t), which are

ẋ(t) = −Γx(t) + Iu(t), (6)
y(t) = Ix(t).

1Note that a simulation of [23] studies the susceptible proportion within a
community i, i ∈ [n], at the disease-free equilibrium through a different way
of defining the reproduction number of a networked spreading process, i.e.,
R0 = ρ(BΓ−1). In addition, [23] applies its developed results to networked
epidemic spreading dynamics without proving that the networked spreading
models satisfy the conditions on its developed results.
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where I is the identity matrix. We use the coupled dy-
namics in (5)-(6) to capture the networked SIS models,
where f(s(t), x(t)) = −Idiags(t)Bx(t) + Γx(t). Similarly,
when f(s(t), x(t)) = −Idiags(t)Bx(t), we use (5)-(6) to
represent SIR models, where r(t) = 1−s(t)−x(t) is omitted.
Assumption 1. The graph G = (V,E,W ) ∈ Gn has a
symmetric weight matrix W , i.e., W = WT .

We enforce Assumption 1 for simplicity in this work, and
we defer analysis of the non-symmetric case to a future
publication. We then have the following result to bound the
level of penetration of an epidemic.
Theorem 1. Let G ∈ Gn be given, and suppose that a
spreading process is modeled either by an SIS or SIR
model. Then, for some i ∈ [n], there exists a community i
such that the infected proportion s∗i at disease-free equilib-
rium is upper bounded via s∗i ≤ 1

R0
.

Proof: See [29, Appendix A]. �
If the nodes in network G are individuals, then Theorem 1

can directly reveal an individual’s probability of being in-
fected. If the nodes are not individuals, then, as discussed
in the Introduction, the value of R0 can reveal sensitive
information within G. Therefore, privacy protections are
required that can simultaneously safeguard this information
and enable the use of Theorem 1 to analyze an epidemic.

IV. PRIVACY MECHANISM FOR R0

In this section, we develop a mechanism to provide differ-
ential privacy. Specifically, we utilize the bounded Gaussian
mechanism to privatize the next generation matrix W .
A. Privacy Mechanism

We start by defining the sensitivity, which quantifies the
maximum possible difference between two weighted graphs
that are adjacent in the sense of Definition 1.

Definition 4 (L2-sensitivity). Let G = (V,E,W ) ∈ Gn and
G′ = (V,E,W ′) ∈ Gn be adjacent in the sense of Defini-
tion 1. Then the L2-sensitivity of the weights, denoted ∆2w,
is defined as ∆2w = maxG∼G′

√∑n
i=1

∑n
j=1(wij − w′ij)2,

where n = |V | is the number of nodes. ♦

From Definition 1, ∆2w ≤ k. We use this upper bound to
calibrate the variance of noise for privacy protection.

Mechanism 1 (Bounded Gaussian mechanism). Fix a prob-
ability space (Ω,F ,P). Let G = (V,E,W ) ∈ Gn. Then for
D = (wij , w̄ij ], the bounded Gaussian mechanism MBG :
Dn×n × Ω→ Dn×n generates independent private weights
w̃ij ∼ TrunG(wij , σ, wij , w̄ij) for all positive entries wij
on and above the main diagonal of W (see Section II-D
for discussion of wij and w̄ij). The entries below the main
diagonal mirror the values above it to ensure symmetry. This
mechanism satisfies ε-differential privacy if

σ2 ≥
k
(
k
2 +

√∑n
i=1

∑n
j=i(w̄ij − wij)2 · 1R>0(wij)

)
ε− log(∆C(σ, c))

,

(7)

where ∆C(σ, c) =
Φ
(
w̄ij−wij−cij

σ

)
−Φ
(−cij

σ

)
Φ
(
w̄ij−wij

σ

)
−Φ(0)

and c ∈

Rn×n ≥ 0 is an upper triangular matrix with cij > 0 if

and only if wij > 0 for all i, j ∈ [n]. Matrix c can be found
by solving the optimization problem in [16, (3.3)]. ♦

Remark 2. The minimal value of σ that satisfies (7) can be
found using [16, Algorithm 2]. Meanwhile, (7) implies that
a larger ε gives weaker privacy and leads to a smaller σ.

Remark 3. The bounded Gaussian mechanism does not add
noise to any weight wij = 0. Such a weight indicates that
there is no edge between nodes i and j, and thus the bounded
Gaussian mechanism does not alter the presence or absence
of an edge in a graph.

Given G = (V,E,W ), and suppose the bounded Gaussian
mechanism generates an ε-differentially private weights ma-
trix W̃ = MBG(W ). Now we can compute a private repro-
duction number R̃0 using the private graph G̃ = (V,E, W̃ )
by using R̃0 = ρ(W̃ ). The private reproduction number R̃0

provides W with the same level of privacy protection, ε,
since differential privacy is immune to post-processing [15]
and the computation of R0 simply post-processes the private
matrix W̃ . The accuracy of R̃0 is quantified next.

Theorem 2. Consider a graph G = (V,E,W ) and denote
its basic reproduction number by R0 = ρ(W ). Suppose
Mechanism 1 is applied to G, and for all i, j ∈ [n] define
the constants αij =

wij−wij
σ and βij =

w̄ij−wij
σ . Also

let G̃ = (V,E, W̃ ) denote the privatized form of G and
denote its basic reproduction number by R̃0 = ρ(W̃ ). Then
the error induced in R0 by privacy obeys the bounds

E
[
|R̃0 −R0|

]
≤ σ

√
nw − ξe ≤ σ

√
nw (8)

Var
[
|R̃0 −R0|

]
≤ σ2 · (nw − ξe) ≤ σ2nw, (9)

where nw denotes the number of non-zero entries in the
weight matrix W and

ξe = 2
n∑
i=1

n∑
j=i+1

βijϕ(βij)− αijϕ(αij)

Φ(βij)− Φ(αij)
· 1R>0

(wij)

+
n∑
i=1

βiiϕ(βii)− αiiϕ(αii)

Φ(βii)− Φ(αii)
· 1R>0

(wii).

Proof: See [29, Appendix B]. �
Recall that in Remark 2, a larger ε indicates a smaller

σ, resulting in both E[|R̃0 −R0|] and Var[|R̃0 −R0|] being
closer to 0, which is intuitive. In addition to such qualitative
analysis, one can use Theorem 2 to predict error on a graph-
by-graph basis. For example, consider a complete graph G =
(V,E,W ) with |V | = 15 nodes, |E| = 225 edges (including
self loops), and wij = 0.25 for all i, j ∈ [15]. If we set w̄ij =
0.3 and wij = 0.2 for i, j ∈ [15], and set ε = 5 and k = 0.01,
then we have E[|R̃0−R0|] ≤ 0.43 and Var[|R̃0−R0|] ≤ 0.19,
where R0 = 3.75. In this example, the absolute difference
|R̃0−R0| is a random variable whose mean and variance are
smaller than 0.43 and 0.19, respectively. Hence, if we use R̃0

instead of R0 to conduct epidemic analysis, e.g., to estimate
the average number of infected individuals generated by a
single infected case, the deviation that results from using R̃0

is not likely to be large. In general, the bounds in (8) and (9)
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describe the distribution of the error |R̃0 −R0| in the worst
case, which helps analysts to predict the error that results
from providing a given level of privacy protection ε.

An appealing feature of differential privacy is that its
protections are tunable, and here the parameters ε, k, w̄ij ,
and wij can be tuned to balance privacy and accuracy.
B. Use of R̃0 for Epidemic Analysis

Theorem 1 shows that R0 can be used to bound the level
of penetration in an epidemic spreading network, though,
given the sensitive information that can be revealed by R0,
it should be privatized before being shared. An epidemic
analyst may thus only have access to the private R0, and the
question then naturally arises as to how accurate Theorem 1
is when using a private value of R0. We answer this next.

Theorem 3. Fix a sensitive graph G = (V,E,W ) ∈ Gn
and a privacy parameter ε. Consider also a private graph
G̃ = (V,E, W̃ ) whose weight matrix W̃ = MBG(W )
is generated by Mechanism 1. For the true reproduction
number R0 = ρ(W ), the private reproduction number
R̃0 = ρ(W̃ ), and any t ∈ (0, R0 − ξp) we have

P
[∣∣∣∣ 1

R̃0

− 1

R0

∣∣∣∣ < max{u1, u2}
]
≥ 1− 4 exp(−v2),

where

u1 =
1

R0
− 1

R0 + t+ ξp
, u2 =

1

R0 − t− ξp
− 1

R0
,

v2 =
t2

2σ2
− 4.4n

ξp = σ ·

√√√√ n∑
i=1

n∑
j=1

(
ϕ (αij)− ϕ (βij)

Φ (βij)− Φ (αij)

)2

· 1R>0(wij),

where the parameter σ is from Mechanism 1.

Proof: See [29, Appendix C]. �
Recall that Theorem 1 states that 1

R0
bounds the level

of penetration. By using Theorem 3, we can characterize
the distribution of the difference between the true upper
bound on the level of penetration, 1

R0
, and the private upper

bound on the level of penetration, 1
R̃0

. Hence, the result in
Theorem 3 demonstrates the accuracy of Mechanism 1 when
using the privatizing graph weights.

For example, consider a complete graph G = (V,E,W )
with |V | = 15 nodes, |E| = 225 edges (including self loops),
and wij = 0.25 for each i, j ∈ [15]. Then, if we set w̄ij = 0.3
and wij = 0.2 for i, j ∈ [15], and set privacy parameters ε =

5 and k = 0.01, we have P
[∣∣∣ 1
R̃0
− 1

R0

∣∣∣ < 0.054
]
≥ 0.92,

which indicates that the deviation of using the private upper
bound is smaller than 0.054 with high probability (0.92), and
thus R̃0 can be used without substantially harming accuracy.

V. SIMULATIONS
In this section, we present simulation results for generating

R̃0 using Mechanism 1. We use a graph G = (V,E,W )
to model networked data that estimates the number of trips
between Minnesota counties [30] (shown in Figure 1) via
geolocalization using smartphones [31]. The data provides

Fig. 1: Infection map of Minnesota [30].

an estimate of the total number of trips made by individ-
uals between counties in Minnesota from March 2020 to
December 2020. We choose a weekly time scale in an effort
to average out periodic behaviors and use this average to
estimate the daily flow of individuals between counties. The
work in [31] constructs the asymmetric transmission matrix
B′ by leveraging the daily flow between two counties, i.e.,
by setting b′ij as the daily traffic flow from county i to j, for
all i, j ∈ [87]. In order to satisfy Assumption 1, we set the
matrix B with bij = bji =

b′ij+b
′
ji

87 and bii =
|
∑
i b
′
ij−
∑
j b
′
ij |

87
for all i, j ∈ [87], which results in bij ∈ [1.172×10−6, 0.621]
for all i, j ∈ [87]. The recovery rate for all i ∈ [87] is γi = 1

3 .
Thus, the next generation matrix of G, namely W = Γ−1B,
is symmetric with |V | = 87 representing Minnesota’s 87
counties, and |E| = 3565 is the number of edges that
represent travel connections between pairs of counties. The
network’s basic reproduction number is R0 = ρ(W ) = 3.54.

Through this formulation of B and W , the weights in W
are proportional to the volume of travel between counties,
and larger values of an entry wij indicate a higher volume
of travel between counties i and j. We classify the weights
into three categories, which are low, medium, and high
travel flows, which correspond to the weight ranges (0, 0.01],
(0.01, 0.1], and (0.1, 3], respectively. We set the adjacency
parameter to k = 0.001. This choice of k is because over
half of the entries in the weight matrix W are much smaller
than k, indicating that this choice of k certainly fulfills our
objective of protecting individuals. In fact, in more than half
of the entries of W , it simultaneously protects all individuals
whose travel is encoded in that entry. In our simulations,
we generated 100 private graphs for each ε ∈ [5, 20] using
Mechanism 1 on G.

We compute and plot the absolute differences |R̃0 − R0|
and

∣∣∣ 1
R̃0
− 1

R0

∣∣∣ for each ε ∈ [5, 20], which are shown in Fig-
ures 2 and 3, respectively. Recall from Remark 2 that higher
values of the privacy parameter ε imply weaker privacy, and
the simulation results confirm that weaker privacy guarantees
result in smaller errors. For all values of ε ∈ [5, 20], the
empirical average of |R̃0 − R0| is small (between 0.27 and
0.45, incurring errors from 7.6% to 12.7% on average) com-
pared to the true value R0 = 3.54. Similarly, the empirical
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Fig. 2: The value of |R̃0 −R0| as a function of the privacy
parameter ε given R0 = 3.54. Smaller values of ε correspond
to stronger privacy.
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Fig. 3: The value of
∣∣∣ 1
R̃0
− 1

R0

∣∣∣ as a function of the privacy
parameter ε given 1

R0
= 0.283. Smaller values of ε corre-

spond to stronger privacy.

average of
∣∣∣ 1
R̃0
− 1

R0

∣∣∣ is from 0.019 to 0.031, incurring
errors from 7.0% to 11.2%. Additionally, both the values
of |R̃0 − R0| and

∣∣∣ 1
R̃0
− 1

R0

∣∣∣ are concentrated around their
empirical averages. These simulation results demonstrate that
R̃0 maintains enough accuracy under privacy to enable useful
analyses alongside protecting information.

VI. CONCLUSIONS

This paper presents an input perturbation mechanism that
provides differential privacy to graph weights when comput-
ing the basic reproduction number of an epidemic spreading
network. The proposed mechanism uses bounded noise and
the corresponding privacy-accuracy tradeoffs are quantified.
We also develop a concentration bound to evaluate privacy-
accuracy tradeoffs in terms of the remaining susceptible pop-
ulation within a community when the proposed mechanism
is applied to a networked SIS or SIR model. Future works
include applications of the proposed privacy mechanism in
the control of epidemic spreading.
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