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Abstract—This paper develops bounds for learning lossless
source coding under the PAC (probably approximately correct)
framework. The paper considers iid sources with online learning:
first the coder learns the data structure from training sequences.
When presented with a test sequence for compression, it continues
to learn from/adapt to the test sequence. The results show, not
unsurprisingly, that there is little gain from online learning when
the training sequence length is much longer than the test sequence
length. But if the test sequence length is longer than the training
sequence, there is a significant gain. Coders for online learning
has a somewhat surprising structure: the training sequence is
used to estimate a confidence interval for the distribution, and
the coding distribution is found through a prior distribution over
this interval.

I. INTRODUCTION

We consider lossless coding of sources that are (or as-
sumed to be) in some probability class Λ characterized by
an unknown, determinstic parameter vector θ. We consider
this in the context of learned coding [1]. We are given a
training sequence xm; based on the training we develop
coders C(xl;xm) with length function L(xl;xm) for encoding
test sequences xl. The codelength is Eθ[L(X

l;xm)|xm] (the
expectation here is only over xl), and we measure performance
by the redundancy

Rl(L, x
m,θ) = Eθ[L(X

l;xm)|xm]− lHθ(X). (1)

The redundancy depends on the training sequence xm. One
way to remove this dependency is to average also over xm,

Rl(L,m,θ) = Eθ[L(X
l;Xm)]− lHθ(X) (2)

As usual in source coding (and ML) the performance measure
is the worst case over the deterministic θ:

R+
l (m) = min

L
sup
θ
Rl(L,m,θ). (3)

The paper [2] considers (3), and proves

1

2m ln 2
+ o

󰀕
1

m

󰀖
≤ 1

l
R+
l (m) ≤ α0

m ln 2
+ o

󰀕
1

m

󰀖
(4)

α0 ≈ 0.50922. (5)

The result was improved in [3] to show that

1

l
R+
l (m) =

1

2m ln 2
+ o

󰀕
1

m

󰀖
. (6)
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However, in machine learning performance usually is not
measured by average over test sequences, see [4], [5]. One
way performance is measured is in the PAC (probability
approximately correct) learning framework [5]. Rather than
usual error probability in classification, we use the redundancy
(1) as risk measure. We can then say that coding in a class or
sources is PAC-learnable if for any a > 0, Pe > 0

inf
θ
P (Rl(L,X

m,θ) ≤ a) ≥ 1− Pe

where the probability is over Xm. Alternatively, we can state
this by defining

E(m, l, a) = sup
θ
P (Rl(L,X

m,θ) > a), (7)

For some given a and small Pe the goal is then to ensure
E(m, a) ≤ Pe. Thus, we require the redundancy of the learned
codelength to be smaller than a, except with a small error
probability Pe. Equivalently, we can define

a(m, l, Pe) = inf{a : E(m, l, a) ≤ Pe} (8)

In [1] we analyzed this problem for a binary alphabet and a
frozen coder, i.e., a coder that does not continue to learn from
a test sequence. The result is (Q is the survival function of
the normal distribution)

Theorem 1. For Pe sufficiently small,

1

l
a(m, l, Pe) ≥

Q−1(Pe/2)
2

2m ln 2
+ o

󰀕
1

m

󰀖
. (9)

for the estimator p̂ = k+α
m+2α , where k is the number

of 1s seen in xm. The optimum value of α that satisfies
1
6Q

−1(Pe/2)
2 − 1 ≤ α ≤ 1

6Q
−1(Pe/2)

2 + 1 which gives
an achievable a(m,Pe);

1

l
a(m, l, Pe) = b(Pe)

Q−1(Pe/2)
2

2m ln 2
+ o

󰀕
1

m

󰀖
, (10)

where limPe→0 b(Pe) = 1.

We generalized this to finite state machines and general
alphabets in [6]. The assumption in these papers is that
there is a distinct learning phase, where the coder learns
the distribution of data, and then a coding phase where the
coding distribution is fixed. This makes the result not quite
fundamental. The coder could continue to learn from the test
sequence, already suggested in [7], which is a type of online
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learning. In this paper we find bounds for this case. Since
this problem is much more complex, we limit ourselves to the
binary iid case, which still can provide significant insight.

II. ONLINE LEARNING WITH AVERAGE PERFORMANCE

For online learning, the limit when both l,m → ∞, where
l
m is kept fixed makes the most sense from an operational
point of view.
We consider first the average case, i.e., averaging over both

training and test sequences. Although this is not of main
interest, the results are nicer and do give some insight. In
this case, for a frozen coder, we get from (6)

R+
l (m) =

l

2m ln 2
+ 󰂃

󰀕
1

m

󰀖
(11)

where 󰂃(x) denotes any function converging to zero as x → 0.
For the achievable rate for the online coder, a natural

approach is to just continue updating the coding distribution
as in [2], which results in

R+
l (m) ≤ 1

2 ln 2

l+m−1󰁛

k=m

1

k
+ 󰂃

󰀕
1

m

󰀖

=
1

2
log

󰀕
1 +

l

m

󰀖
+ 󰂃

󰀕
1

m

󰀖
(12)

We can lower bound the redundancy by

Proposition 1.

R+
l (m) ≥ max

π(θ)
I(θ;X l|Xm)

The proof can be done as in [8]. Now

max
π(θ)

I(θ;X l|Xm) = max
π(θ)

{I(θ;X l+m)− I(θ;Xm)}

≥ max
π(θ)

I(θ;X l+m)−max
π(θ)

I(θ;Xm)

From [9] we have

max
π(θ)

I(θ;Xn) =
1

2
log

n

2πe
+

1

n
log

π1/2

Γ(1/2)

and thus

R+
l (m) ≥ 1

2
log

󰀕
1 +

l

m

󰀖
+ 󰂃

󰀕
1

m

󰀖
(13)

For l
m small, series expansion of (13) gives (11). This is the

case when there is more training data than test data, which
is the common scenario in machine learning. We therefore
get the common sense conclusion that there is nothing gained
from continuing to update with the test data. However, if
l ≫ m is there a significant gain. This is not a usual learning
scenario, but one situation where this could happen is when
the length of test sequences are unknown, and the training data
therefore could be too little. Notice that training still helps: the
redundancy is reduced from 1

2 log l to
1
2 log

l
m .

III. ONLINE LEARNING WITH THE PAC CRITERION

As in Theorem 1 the aim is to find the asymptotic limit
limm→∞ suppma(m, l, Pe). Let pmax(m) be a value of p
where a(m, l, Pe) is achieved. As argued in [1] instead of find-
ing the maximum of ma(m, l, Pe) for each m we can consider
convergent sequences mp(m) and the take the maximum in
the end. We can divide such sequences into three regimes:
the CLT regime: limm→∞mp(m) = ∞, where the central
limit theorem (CLT) can be applied and the Poisson regime
0 < limm→∞mp(m) < ∞, where a Poisson approximation
can be used

A. Converse

For the PAC learning criterion, we first derive a converse.
For online learning a in (8) depends on both l and m.

Theorem 2. Consider the asymptotic regime where l,m → ∞
while l

m is fixed. Then

a(m, l, Pe) ≥ Ca(A)

where Ca(A) is capacity of the additive white noise Gaussian
(AWGN) channel with amplitude constraint A and noise power
1, and where

A =

󰁵
l

m
Q−1(Pe/2)

Proof: A general coder based on the training data xm

assigns a probability p̂l(m)(xl) to the test sequence xl. The
redundancy of the coder is (within 1 bit) is D(pl󰀂p̂l(m)),
where pl is the IID distribution on xl. With this

a(m, l, Pe) = inf
a

max
p

P (D(pl󰀂p̂l(m)) ≥ a) ≤ Pe

Here p̂l(m) depends only on the sufficient statistic p̌ = k
m , so

we will write p̂l(p̌) and the probability is with respect to p̌.
We can therefore also write

a(m, l, Pe) = inf
S:∀p:P (S(p))≥1−Pe

max
p

sup
p̌∈Sp

D(pl󰀂p̂l(p̌))

≥ inf
S::∀p:P (S(p))≥1−Pe

sup
p̌

sup
p∈Šp̌

D(pl󰀂p̂l(p̌))

Here S : [0, 1] → 2[0,1] is a set function of p: for every p
it gives a (measurable) subset Sp ⊂ (δ, 1 − δ), and explicitly
P (S(p)) = P (p̌ ∈ S(p)), while

Šp̌ = {p : p̌ ∈ S(p)}.

We can think of Šp̌ as a kind of confidence interval. We
therefore have the lower bound

a(m, l, Pe) ≥ inf
p̂l

inf
S:∀p:P (S(p))≥1−Pe

sup
p̌

sup
p∈Šp̌

D(pl󰀂p̂l(p̌))

As in the proof of the lower bound in Theorem 1 in [1], we
consider a lower bound in the CLT regime only. Thus, we let
p ∈ [δ, 1− δ] be fixed as m → ∞; we can consider a slightly
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smaller interval than [0, 1] to avoid endpoint effect, and let
δ → 0 in the end. Now

inf
S:∀p:P (S(p))≥1−Pe

inf
p̂l

sup
p̌

sup
p∈Šp̌

D(pl󰀂p̂l(p̌))

(a)
= inf

S:∀p:P (S(p))≥1−Pe
inf
p̂l

max
p̌

max
π

Eπ[D(pl󰀂p̂l(p̌))]

(b)

≥ inf
S:∀p:P (S(p))≥1−Pe

max
p̌

inf
p̂l

max
π

Eπ[D(pl󰀂p̂l(p̌))]

(c)
= inf

S:∀p:P (S(p))≥1−Pe
max
p̌

max
π

min
p̂l

Eπ[D(pl󰀂p̂l(p̌))]

(d)

≥ inf
S:∀p:P (S(p))≥1−Pe

max
p̌

max
π

I(θ;xl) (14)

In step (a), π is an arbitrary distribution for p over Šp̌; (a)
is true because we can use point distribution as special case.
Step (b) is true because p̂l is in fact a direct function of p̌.
Step (c) is true because Eπ,π± [D(pl󰀂p̂l(p̌))] is concave in p̂l

and linear in π (see [10]). Step (c) is true because we can see
maxπ minp̂l Eπ±D(pl󰀂p̂l(p̌l)) as a standard universal source
coding problem where the unknown parameter is in Šp̌, and
we can therefore apply Gallagher’s lower bound [10], [9]; θ
here is a random variable distributed according to π over Šp̌,
and xl is IID Bernoulli according to θ. Notice that I(θ;xl) =
I(θ; p̄) = I(θ− p; p̄− p), where p̄ = k̄

l with k̄ the number of
ones in the test sequence.
Explicitly,

I(θ; p̄) = E

󰀥
− log

󰀣󰁝
P (p̄|θ̃)
P (p̄|θ)dF (θ̃)

󰀤󰀦

=

󰁝 󰁛

p̄

− log

󰀣󰁝
P (p̄|θ̃)
P (p̄|θ)dF (θ̃)

󰀤
P (p̄|θ)dF (θ)

(15)

Let sl = lp̄. Then the local CLT for integer-valued random
variables [11] states

P (sl|θ) =
1󰁳

2πlθ(1− θ)
exp

󰀕
− (sl − lθ)2

2lθ(1− θ)

󰀖
+ o

󰀕
1√
l

󰀖

= fN (lθ,lθ(1−θ))(sl) + o

󰀕
1√
l

󰀖

where o
󰀓

1√
l

󰀔
is uniform in sl.

The natural choice for S is the centered interval around the
mean based on the CLT

S(p) =

󰀗
p−

√
pq

√
m
Q−1(Pe/2), p+

√
pq

√
m
Q−1(Pe/2)

󰀘
(16)

which asymptotically has probability 1−Pe. We will later see
that this is optimum. The corresponding Šp̌ is

Šp̌ =

󰀗
p̌−

√
p̌q̌√
m
Q−1(Pe/2) + o

󰀕
1√
m

󰀖
,

p̌+

√
p̌q̌√
m
Q−1(Pe/2) + o

󰀕
1√
m

󰀖󰀘

Then supθ∈Šp̌ |θ − p̌| = O
󰀓

1√
l

󰀔
since the ratio l/m is fixed.

Further,

fN (lθ,lθ(1−θ))(sl)

= fN (lθ,lp̌(1−p̌))(sl)

+ fN (lθ,lp̌(1−p̌))(sl)

󰀕
a(p̌) + b(p̌)

(sl − lθ)2

l

󰀖
(θ − p̌)

+ o(θ − p̌)

where a and b are functions of p̌ alone. Here it can be seen
that

lim
l→∞

sup
sl

fN (lθ,lp̌(1−p̌))(sl)
(sl − lθ)2

l
= 0 (17)

and therefore

P (sl|θ) = fN (lθ,lp̌(1−p̌))(sl) + o

󰀕
1√
l

󰀖

=
1󰁳

lp̌(1− p̌)
fN (µ,1)(xl) + o

󰀕
1√
l

󰀖
(18)

where the o(·)-term is still uniform in sl, and

xl =
sl − lp̌󰁳
lp̌(1− p̌)

µ =

√
l(θ − p̌)󰁳
p̌(1− p̌)

At first we will limit −B ≤ xl ≤ B, which also means B− =
−B

󰁳
lp̌(1− p̌) + lp̌ ≤ sl ≤ B

󰁳
lp̌(1− p̌) + lp̌ = B+. We

can then find the limit of (15) by calculating equation (19) at
the top of the next page. Then letting B → ∞,

max
π

I(θ;xl) → max
π̃

I(X;Y )

where Y = X+N , N ∼ N (0, 1), and π̃ is a distribution over
IA = [−

󰁴
l
mQ

−1(Pe/2),
󰁴

l
mQ

−1(Pe/2)]. Notice that this
is independent of p̌, thus it is a minimax solution conditioned
on (16) being optimum. We can argue for this as follows. If
we remove some p̌1 from Sp given by (16), we will have to
add at least one other point p̌2 outside the interval in (16)
(recall that the distribution is discrete). Thus, p is removed
from Šp̌1 but added to Šp̌2 . These added points will result in
points x outside the interval IA. This will strictly increase the
capacity of the corresponding channel. Namely, the capacity
achieving distribution for the amplitude constrained Gaussian
channel is discrete [12], and we can then move one of the
discrete modulation points to the new value of x /∈ IA. Since
this has a larger amplitude, it will increase capacity. Thus, if
we move points outside (16) it will increase (14) showing that
(16) minimizes (14).

There is no closed form expression for the capacity of the
amplitude constrained AWGN. However, Smith [12] showed
that the capacity is achieved by a discrete input distribution,
and provided a numerical optimization method for finding the
optimum input distribution and capacity. While there is no
closed form expression, the papers [13], [14] show that the
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I(θ; p̄)B ≡
󰁝

Šp̌

B+󰁛

sl=B−

− log

󰀣󰁝

Šp̌

P (sl|θ̃)
P (sl|θ)

dF (θ̃)

󰀤
P (sl|θ)dF (θ)

=

󰁝 √
l/mQ−1(Pe/2)+󰂃(m)

−
√
l/mQ−1(Pe/2)+󰂃(m)

B+󰁛

sl=B−

− log

󰀣󰁝 √
l/mQ−1(Pe/2)+󰂃(m)

−
√
l/mQ−1(Pe/2)+󰂃(m)

fN (µ̃,1)(xl) + 󰂃(l)

fN (µ,1)(xl) + 󰂃(l)
dF (µ̃)

󰀤

×
󰀃
fN (µ,1)(xl) + 󰂃(l)

󰀄 1󰁳
lp̌(1− p̌)

dF (µ)

→
󰁝 √

l/mQ−1(Pe/2)

−
√
l/mQ−1(Pe/2)

󰁝 B

−B
− log

󰀣󰁝 √
l/mQ−1(Pe/2)

−
√
l/mQ−1(Pe/2)

fN (µ̃,1)(x)

fN (µ,1)(x)
dF (µ̃)

󰀤
fN (µ,1)(x)dxdF (µ) (19)

capacity approximately is

Ca(A,σ) ≈ min

󰀫
log

󰀣
1 +A

󰁵
2

πe

󰀤
,
1

2
log

󰀃
1 +A2

󰀄
󰀬

Thus,

a(m, l, Pe) 󰃔 min

󰀫
log

󰀣
1 +

󰁵
l

m
Q−1(Pe/2)

󰁵
2

πe

󰀤
,

1

2
log

󰀕
1 +

l

m
Q−1(Pe/2)

2

󰀖󰀞

We see that we reach the same conclusion as for average
performance in Section II. For pure training, in the regime
where l

m is fixed, we get from (9) that

R+
l (m) ≥ lQ−1(Pe/2)

2

2m ln 2
+ 󰂃

󰀕
1

m

󰀖

Thus, essentially, lQ−1(Pe/2)
2

m moves inside the logarithm. As
for average performance, for l

m small there is little gain, but
for l ≫ m, there could be a gain. We will show that by
developing a coder that can realize some of that gain in this
regime.

B. Coding

The naive coder would be to simply update p̂ with new data,
as was optimum in the average case, eq. (12). However, it can
be shown that this does not move lQ−1(Pe/2)

2

m inside the log
as in the converse. Rather, the proof of the converse hints at
how a coder should be designed: From p̂ from the training, a
Pe confidence interval for p is found, and the test sequence
is then coded according to some prior distribution over this
confidence interval.
Let [p̌−, p̌+] be a confidence interval for p based on the

training data. This should be a proper confidence interval,
meaning that ∀p : P (p /∈ [p̌−, p̌+]) ≤ Pe. We use a uniform
distribution over [p̌−, p̌+]. The probability of a test sequence

xl with k̄ ones can then be calculated as

1

p̌+ − p̌−

󰁝 p̌+

p̌−

θk̄(1− θ)l−k̄dθ

=
1

p̌+ − p̌−

󰀃
Ip̌+(k̄ + 1, l − k̄ + 1)− Ip̌+(k̄ + 1, l − k̄ + 1)

󰀄

×B(k̄ + 1, l − k̄ + 1)

=
1

p̌+ − p̌−

󰀃
F (k̄; l + 1, p̌−)F (k̄; l + 1, p̌+)

󰀄

×B(k̄ + 1, l − k̄ + 1)

where F (k̄; l+1, p̌) is the CDF for the binomial distribution,
and B(k̄+1, l− k̄+1) is the Beta function. The codelength is
− log of this probability. To bound − logB(k̄+1, l−k̄+1) we
can use the bound in [10, 13.2], and we then get the following
codelength bound

L ≤ lH

󰀕
k̄

l

󰀖
+

1

2
log (l)− 1

2
log

󰀕
π
k̄

l

l − k̄

l

󰀖
+ 2

+ log(p̌+ − p̌−)− log(F (k̄; l + 1, p̌−)− F (k̄; l + 1, p̌+))
(20)

The coder is based on finding a proper confidence interval.
Now, from [1], [2] we know that the critical performance is
in the Poisson regime. We therefore focus on performance in
the Poisson regime. By calling k− = mp− and k+ = mp+,
according to [15] we can set

k− =
1

2
χ2(Pe/2; 2k)

k+ =
1

2
χ2(1− Pe/2; 2k + 2) (21)

We now rewrite (20) as

L ≤ lH

󰀕
k̄

l

󰀖
+

1

2
log

󰀕
l

m

󰀖
− 1

2
log

󰀓
k̄
m

l

󰀔

− 1

2
log

󰀕
l − k̄

l

󰀖
+ 2− 1

2
log(π)

+ log(ǩ+ − ǩ−)− log(F (k̄; l + 1, p̌−)− F (k̄; l + 1, p̌+))
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The expected codelength with respect to k̄ is1

L ≤ lE

󰀗
H

󰀕
k̄

l

󰀖󰀘
+

1

2
log

󰀕
l

m

󰀖
− 1

2
E
󰁫
log

󰀓
k̄
m

l

󰀔󰁬

− 1

2
E

󰀗
log

󰀕
l − k̄

l

󰀖󰀘
+ 2− 1

2
log(π)

+ log(ǩ+ − ǩ−)− E[log(F (k̄; l + 1, p̌−)− F (k̄; l + 1, p̌+))]

≤ lH (p) +
1

2
log

󰀕
l

m

󰀖
− 1

2
E
󰁫
log

󰀓
k̄
m

l

󰀔󰁬

− 1

2
E

󰀗
log

󰀕
l − k̄

l

󰀖󰀘
+ 2− 1

2
log(π)

+ log(ǩ+ − ǩ−)− E[log(F (k̄; l + 1, p̌−)− F (k̄; l + 1, p̌+))]

We use

Lemma 3. Assume p ≤ 1
2 and k̄ ≤ 1

2 l. Then

lim
l→∞

−E
󰀗
log

󰀕
l − k̄

l

󰀖󰀘
≤ 1

Proof: It can be shown that by setting κ = 4 ln 2 − 2
the function f(x) = κx2 + x + ln(1 − x) ≥ 0 for all real
0 ≤ x ≤ 1

2 . In fact, the function is zero on the boundaries and
has positive value at its only extremum point x∗ = 1 − 1

2κ
where f ′(x∗) = 0. Therefore, by taking expectation in the
Poisson regime, we have:

−E
󰀗
log(

l − k̄

l
)

󰀘
ln 2 ≤ κ

E[k̄2]

l2
+
E[k̄]

l
= κp2 + p+ κ

p

l

≤ ln 2 + o

󰀕
1

l

󰀖

for p ≤ 1
2 as it is claimed.

The redundancy in Poisson limit is therefore bounded by

a(m, l, Pe) ≤
1

2
log

󰀕
l

m

󰀖
− 1

2
E
󰁫
log

󰀓
k̄
m

l

󰀔󰁬
+ 2.5− 1

2
log(π)

+ log(ǩ+ − ǩ−)− E
󰁫
log(P l

mk−
(k̄)− P l

mk+
(k̄))

󰁬

(22)

The expectation in (22) is with respect to k̄. Suppose the
Poisson limit of k has mean γ; then k̄ converges to a Poisson
distribution with mean l

mγ. Notice that k± is based on k. In
order to get the different terms to the same scale, we therefore
calculate expectation with respect to a Poisson distribution
with mean l

mγ, explicitly

a(m, l, Pe) ≤
1

2
log

󰀕
l

m

󰀖
+ 1− 1

2
log(π)

− 1

2
E l

mγ

󰁫
log

󰀓
k̄
m

l

󰀔󰁬
+ log(ǩ+ − ǩ−)

− E l
mγ

󰁫
log(P l

mk−
(k̄)− P l

mk+
(k̄))

󰁬
(23)

The first line of (23) gives the dependency of a(m, l, Pe) on l
m

explicitly, and is independent of Pe and γ and k. The second

1The expectation as written is clearly infinite. This is because the expression
(20 is not valid for k̄ = 0, l. These cases therefore have to be handled
separately in numerical evaluation.

line is dependent on k and γ. The bound should be maximized
over k and γ, but conditioned on successful training, that is
p ∈ [p̌−, p̌+], that is the maximum should be calculated over
k, γ : k− ≤ γ ≤ k+. We define

c(Pe) = sup
γ,k:k−≤γ≤k+

−1

2
E l

mγ

󰁫
log

󰀓
k̄
m

l

󰀔󰁬
+ log(ǩ+ − ǩ−)

− E l
mγ

󰁫
log(P l

mk−
(k̄)− P l

mk+
(k̄))

󰁬
(24)

The function c(Pe) is not quite independent of l
m due to the

discrete nature of the Poisson distribution, but there is only
a weak dependency. The function c(Pe) can be calculated
numerically. In Fig. 1 we have plotted a result of the numerical
calculation. Of course online learning is much better than
pure training for l

m large (the logarithmic plot disguises this
somewhat); the advantage disappears for l

m = 0.3. The main
reason the online learning achievable rate is worse than pure
learning is mainly due to the bound from [10, Section 13.2]
used in (20) is not that tight.

Figure 1. Plot of codelength for online learning for Pe = 10−6.

IV. CONCLUSION

As would be expected from common sense, if l ≪ m, not
much is gained from online learning; this is of course the usual
learning scenario. But if l is of the same order as m there is
a significant gain. One could think of this scenario more as
universal coding prepped by training. One significant result of
the paper is that Theorem 2 provides a lower bound in any
kind of learned coder, without restricting it to be for example
a frozen coder. One could imagine a coding scheme which
decides between the learned coder and a universal coder on a
sequence by sequence basis. But Theorem 2 shows that this
cannot beat a pure learned coder.
Another significant insight is that online learning is quite

different than both pure learning and universal coding. In either
of these case, coding is done by estimating the probability
distribution. But online learning is totally different: the training
data is used to calculate a confidence interval, and the coding
distribution is found by using a prior over this confidence
interval.
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