
1. Introduction
Flood, causing major disruptions in urban and rural areas and threatening lives, is one of the deadliest and cost-
liest hazards in the United States (National Weather Service, 2022). Extreme flood events severely impact infra-
structure and environment (Merz et al., 2021; Wallemacq & House, 2018). Both global climate change and local 
anthropogenic activities have also been exacerbating these extreme events, particularly in urbanized coastal areas 
(Arnone et al., 2018; Pörtner et al., 2022). Providing accurate flood predictions is one key mechanism to reduce 
economic impacts and loss of life by providing early warnings for the public and agencies to set up contingency 
measures and evacuation warnings (Emerton et al., 2016; J. M. Johnson et al., 2018). The value of flood predic-
tions are quite significant in providing early warnings and in developing evaluation strategies, thereby providing 
indirect benefits to society (Pappenberger et al., 2015).

Flood predictions are typically of two types—deterministic and probabilistic—with the former providing the 
conditional mean (Sinha & Sankarasubramanian,  2013) and the latter providing the entire conditional distri-
bution (Sankarasubramanian & Lall, 2003). Deterministic predictions are easier to communicate as it does not 
provide uncertainty in the outcome, but probabilistic predictions are more useful in relating the uncertainty to 
different degrees of contingency measures (Cloke & Pappenberger, 2009). Flood predictions are typically devel-
oped through either physical-process-based modeling approach—forcing precipitation forecast into a hydrolog-
ical model—or using a statistical model in which precipitation forecast and antecedent watershed conditions are 
related directly to the observed flood. Uncertainty in flood predictions arises from multiple sources that include 
input uncertainty from precipitation predictions, hydrologic model uncertainty, and uncertainty in quantifying the 
initial conditions (Mazrooei et al., 2021; Mendoza et al., 2012). Efforts have focused on reducing these uncertain-
ties ranging from multi-model combination (Devineni et al., 2008) on precipitation predictions, on hydrologic 
models (Singh & Sankarasubramanian, 2014), and through correcting initial conditions through data assimilation 
(Mazrooei et  al.,  2020). However, most of these uncertainty reduction techniques have focused primarily on 
gauged basins with limited/no evaluation of these techniques for ungauged basins.
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The main intent of this research is to develop a unified approach that corrects the errors in flood predictions 
for both gauged and ungauged locations over the Coterminous United States (CONUS). Predicting flood in 
ungauged basins (PUB) is an established area of research in hydrology (Hrachowitz et  al.,  2013). Correct-
ing hydrological errors in ungauged basins is challenging (Mishra & Coulibaly,  2009) as flood variability is 
unknown. Methods to address this challenge to date include spatial proximity methods (Tamaddun et al., 2019; 
Y. Zhang & Chiew, 2009), physical similarity approaches (Narbondo et al., 2020), data-driven methods such as 
artificial neural networks (Heng & Suetsugi, 2013), and nonlinear regression models (Parajka et al., 2013). These 
studies mainly focused on regional scaled or seasonal flood prediction, but flood forecast is typically required 
at daily-to-weekly time scale. Further, with regard to flood prediction, most studies relate the flow attributes 
available at gauged sites (e.g., 25-year return period flood) with the hydroclimate and basin characteristics to 
develop a statistical model and then use that relationship to estimate the corresponding flood values at based on 
basin and climate characteristics available at ungauged locations (see Table 3 in Salinas et al., 2013). However, 
most of these two-step approaches have focused primarily on design flood as opposed to predicting daily flood 
flows, which are critically important for issuing early warnings. Further, these two-step regression modeling 
can be effectively integrated into a single step using a hierarchical model (Das Bhowmik et al., 2020; Devineni 
et al., 2013). To our knowledge, limited/no application of hierarchical model has been performed for estimating 
daily flows at ungauged locations over the CONUS.

Hierarchical modeling (aka., multilevel models) is commonly used to combine time-varying hydrologic infor-
mation (e.g., observed flood) with the spatially varying basin and hydroclimatic characteristics (e.g., Ossandón 
et al., 2022). Hierarchical model frameworks have the advantage of considering both spatio-temporal predictors 
and categorical (i.e., spatial or temporal) predictors for estimating a predictand (Gelman & Hill, 2006). Flood 
prediction studies that used hierarchical models used the river basin dendritic structure to predict the flows at a 
downstream location based on predictors such as basin-level meteorological variables and observed or hydrologic 
model predicted flood (Ossandón et al., 2022; Ravindranath et al., 2019). However, these studies have focused on 
predicting flood at gauged locations. Given that the hierarchical model is a spatiotemporal model with multi-level 
predictors, a hierarchical model could in principle be extended for predicting flood at ungauged locations by 
considering predicted flood available from any hydrologic model and other basin characteristics (e.g., aridity 
index) that commonly influence the error structure in hydrologic model prediction. Based on these underpin-
nings, we propose a novel hierarchical modeling structure that uses spatio-temporally varying observed/predicted 
flood information and spatially varying basin characteristics (e.g., drainage area) and hydroclimatic information 
(e.g., aridity index) for estimating flood flows at ungauged basins over the CONUS.

Continental-scale hydrology studies have evaluated parsimonious mechanistic models (Archfield et al., 2015), 
lumped-hydrological models (Vogel & Sankarasubramanian, 2000), and hybrid (statistical-mechanistic) models 
for estimating flood at different time scales (Evenson et al., 2021). Utilizing distributed hydrological models 
provide a viable alternative to estimating daily flood at ungauged locations, but challenges remain in accurately 
predicting flood over continental scale (J. M. Johnson et al., 2023). Frame et al. (2021) evaluated the National 
Water Model (NWM) for selected virgin basins and found that the performance of NWM is poorer compared to 
the post-processing models. Post-processing can often decrease bias in hydrological model outputs and reduce 
systematic errors from forcing and other process representations (Li et al., 2017; Rezaie-Balf et al., 2019). Post 
Processing methods can be data-driven (e.g., J. M. Johnson et al., 2023) or physically informed (Wu et al., 2019). 
Recently, Frame et al. (2021) applied a long short-term memory (LSTM) machine learning approach to improve 
daily NWM flood prediction across CONUS and compared its performance with flood prediction using LSTM 
with just atmospheric forcings. More deep learning (DL) models have shown promising efforts in improving 
stream forecast, including Feng et al. (2020) and Kratzert et al. (2019). The role of DL models in predicting not 
only streamflow, but also in predicting other variables (e.g., groundwater), including developing insights on how 
DL models learn specific hydrologic processes (Nearing et al., 2020; Sundararajan et al., 2021). But, DL models 
perform similar to traditional regression models in time series forecasting, (Elsayed et al., 2021). Similarly, stud-
ies have evaluated the physics-informed DL methods, delta models, for predicting streamflow in the context of 
PUB and prediction in ungauged regions (K. Fang et al., 2022; Feng et al., 2022). However, most of this analysis 
has been performed only for virgin basins and did not focus on controlled basins (i.e., basins with anthropogenic 
activities such as reservoir regulation). J. M. Johnson et al. (2023) used random forest models to identify the basin 
characteristics and hydroclimatic information that influence the NWM performance in natural and controlled 
basins over the CONUS. They found that in arid basins and basins with moisture and energy being out of phase 
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exhibit significant bias and reduced Nash-Sutcliffe Coefficient (NSE) (J. M. Johnson et al., 2023). Further, vari-
ables indicating anthropogenic activities—percent imperviousness and upstream storage in dams– also influence 
the bias and NSE in predicting the flood flows (J. M. Johnson et al., 2023). This indicates that the NWM perfor-
mance depends on basin and hydroclimatic information, thereby exhibiting a regional/spatial error structure 
in predicting flood flows. We intend to consider these basin characteristics and hydroclimatic information as 
a hierarchy in predicting flood flows for natural and controlled basins within the proposed hierarchical model.

In this study, we propose a spatiotemporal hierarchical modeling (STHM) framework by using hydroclimatic 
information and basin characteristics as a hierarchy for improving flood prediction in ungauged basins under 
natural and controlled types over the CONUS. We used above-normal flow to test the proposed STHM frame-
work. The motivation for employing STHM primarily stems from the hierarchical nature of the predictors, 
which are temporally varying NWM and spatially varying hydroclimatic and basin characteristics, for predicting 
above-normal flow in ungauged basins. For demonstration, we consider NWM above-normal flow prediction as 
a basin-specific predictor, but one could replace this with meteorological forcings (see the Section 4 for addi-
tional details) or any other hydrologic model predictions. The proposed hierarchical model is evaluated k-fold 
using a spatio-temporal validation based on its ability to predict in 2,674 gauges, which include both natural and 
controlled basins, over the CONUS. The manuscript is organized as follows: We first describe the data sets used 
and the formulation of the hierarchical model. Then the results are presented from overall model performance 
analyses through k-fold temporal and spatial validation, which is then followed by a seasonal analysis of the 
explained variance from each predictor and by a discussion. Finally, we summarize the key findings from the 
study along with implications for future work in improving above-normal flow prediction in ungauged basins.

2.  Hydroclimatic Data and Hierarchical Model Setup
To develop a hierarchical model for predicting above-normal flow (>67th quantile) in ungauged basins, we have 
obtained several predictors that include daily above-normal flow from NWM, basin characteristics and hydrocli-
matic information. Details on the procedure for obtaining the predictors and USGS gaging stations are described 
below in the following sections.

2.1.  National Water Model

The National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) Office 
of Water Prediction (OWP) have implemented the operational National Water Model (NWM) to support the 
operational activities of NWS River Forecast Centers, the Federal Emergency Management Agency and other 
government agencies (National Research Council, 2006). A primary goal of the NWM development is to provide 
flood predictions for any given riverine location within the coterminous United States (CONUS). The NWM is 
a continental-scale distributed high-resolution hydrologic model that produces streamflow predictions for 2.7 
million stream reaches across the contiguous United States (CONUS), based on a variety of data ranging from 
radar-gauge observed precipitation to numerical weather prediction (National Research Council,  2006). The 
NWM relies on the Weather Research and Forecasting hydrologic model (WRF-Hydro) architecture (Ghotbi 
et al., 2020) and provides streamflow predictions extending up to 30 days in advance over the CONUS. NWM 
provides these predictions at gauged locations but still consists of errors, which depend on both hydrologic 
process representation and forcing errors (Viterbo et  al.,  2020). Furthermore, NWM predictions lack spatial 
correlation between predictions available at ungauged locations and nearby gauged locations, particularly in esti-
mating above-normal flows because of the spatially uninformed model parameters (Brunner et al., 2020; Tijerina 
et al., 2021). J. M. Johnson et al. (2023) highlighted that the NWM exhibits systematic errors across space and 
depends on basin characteristics and hydroclimatic information. Due to these shortcomings, studies focusing 
on improving the NWM forecasts have been emerging recently using various post-processing methods (Frame 
et al., 2021). For this study, we consider daily flows from NWM (Q NWM) as a predictor in the hierarchical model.

2.2.  CONUS Basin Selection

Co-located NHDPlusV2 COMIDs and USGS National Water Information System (NWIS) gages are extracted 
from the Routelink file associated with NWM v2.0. The “dataRetrieval” R package (Hirsch & De Cicco, 2017) 
is then used to identify which of these basins have at least 10  years of observed daily flows between 1993 
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and 2018 for evaluating the proposed hierarchical model. Once identified, streamflow data are extracted from 
NWIS by gage ID using “dataReteival,” and NWM v2.0 data are extracted by COMID using “nwmTools” (M. 
Johnson, 2022). For the NWM estimated flows, hourly data are converted to daily mean flows. Drainage area for 
each basin is obtained from the GAGESII USGS database. Additionally, the GAGESII data set classifies each 
USGS station's flow into controlled/natural based on the 2009 hydro-climatic network (HDCN) database and 
we consider that classification for developing the hierarchical modeling in the region. A coastal classification is 
applied to those catchments with more than 50% of the drainage areas within 150 km of the coastline, as these 
areas are susceptible to impacts from tides (Ramaswamy et al., 2004; F. Zhang et al., 2018). In this study, 74% 
of 330 coastal HUCs' drainage area fall totally within the 150 km definition. 14% of 330 coastal HUC8s have 
more than 50% drainage areas within 150 km definition. 7% of 330 coastal HUCs (26 HUC8s) have at least 
33% of drainage area within 150 km definition, 4 (<1%) HUCs have drainage area less than 150 km definition. 
In total, we consider 2,674 controlled USGS gages, 451 natural gages, and 1,150 coastal gages spanning 1,508 
basins (at HUC08 levels) and they are grouped into natural, controlled and coastal basins across the 18 HUC02 
(Figure  1). As the focus of this study is on improving above-normal flows in ungauged basins, we consider 
only the above-normal streamflow condition, which is defined as the flow above the 67th percentile of daily 
flow in a given station. It is common in forecasting that tercile category- below normal (<33rd percentile), 
above-normal (>67th percentile) and normal (otherwise)- is used to provide prediction on the desired outcome 
of interest. Hence, we defined above-normal flow as the magnitude above 67% observed streamflow. Thus, we 
obtain observed daily above-normal flow (Q) (above 67th percentile of daily streamflow) from NWIS, which 
will be the predictand in setting up the hierarchical model. The corresponding day's daily streamflow from NWM 
reanalysis runs (v2.0) is considered as a predictor (Q NWM) for the selected basin.

2.3.  Upstream Reservoir Storage

Since streamflow is regulated by reservoirs to meet downstream water demand (Kumar et al., 2022), we consider 
cumulative upstream reservoir storage of a USGS gaging station as a predictor in the hierarchical model. Studies 
have shown that reservoir storage and their retention time significantly alter the downstream flow characteristics 
(Chalise et al., 2021). The dams associated with each gage are obtained from the 2019 United States Army Corp 
of Engineers National Inventory of Dams (NID) database (US Army Corps, 2019) and the cumulative upstream 
reservoir storage are obtained for each gage. We use the “Maximum Storage” from the NID database for calcu-
lating the cumulative upstream storage (S) (USACE, 2022). We also obtain the contributing area above each dam 
from NID.

Figure 1.  Spatial distribution of 3,640 USGS stream gages classified as “controlled” and “natural” based on Hydro-Climatic 
Data Network (HCDN). These sites are also classified as coastal sites if they are within 150 km distance of a coastline. The 
HUC02 regions are grouped into three regions based on regional hydroclimatology.
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2.4.  Hydroclimate Data

In addition to dam attributes, we consider the following hydroclimatic attributes as predictors for the hierarchical 
model: (a) aridity index (b) mean monthly potential evapotranspiration and (c) phase difference between moisture 
(precipitation) and energy (potential evapotranspiration).

Monthly potential evapotranspiration (PET; kg/m 2) and precipitation (P; kg/m 2) are obtained from phase 2 of 
NLDAS for January 1993 through December 2018 (Mitchell et  al.,  2004). For the contributing area to each 
gage, the mean monthly PET and P are computed. The availability of moisture (i.e., precipitation) and energy 
(i.e., PET) together within the seasonal cycles influence the streamflow estimation (Petersen et al., 2012, 2018). 
The aridity index (AI) is calculated as the ratio of mean annual PET to mean annual P 𝐴𝐴

(

𝑃𝑃𝑃𝑃𝑃𝑃 ∕𝑃𝑃
)

 over each 
basin. Is used since arid basins are more difficult to calibrate and estimate streamflow compared to humid basins 
(Sankarasubramanian & Vogel, 2002).

The phase difference between moisture and energy is computed as the Spearman correlation between the monthly 
precipitation and potential evaporation (ρ(P, PET)). The Spearman correlation coefficient is determined for each 
NLDAS2 cell using the mean monthly PET and P over the 26 years and the basin-wide mean ρ is computed. If 
ρ is negative (positive), it indicates moisture and energy are out of phase (in phase), which could result in more 
(less) potential for runoff generation from the basin. We also consider mean monthly PET at basin level as an 
additional predictor in the hierarchical model. It is important to note that AI and ρ are not time-varying predictors 
and quantify the climatological interaction between moisture and energy.

2.5.  Land Use Data

Since our interest is in developing flood predictions, land use, particularly urbanization, can play an important 
role in generating runoff and evapotranspiration (Merz et al., 2021). Urban imperviousness represents developed 
surface (e.g., roads, driveways, sidewalks, parking lots, rooftops) that limit the infiltration into the underlying soil 
and increase the frequency and intensity of downstream runoff (Caldwell et al., 2012). Thus, to reflect the devel-
opment in the basin, urban imperviousness is derived from the U.S. Geological Survey (USGS) National Land 
Cover Database (NLCD) 2019 Impervious data layer that quantifies the percent developed impervious surface in 
each pixel (MRLC, n.d.). We also use the NLCD 2019 land cover layer to identify the percentage of each basin 
that is categorized as urban (Anderson level 1 value 2). Thus, urban basins are independent and are classified 
simply based on TIGER Census data (U.S. Census Bureau, 2020). These are small watersheds in urban areas as 
they are more impacted by the impervious land surface. So, we have identified 7% of NWIS sites as urban sites 
based on the Census Bureau definition with densely settled urbanized areas of 50,000 or more people using the 
2020 Census data (U.S. Census Bureau, 2020).

2.6.  Spatiotemporal Hierarchical Model (STHM)—Formulation

Hierarchical model are often used to analyze multilevel data, especially hierarchically structured with 
lower-level groups nested within higher-level groups. These higher-level groups can be spatial and/or tempo-
ral ones. The intercept and slopes at lower-level model become the outcomes of higher-level model. We use 
spatial and temporal hierarchies to develop the model for flood prediction in ungauged basins. We divide the 
day-of-year into 37 10-day windows and we denote each 10-day window, τ, for the temporal hierarchy. We have 
tested using different scales of time windows, including 5, 7, 10, 20, 30 days. Based on the performance  and 
computational time, we picked the 10-day as a reasonable window for parameter estimation without losing 
the flood climatology. Figure S4 in Supporting Information S1 show the tradeoff between performance and 
computational time for different time windows for the natural basins. With regard to spatial grouping, we 
approached this so that the overall skill is maximized by exploiting the hierarchical structure and based on 
applicability in the PUB context over the CONUS. For instance, if define the region to be small compared to 
the CONUS (e.g., HUC2), there won't be much variability on the error structure of NWM as basins will be 
more homogenous which would make the model hierarchy to be redundant. Thus, basin and hydroclimatic 
characteristics should be varying enough so that errors arising from temporal hierarchy (i.e., NWM outputs 
and Q3t) could be explained with spatio-temporally varying predictors. Hence, we categorize the 18 HUC02 
regions into three groups/levels with each group, j, denoting the spatial hierarchy (Figure  1). These three 
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groups are based on empirical hydroclimate similarity considering aridity, regional landform, climate, and 
ecosystems (Heidari et al., 2020). Thus, all sites are nested under each spatial group k, and each time step is 
nested under the spatial group k.

To predict the flood (Q) at a specific site in a basin i at daily time step t within each temporal cluster τ and spatial 
cluster k, we have basin-specific terms/coefficients and fixed terms (i.e., coefficients are common to all sites 
under the same spatial and temporal cluster). The fixed terms include predictors aggregated mean values at the 
basin (HUC08, j) level, and can be separated into two groups: (1) no variation over time, and (2) varying over 
time. Predictors not varying temporally include the Spearman correlation indicating moisture and energy being 
in-phase or out-phase (ρ), the total dam storage (S), the aridity index (AI), and the percent impervious surface 
(Imp). These predictors share the same coefficients with the same 10-day widow and spatial group (i.e., same i 
and j value). Predictors varying over time include mean potential evapotranspiration in the corresponding basin 
(PET) within the same 10-day windows, and HUC08 level previous 3-day area weighted observed streamflow 

𝐴𝐴
(

𝑄𝑄
3𝑑𝑑

𝑡𝑡

)

 . For PET, the coefficients will also vary among different months within the same 10-day window and 
spatial group. For 𝐴𝐴 𝐴𝐴

3𝑑𝑑

𝑡𝑡
 , the coefficients will also vary among different basins (HUC08).

Thus, for each τ-th 10-day window,

𝑄𝑄𝑡𝑡(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏) = 𝑄𝑄𝑄𝑄𝑡𝑡(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏) + 𝜀𝜀𝑡𝑡(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏)� (1)

at each site level (i):

𝑄𝑄𝑄𝑄𝑡𝑡(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏) = 𝛽𝛽0(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏) + 𝛽𝛽1(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏)𝑄𝑄
NWM

𝑡𝑡(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏)
+ 𝛽𝛽2(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏)𝑄𝑄𝑄𝑄(𝜏𝜏𝜏 𝜏𝜏𝜏 𝜏𝜏𝜏 )

3𝑑𝑑� (2)

The intercept term β0(τ,i,j,k) in Equation 2 is estimated for each τ-th time window at HUC08 level (j) using mean 
potential evaporation in the corresponding basin (PET) within the same τ-th 10-day windows (PET). Thus, at 
each HUC08 level (j):

𝛽𝛽0(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏) = 𝛽𝛽00(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏) + 𝛽𝛽01(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏)𝑃𝑃𝑃𝑃𝑃𝑃(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏))� (3)

The intercept term β00(τ,i,j,k) in Equation 3 is estimated at the grouped HUC02 level (k, spatial group shown in 
Figure 1)

𝛽𝛽00(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏) = 𝛽𝛽000,𝜏𝜏 + 𝛽𝛽001,𝜏𝜏𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗𝑗𝑗𝑗) + 𝛽𝛽002,𝜏𝜏𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖(𝑗𝑗𝑗𝑗𝑗) + 𝛽𝛽003,𝜏𝜏𝜌𝜌𝑖𝑖(𝑗𝑗𝑗𝑗𝑗)� (4)

Q NWM is the NWM daily flow; ρ is the Spearman correlation indicating moisture and energy being in-phase or 
out-phase (ρ); PET is the mean 10-day potential evaporation as mentioned above; S is the upstream total dam 
storage; AI is the aridity index, and Imp is the percent impervious and ɛ is the residual. Thus, the proposed 
spatio-temporal hierarchical model has the final form as follows:

𝑄𝑄𝑡𝑡(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏) = 𝛽𝛽000,𝜏𝜏 + 𝛽𝛽1(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏)𝑄𝑄
NWM

𝑡𝑡(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏)
+ 𝛽𝛽2(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏)𝑄𝑄

3𝑑𝑑

𝑡𝑡(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏)
+

𝛽𝛽01(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏)𝑃𝑃𝑃𝑃𝑃𝑃𝜏𝜏(𝑗𝑗𝑗𝑗𝑗) + 𝛽𝛽001,𝜏𝜏𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗𝑗𝑗𝑗)+

𝛽𝛽002,𝜏𝜏𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖(𝑗𝑗𝑗𝑗𝑗) + 𝛽𝛽003,𝜏𝜏𝜌𝜌𝑖𝑖(𝑗𝑗𝑗𝑗𝑗) + 𝜀𝜀𝑡𝑡(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏)

� (5)

Since we are interested in estimating the flow at ungauged basins, we represent the antecedent conditions based 
on previous 3-day average flow at the HUC08-level. Thus, given “m” gauged basins within the HUC08, for a 
given basin, then we obtain the depth of runoff for the previous 3 days for all the “m” basins. This 3-day average 
depth of runoff is then multiplied by the drainage area of the basin to get the basin-relevant average depth of 
runoff, and then average them 3 days over “m” basins to get previous average 3-day flows. For a gauged basin, 
of course, one can simply use the 3-day average flows as a predictor instead of the area-weighted flows. 𝐴𝐴 𝐴𝐴

3𝑑𝑑

𝑡𝑡
 is 

HUC08 level, previous 3-day area weighted observed streamflow. The moving average is calculated as:

𝑄𝑄
3𝑑𝑑
𝑡𝑡

=
1

3

(

𝑄𝑄
𝐴𝐴

𝑡𝑡−3
+𝑄𝑄

𝐴𝐴

𝑡𝑡−2
+𝑄𝑄

𝐴𝐴

𝑡𝑡−1

)

� (6)

𝐴𝐴 𝐴𝐴
3𝑑𝑑

𝑡𝑡
 on the same day is calculated as:

𝑄𝑄
𝐴𝐴

𝑡𝑡
=

∑

𝐴𝐴𝑖𝑖

∑ 𝑄𝑄𝑡𝑡𝑡𝑡𝑡

𝐴𝐴𝑖𝑖

� (7)
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where Qt,i is the streamflow at ith basin within the same HUC08 at date t, A is the corresponding drainage area of 
the ith basin. t is the corresponding date of the prediction.

Thus, Equation 5 is set up for nine groups for three basin types (i.e., natural, controlled and coastal) for three 
groups (Figure 1). For each of the nine models, coefficients are estimated over each 10-day window. To determine 
the best-fitted model for each group, we select the variables using the ℓ1-penalized maximum likelihood method 
proposed by Groll and Tutz (2014) and computed the coefficients using the R package “glmmLasso” developed 
by Schelldorfer et al. (2014).

2.7.  Model Assessment and Validation

Given that we are interested in assessing the performance of the hierarchical model for estimating flows in 
ungauged locations, we consider both temporal and spatial validation procedures for assessing model perfor-
mance. The temporal validation is performed to evaluate the STHM performance over a period different from the 
calibration, whereas the spatial validation is performed to evaluate the STHM for application in ungauged basins. 
The temporal validation is performed by calibrating the STHM model using the data from 1993 to 2008 with the 
remaining data from 2009 to 2018 being considered for validation. For spatial validation, we use the k(20)-folder 
cross-validation method (Browne, 2000). We treat 5% of locations as ungauged within their hierarchical group, fit 
the STHM for the remaining 95% of stations for the period 1993 and 2018, and then evaluate the SHTM perfor-
mance for the period 2009–2018 for the left-out 5% of the basins. This process of leaving out the 5% basins is 
repeated until all the considered basins are left out and evaluated in a cross-validation mode.

The Nash–Sutcliffe efficiency (NSE) is widely used to assess the predictive skill of hydrological models (McCuen 
et al., 2006). In a perfect model with an estimation error variance equal to zero, the resulting NSE equals 1; a 
model with an estimation error variance equal to the variance of the observed time series, the corresponding NSE 
equals 0. Conversely, an NSE less than zero occurs when the observed mean is a better predictor than the model. 
The model performance criteria recommended by Moriasi et al. (2007) are used for evaluating the improvement's 
performance. Model prediction is considered “acceptable” if NSE scores are greater than 0.5, and considered 
“good” if the NSE is above 0.67.

To evaluate the impact of each predictor in predicting above-normal flow, we use the relative importance estima-
tor proposed by Grömping (2007), which decomposes the explained variance 𝐴𝐴

(

𝑟𝑟
2

𝑦𝑦(𝑥𝑥𝑗𝑗 |𝑥𝑥1 ,. . . ,𝑥𝑥𝑗𝑗−1 ,𝑥𝑥𝑗𝑗+1 ,. . . ,𝑥𝑥𝑝𝑝)
, i.e., 𝑟𝑟2

𝛽𝛽

)

 of 

observed above-normal flow to each predictor. Model performance from the temporal validation alone is consid-
ered for analyzing the significance of each selected predictor. In general, the whole model variance 𝐴𝐴 𝐴𝐴

2

𝑦𝑦(𝑥𝑥(1,)𝑥𝑥2 ,. . . ,𝑥𝑥𝑝𝑝)
 

is the sum of 𝐴𝐴 𝐴𝐴
2

𝑦𝑦(𝑥𝑥𝑗𝑗 |𝑥𝑥1 ,. . . ,𝑥𝑥𝑗𝑗−1 ,𝑥𝑥𝑗𝑗+1 ,. . . ,𝑥𝑥𝑝𝑝)
 which is the correlation between y and that portion of xj which is uncorrelated 

with the remaining predictors of jth predictor xj with the remaining predictors. Thus,

𝑅𝑅
2

𝑦𝑦(𝑥𝑥1 ,𝑥𝑥2 ,. . . ,𝑥𝑥𝑝𝑝)
=

𝑝𝑝
∑

𝑗𝑗=1

𝑟𝑟
2

𝑦𝑦(𝑥𝑥𝑗𝑗 |𝑥𝑥1 ,. . . ,𝑥𝑥(𝑗𝑗−1) ,𝑥𝑥(𝑗𝑗+1) ,. . . ,𝑥𝑥𝑝𝑝)
� (8)

𝑟𝑟
2

𝑦𝑦(𝑥𝑥𝑗𝑗 |𝑥𝑥1 ,. . . ,𝑥𝑥𝑗𝑗−1 ,𝑥𝑥𝑗𝑗+1 ,. . . ,𝑥𝑥𝑝𝑝)
= 𝑅𝑅

2

𝑦𝑦(𝑥𝑥1 ,𝑥𝑥2 ,. . . ,𝑥𝑥𝑝𝑝)
−𝑅𝑅

2

𝑦𝑦(𝑥𝑥1 ,. . . ,𝑥𝑥𝑗𝑗−1 ,𝑥𝑥𝑗𝑗+1 ,. . . ,𝑥𝑥𝑝𝑝)� (9)

3.  Results and Analysis
We first evaluated the STHM performance from the temporal validation (Figure 2) and then provided a detailed 
analysis on the role of each predictor (Figure  3). Following that, we analyzed the performance of STHM in 
predicting above-normal flow in ungauged basins based on spatial validation (Figures 4–8).

3.1.  STHM Performance on CONUS Above-Normal Fow Prediction

The STHM parameters were estimated over the calibration period (1993–2008) only for above-normal flows, 
which was defined as the 67th percentile of observed daily streamflow for a given day obtained from the STHM 
predicted flows from 2009 to 2018. Thus, all the reported results were only for above-normal flows by considering 

 19447973, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034557, W

iley O
nline Library on [21/01/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Water Resources Research

FANG ET AL.

10.1029/2023WR034557

8 of 20

when the observed flows are above the respective day's 67th percentile flow. The validation results, presented 
as the cumulative distribution of NSE, showed significant improvement in high streamflows/flood flows across 
the CONUS compared to the flood flows estimated from NWM streamflow reanalysis (Figure 2). Figure 2 also 
provided the improvements in NSE from STHM for the three groups of basins—natural, controlled and coastal—
over the CONUS. Overall, STHM improved NSE by 0.1 for more than 65% of sites under temporal validation 
(Figure 2). This suggested that STHM not only reduced the error in NWM systematically but also improved the 
prediction using a limited number of parameters estimated by pooling NWM data and other characteristics from 
the sites in the grouped region (Figure 2). Overall, during the validation period, 62.7% of controlled basins and 
68.4% of natural basins improved better in predicting above-normal flows compared to NWM reanalysis predic-
tion of above-normal flows (Figure 2). The improvement in natural basins was mainly dependent on climatic 
factors, hence exhibiting better performance. In contrast, controlled basins were more complex as their observed 
streamflow depends on the reservoir operation policies (Turner et al., 2020; Zhao & Cai, 2020). Coastal basins 
also showed limited improvements from the STHM as the observed above-normal flows are influenced by high 
tides (Ramaswamy et al., 2004; F. Zhang et al., 2018). It is important if a natural watershed is present in the 
coastal extent, then they are still in natural watersheds category. The performance of STHM in improving NWM 
reanalysis runs was summarized over the CONUS and by season (Figure S1 in Supporting Information  S1). 
Overall, our model improved mean NSE by at least 0.1 during the validation period for more than 60% of the sites 
(Figure S1 in Supporting Information S1).

3.2.  Importance of Predictors in the STHM

Overall, the STHM model with all selected predictors (Q NWM, ρ, PET, AI, Q 3d, Imp) explained more than 74.8% 
of the variance of the observed above-normal flows during the validation period (Figure 3). To be specific, the 
STHM explained the observed flow variance by 74.4%, 76.3%, and 71.1% for controlled, natural, and coastal 
basins respectively (overall average values). The explained variance by each predictor in the STHM Equation 1 
in improving NWM above-normal flow can be decomposed using the relative importance estimator proposed by 
Grömping (2007). Based on the decomposed explained variance (𝐴𝐴 𝐴𝐴

2

𝛽𝛽
 ), NWM reanalysis streamflow accounts for 

Figure 2.  Cumulative distribution of above-normal flow NSE from the NWM and NWM-HM approaches, separated by basin 
classification, during the validation period (2009–2018).
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Figure 3.  Relative importance of selected predictor variables, expressed as % variance of above-normal flow explained by 
the hierarchical model, for each month for (a) controlled, (b) coastal, and (c) natural basins over the grouped hydroclimatic 
regions (Group 1, 2, 3). Note that NWM flow was not included here.
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more than 55% of the variance of the observed above-normal flow on average across the CONUS. Other predic-
tors at the HUC08 level explained an additional 18%–35% of observed above-normal flow variance (Figure 3).

3.2.1.  Previous Three-Day Areal-Weighted Flow (Q 3d)

Previous 3-day streamflow (Q 3d) was the most important predictor (excluding Q NWM) in controlled and coastal 
basins, explaining an average 18% and 16% variability of flood, respectively (Figure 3). In natural basins, Q 3d 
is the second most important predictor, and explained 12% of the variability in above-normal flow but showed 
strong seasonality over all the regions (Figure 3). Q 3d showed higher importance in controlled basins than in natu-
ral basins as dam operations highly regulate the observed flow (Gierszewski et al., 2020). Based on the variance 
explained by Q 3d, coastal basins showed pronounced seasonality particularly in the West region. Further, Q 3d was 
more important in warmer regions than in colder regions as higher evapotranspiration results in a more varying 
antecedent conditions. The coefficient of Q 3d showed strong seasonal changes in the warmer regions, but did not 
have clear seasonality in colder regions since they did not experience much change in antecedent conditions due 
to reduced evapotranspiration.

3.2.2.  Aridity Index

Aridity index (AI) proved to be an important variable in improving the model predictions in warmer regions 
(e.g., Group 1, Figure 3). AI represents the long-term balance between water and energy and showed significant 
seasonality in explaining the variance of above-normal flows for all three regions (Figure 3). Among the natural 
basins, Group 3 (Group 2) basins had the least (most) improvement when accounting for aridity index, since most 
basins were humid and had little (significant) spatial variability in the aridity index. AI also played an important 
role in the west, particularly during the spring, which reflects the seasonal water availability from snowmelt 
(Gudmundsson et al., 2016). In the case of controlled basins, a similar seasonality pattern was observed in all 
three regions, but the explained variance was relatively less, which was to be expected as the controlled basins 
dampen the natural hydroclimatic variability (Figure 3). In coastal basins, the seasonal variation in AI was mini-
mal. Overall, AI explained NWM streamflow variability as around 12%–15% for the Group 1 basins all through 
the year and 2%–4% variability for the other two groups.

Figure 4.  Cumulative distribution of above-normal flow NSE from the NWM and NWM-HM approaches, separated by basin 
classification, over the period from 1993 to 2018. These were computed by treating each basin as an ungauged basin under 
k-fold cross-validation for each basin type.
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3.2.3.  Phase Correlation Between Moisture (Precipitation) and Energy (PET)

The phase correlation between energy and moisture (ρ) explained a smaller amount of above-normal flow variability 
but showed strong seasonal dynamics across the CONUS. For controlled and natural basins in Group 1 and 2, the 
phase correlation was less important in summer months, while in Group 3, the phase correlation was more impor-
tant in summer months. Since ρ was estimated by the correlation between monthly PPT and PET, it represents the 
co-occurrence of energy (PET) and moisture (precipitation) and the explained variance by it indicated their role in 
influencing the runoff. The ρ was generally negative during the summer months, and it was positive over the South-
east during the winter months (Petersen et al., 2012, 2018). Basins having negative correlation (i.e., moisture and 
energy being out of phase) exhibit strong seasonality in above-normal flow with increased potential for runoff and 
they were difficult to high streamflows. Further, the spatial variability in phase correlation was largest (least) during 
the winter and fall months over Group 1 and 2 (Group 3). On the other hand, phase correlation variability was the 
largest during the summer months over the Group 3 basins. Hence, it exhibits higher explained variance in improving 
the NWM streamflow during the summer. Explained variance by ρ over the coastal basins was around 2%–4% across 
all the regions and does not seem to play a significant role in improving the above-normal flow prediction. One poten-
tial reason for this was that the most coastal basins are controlled, hence they had limited role due to phase correlation.

3.2.4.  Mean 10-Day PET

Mean 10-day PET (PET) represented the amount of energy available at a given time and it displays significant 
seasonality in the variance explained in improving the NWM above-normal flows (Figure 3). As expected, for 
controlled basins, (PET) had a minimal role in improving the NWM prediction seasonally over all three regions. 
In Group 3, using the mean monthly PET in the STHM had minimal impact on improving NWM streamflow, only 
explaining 2% of the variance for all three different types of basins. This is expected since Group 3 covers the 
northern regions, which exhibited minimal spatial (PET) variability in natural basins. The other two regions (1 
and 2) exhibited significant spatial variability in PET, and as a result, including it in the STHM explained around 
12% of the variance of observed above-normal flow for natural basins with significant seasonality, particularly 
during the summer. In the case of coastal basins, PET explained the observed above-normal flows better during 
the winter and in the fall over Group 1 and 2. This was primarily due to the latitudinal gradient in (PET) over 
these two regions during those seasons.

3.2.5.  Total Storage and Impervious Surface

As expected, the total upstream artificial/reservoir storage in the basin played an important role in controlled 
and coastal basins, but not in natural ones. Regression coefficients of total upstream storage showed a positive 
correlation with above-normal flow throughout the year for the three grouped regions (Figure 3). In controlled 
basins, total storage in both Group 1 and 2 showed significant seasonality in explaining observed above-normal 
flow particularly during the summer months as these are the months significant above-normal flows occur due 
to in-phase seasonality (Midwest), snowmelt and hurricanes. However, in the coastal basins, explained variance 
from total upstream storage indicated strong seasonality in explaining NWM above-normal flow, particularly 
in the summer, explaining around 3%–9% variance. Explained variance by the basin imperviousness did not 
show strong seasonal variability except in the Group 3 controlled basins. Overall, imperviousness accounted for 
2%–4% variance in explaining above-normal flows for coastal basins.

3.3.  Potential for STHM in Predicting Above-Normal Flows in Ungauged Basins

Given NWM daily streamflows are available for any ungauged locations within the CONUS and other predictors 
of the STHM (i.e., basin characteristics and hydroclimatic information) could be estimated for any location based 
on openly available data sources, we evaluated the potential for above-normal flow prediction for any ungauged 
basins using STHM. Since STHM could not be evaluated for ungauged basins with no streamflow data, we 
performed k(20)-fold cross-validation under which 5% of the basins were left out and the remaining 95% of the 
basins were used for parameter estimation of the STHM. This process was repeated until all the basins are evalu-
ated at least once in the “ungauged” prediction mode. Thus, this spatial cross-validation experiment was similar 
to evaluating the STHM in an “ungauged” prediction mode. The cross-validation experiment showed promis-
ing results for the “ungauged” basin, with 61% of the natural basins improved to an “acceptable above-normal 
flow prediction” (NSE > 0.5), and 63% of natural basins improved to a “good above-normal flow prediction” 
(NSE > 0.67) (Figure 4).
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3.3.1.  Seasonal Performance of STHM Under “Ungauged” Prediction Mode

Spatially, STHM improved the majority of “ungauged” basins across all groups (Figure 5). The biggest improve-
ment occurred in colder regions, with improvements in average NSE by at least 0.2 for more than 30% of the 
sites. The largest improvements occurred in the northern basins and along the Appalachian Mountains, however 
significant systematic error persisted in the southeastern basins (Figure 5a). The differences in the hierarchi-
cal model and the NWM performance also showed seasonal differences (Figure 5b; Figure S2 in Supporting 
Information  S1). The highest overall improvement of the STHM occurred in the winter (December/January/
February, or DJF) and spring (March/April/May, or MAM) seasons across the CONUS, accounting for 71% of 
the improvement throughout the year. HUC02-regions 14 and 17 (Upper Colorado and Pacific Northwest) had 
shown the smallest springtime improvement (MAM, Figure S2 in Supporting Information S1), while basins in 
HUC02-regions 7 and 9 (Upper Mississippi and Souris-Red-Rainy) had the worst winter performance (DJF, 
Figure S2 in Supporting Information S1). The largest improvement of NSE in Group 3 occurred in summer 
(June/July/August or JJA, Figure S2 in Supporting Information S1). The largest improvement of NSE in Group 1 
occurred in fall (September/October/November, SON, Figure S2 in Supporting Information S1) and the coastal 
basins had the highest NSE improvement overall. However, Southeast coastal basins showed limited improve-
ment, as most basins did not improve over all the seasons. Furthermore, there was no significant improvement in 
skill between controlled and natural basins among different seasons (Figure S2 in Supporting Information S1). 
But, in Group 3, urban and coastal basins showed significant improvement in skill in all seasons but fall (SON, 
Figure 5b).

3.3.2.  Performance of STHM for Different Basins Types Under “Ungauged” Mode

Among different regions, Group 3 had the highest percentages of basins with significant NSE improvement; 
Group 1 had the least percentage of sites improved for controlled and natural basins (Figure 5). The primary reason 
for limited improvement over the west (except Region 17—Pacific Northwest) was that most basins are arid, and 
the runoff has strong seasonality, hence they are difficult to model (Sankarasubramanian & Vogel, 2002). Group 
2 had the minimum improvement among coastal and urban basins. Contrastingly, Group 1 outperformed other 
regions under coastal and urban basins, respectively (Figure 5). Overall, except for Group 2 coastal basins, the 
STHM improved the NWM above-normal flow prediction for over 56% of the basins in that category (Figure 6). 
Basically, STHM performance improved NWM prediction from 56% to 75% of the basins under each category. 
It was important that STHM did not improve NWM performance in the remaining 25%–45% of the basins. In the 
discussion section, we provided details and experiments on how to improve STHM in those basins along with 
challenges in improving the performance of STHM in coastal and urban basins.

Cross-validating the STHM in predicting above-normal flows in “ungauged” mode showed 63% of natural basins, 
39% of coastal basins, and 26% of the controlled sites have NSE above 0.67 from the STHM (Figure 6). This was 
a significant improvement in comparison to the NWM reanalysis runs. The cross-validation results also showed 
a similar spatial pattern (Figure 5) with NSE improving in 63% of overall basins (Figure 6). The highest NSE 
improvement was along the Appalachian Mountain range (Figure 5). The hierarchical model improved the overall 
NSE for more than 68%, 63%, and 49% of sites in controlled, natural, and coastal basins respectively (Figure 6b). 
This showed potential in utilizing STHM for above-normal flow prediction in ungauged locations as the hierar-
chical model uses both NWM streamflow, basin characteristics, and hydroclimatic information by leaving out 
the basin in the parameter estimation process. It was important to note that the previous 3-day streamflow (Q 3d)
was the only predictor that depends on observed streamflow. We had considered a simple drainage-area method 
to estimate the previous 3-day streamflow for an ungauged location for quantifying antecedent conditions. We 
discussed alternate approaches for improving that estimate in the next section.

3.3.3.  Potential for Improving the Performance of STHM for Gauged and Ungauged Basins

The temporal (Figures 2 and 3) and spatial (Figures 4–6) validation results shown from the application of STHM 
predicted the above-normal flow using higher-level three spatial groups as shown in Figure 1, which was imple-
mented primarily to support a continental scale above-normal flow prediction and to reduce the required compu-
tation time. (Note that computing all the groups' cross validation costs approximate 6 hr) Even though the STHM 
improved the NWM prediction for more than 55% of the basins, it was important to note that the STHM did not 
improve the above-normal flow prediction for the remaining 45% of basins in few groups (e.g., Group 1 natural 
basins, and Group 2 coastal basins) (Figure 6). This was primarily because the temporal and spatial hierarchies 
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defined under those groups did not aid in improving the model performance as the spatially and temporally vary-
ing intercept term (β0(τ,i,j,k)), in Equation 1 was not explained by the predictors defined in next two-level hierarchies 
(Equations 2 and 3). This implies that the spatio-temporal variability of β0(τ,i,j,k) was too large or the predictors in 
the next hierarchies do not correspond to that variability. To demonstrate this point, we considered two experi-
ments for three moderately performing categories—Group-1 controlled and natural and Group 2 coastal—under 
k(20) spatial cross-validation. The first experiment was performed by fitting the STHM across basin of similar 
type (i.e., natural/controlled/coastal) in a given HUC02 (eight HUC02s in Group 1 and four HUC02s in Group 
2) under spatial validation and the results were aggregated to the group level (Figure 7). The second experiment 
was performed by fitting the STHM for each basin under spatial validation and the results were aggregated to the 
group level (Figure 8). Thus, in the second experiment, there won't be any hierarchies as defined by Equations 2 
and 3 and the intercept term, β0(τ,i,j,k), was simply left as a basin specific-term varying every 10 days.

From Figure 7, the performance of STHM fitted at HUC02 levels significantly improved model prediction perfor-
mance as a percentage of improved sites for the three selected groups compared to the performance shown 
in Figure  6. One could argue this comes from the increased number of parameters fitted in explaining the 
spatio-temporal variability of β0(τ,i,j,k). However, this was daily above-normal flow prediction, the number of data 
points (i.e., daily above-normal flow) available for fitting the STHM across the fitting period (1990–2008) was 
quite large, hence we didn't interpret this as a result of overfitting. It implied that the spatio-temporal hierarchies 
defined in Equations 2 and 3 are not explained by the selected predictors at the broad group level under that cate-
gory. Under the second experiment, the performance of STHM further improved when the STHM was fitted with 
no hierarchies, but the performance of the basin was still evaluated under k(20)-folder spatial cross-validation 
(Figure 8). This implied that observed above-normal flow at a particular site was not used for fitting the param-
eters in Equation 1, only the remaining 80% of those basins in that category was used for fitting the STHM for 
evaluating the model at a given site. From Figure 8, it was clear that the performance of STHM further improved 
compared to Figure 7. Figure 8 also could also be improved further by fitting the STHM directly at each site with-
out spatial validation and the hierarchies in Equations 2 and 3. We did not perform that experiment as that model 
will not have applicability for ungauged basins. Thus, by redefining the group or regions in fitting the STHM, the 
performance of STHM could be improved further. However, this improvement also comes with additional limi-
tations. The computational time for running the STHM also increased by 6 times and 15 times for obtaining the 
NSE in Figures 7 and 8 respectively. Another limitation of at-site evaluation of STHM (Figure 8) was that it limits 
the model applicability for ungauged basins as it will require obtaining the parameters by grouping of basins that 
are similar to the ungauged basin and developing such grouped basin to estimate the STHM for any ungauged 
basin will be a humungous computational task. Overall, the improved performance of STHM that we observed in 
Figures 7 and 8 come as a trade-off in fitting the model for regional performance versus at-site performance. Such 
issues had been addressed in the context of regional versus at-site calibration of hydrological models (Fernandez 
et al., 2000). We discussed these issues further in the Discussion.

4.  Discussion
This study focused on developing a spatio-temporal hierarchical model (STHM) for above-normal flow predic-
tion in gauged and ungauged basins across the CONUS. For this purpose, the study used a hydroclimatic (e.g., AI, 
PET) information and basin characteristics (e.g., imperviousness) along with NWM predicted streamflow to esti-
mate the above-normal flow in natural, controlled and coastal basins. The proposed STHM was evaluated under 
split-sample temporal validation (Figure 2) to understand the role of different multi-level predictors (Figure 3) 
and using k(20)-fold spatial validation (Figure 4) for understanding the utility in above-normal flow prediction in 
ungauged basins over three grouped regions. Both temporal and spatial validation indicated the STHM ability to 
improve NWM streamflow prediction among different basin types (Figures 2 and 4). The spatial cross-validation 
results indicated the robustness of the model in predicting ungauged basins. The STHM greatly improved the 
performance of NWM predicted high streamflow for more than 52% of basins, resulting in a 0.1 improvement in 
NSE. This improvement is important for future flood forecast systems looking to provide accurate and reliable 
information to the public. The model improved most in control and natural basins, particularly, in Group 2 and 
3 during colder seasons (SON, DJF). The underperformance in coastal basins could be influenced by lunar tides 
forcing a lagged runoff, particularly on the east Coast (Cerveny et al., 2010). However, compared to previous 
studies focusing on improving long-term mean annual streamflow predictions (Alexander et al., 2019a, 2019b) 
and natural basin alone (Frame et al., 2021), our model showed strong performance in improving finer-scale, 
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daily streamflow across the CONUS. Instead of including many lagged variables from NWM as predictors (e.g., 
Woznicki et  al.,  2019), our model only selected a few key drivers of hydro-climate that are well founded in 
the literature on streamflow prediction and considers the concurrent NWM streamflow prediction. Further, the 
proposed STHM also provides improved predictions for both controlled and coastal basins. This gives our model 
the flexibility to be easily expanded to predict above-normal flows at the CONUS scale for both gauged and 
ungauged basins.

It is important to note that STHM predictions performed worse than the original NWM streamflow in 25%–45% 
of basins (Figure 4). To address concerns regarding this, we performed two experiments that fitted the STHM 
at each HUC02 (Figure 7) and for individual basins (Figure 8) for Group 1 (controlled and natural) and Group 2 
coastal basins. This resulted in a significant improvement with most basins performing better than NWM perfor-
mance. This indicates that poor performance of STHM in Figure 4 is primarily due to the trade-off in improving 
the regional performance of the model at the cost of at-site performance (Fernandez et  al.,  2000). However, 
fitting the STHM purely for at-site would limit its ability to predict in ungauged predictions. In a traditional 
hierarchical modeling approach, this would be considered as an “unpooled regression” model (Das Bhowmik 
et al., 2020; Devineni et al., 2013) as such a model will result with no regional modeling terms. The main advan-
tage of STHM is its ability to interpret the role of each predictor and the hierarchical nature of the model helps 
in predicting above-normal flows in ungauged basins using both temporally varying NWM flows and antecedent 
conditions along with spatially varying basin and hydroclimatic characteristics. It can be easily understood that 
post-processing a model's flow would naturally result in improved model performance as regression is expected 
to reduce the model bias. Thus, our proposed STHM could be fitted after a reasonable grouping of basins or 

Figure 5.  (a) Maps the difference in NSE between HM and NWM daily flow by treating 5% sites as “ungauged” using k(20)-folder cross-validation from 1993 to 
2018. Positive (Negative) values indicate the hierarchical model (NWM) better predicated above-normal flows. (b) Plots seasonal performance, indicated as % of sites 
with improved NSE, shown in for the three regions over the four basin classifications. Note that DJF, MAM, JJA, and SON are the initials for month, represents spring, 
summer, fall, and winter.
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Figure 6.  Performance of the NWM v2.0 reanalysis data compared to the hierarchical model for daily above-normal flows by treating 5% sites as “ungauged” using 
k(20)-folder cross-validation from 1993 to 2018. In (a) controlled, (b) natural, (c) coastal, and (d) urban basins in each region. Urban basins are defined as basins 
containing 50,000 or more people based on the 2020 U.S. Census. Above-normal flows are defined when the observed daily flows are greater than the 67th percentile 
of daily flow.
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HUC02- regions so that the resulting regional model parameters (i.e., Equations 2 and 3) would provide useful 
information for ungauged basins prediction.

It is important to note that our model mainly relies on basin characteristics (e.g., imperviousness) and hydro-
climatic information (e.g., AI, phase correlation), which could be obtained based on widely available database 
mentioned in the data section for any ungauged basin. However, obtaining antecedent streamflow conditions, Q 3d, 
of the basin is difficult for ungauged basins. Hence, in our study, we obtained Q3d purely based on gauged basins 
available at the HUC08 level to get the depth of runoff and convert it to runoff based on the ungauged basins' 
drainage area (Equations 5 and 6). However, this step could be eliminated for gauged basins as one could use the 
observed 3-day streamflow itself for estimating the antecedent conditions. We also would like to mention that this 
3-day could be improved using the stage information available from remote-sensing satellites, for example, the 
Global Flood Detection System (GFDS) (Kugler & De Groeve, 2007). This also could also potentially extend the 
STHM into a forecasting model if one were to use the real-time NWM forecasts. Thus, STHM could be utilized 
for real-time flood forecasting for both ungauged and gauged basins.

The performance of the STHM can also be further improved for controlled basins by considering reservoir oper-
ation characteristics (Ford & Sankarasubramanian,  2023) as well as reservoir purpose. We did not consider 
purpose of the reservoir as some of our previous publications, Chalise et al.  (2021, 2023), found limited role 
of reservoir purpose in influencing flow alteration as it is primarily due to the limited conflicting nature of the 
multi-purpose reservoirs. Synthesizing reservoir operation characteristics using data-based methods is still at 
its infancy by many investigators (Ford & Sankarasubramanian, 2023; Turner et al., 2020). As this synthesis 
matures, the proposed STHM could be revised to incorporate reservoir operation characteristics for estimating 
high-flow in controlled basins. These are key opportunities to extend the accuracy of PUB.

Figure 7.  Performance of the NWM v2.0 reanalysis data compared to the hierarchical model for daily above-normal flows 
based on HUC02 levels (instead of spatial groups shown in Figure 1) for selected groups. Data defined by treating 5% of 
the locations sites as “ungauged” and using a k(20)-folder cross-validation during the period (1993–2018). The results are 
grouped to be comparable with Figure 6.

Figure 8.  Performance of the NWM v2.0 reanalysis data compared to the hierarchical model for daily above-normal 
flows using a site-specific model (as a proof of concept) by treating 5% sites as “ungauged” locations using k(20)-folder 
cross-validation during the period (1993–2018), the results are grouped to be comparable with Figure 6.
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We utilized NOAA's NWM reanalysis runs for evaluating the proposed STHM ability in predicting the ungauged 
basins as these are immediately available over the entire CONUS. However, in principle, STHM could be fitted 
with any other hydrologic model outputs such as Variable Infiltration Capacity model (Liang et al., 1996) or 
SWAT (Arnold et al., 2012). Similarly, the NWM prediction could also be replaced with basin-level precipitation. 
Recently, Frame et al. (2021) utilized atmospheric forcings alone, instead of NWM streamflow predictions, as 
a predictor for predicting streamflow and found that the Long Short-Term memory model (LSTM) performed 
equally well as that of LSTM trained with NWM streamflow. The proposed STHM modeling structure is also 
hierarchical and semi-parametric as its parameters vary over 10-day moving window, which makes it to estimate 
the non-linear dependencies between streamflow and the relevant predictors consisting of basin characteristics 
and hydroclimatic information. This indicates that there is potential for extending the STHM with other distrib-
uted hydrologic model outputs and/or with atmospheric forcings that drive the hydrologic models.

5.  Summary and Conclusions
We describe a hierarchal spatial-temporal postprocessing model for improving above-normal flow prediction in 
both gauged and ungauged basins across the CONUS. The proposed STHM is hierarchical and semi-parametric, 
thereby having the ability to predict non-linear dependencies between streamflow and the predictors—NWM 
streamflow, basin characteristics, upstream reservoir storage and hydroclimatic information—for estimating 
above-normal flows in natural, controlled and coastal basins over the CONUS. Performance evaluation of the 
hierarchal model showed that increased predictive skill in over 50% of sites' by 0.1 NSE, and improved over 65% 
of sites' above-normal flow prediction to “good” (NSE > 0.67). For controlled basins, the primary improvement 
was due to the inclusion of areal averaged previous 3-day flow, which accounts for 18% of the variability of 
above-normal flow over all regions. But the explained variability of above-normal flow for coastal basins are 
only limited to 10% due to other unconsidered factors, for example, tidal influence. For natural basins, the biggest 
improvement by the models is due to the inclusion of predictors such as aridity index and phase correlation for 
extending the STHM for ungauged prediction. We also demonstrated that the reduced performance of STHM in 
several basins also stem the trade-off in parameter estimation between at-site improvement versus the regional 
performance, which is required particularly for ungauged basins prediction. Performance evaluation of the STHM 
under temporal and spatial the cross-validation results has shown robustness in predicting above-normal flow 
combines physical under “ungauged” prediction mode.

In addition to improved above-normal flow prediction, the developed model was evaluated in predicting 
above-normal flow for ungauged basins through k-fold spatial validation. Even though the STHM used NWM 
streamflow as a predictor, the model could be recalibrated with any other hydrologic model outputs or with 
precipitation and relevant atmospheric forcings. Further, the proposed STHM also post-processes the NWM 
prediction, thereby reducing the systematic biases in the model prediction. Since the STHM predictors are 
widely available for both any given site (e.g., NWM prediction and previous 3-day streamflow) with spatially 
and temporally varying predictors, we can apply the estimated model coefficients to any ungauged site using 
the corresponding HUC08 level parameters over the CONUS. It is important to note that the estimating 3-day 
streamflow for an ungauged basin is not possible, but it could be estimated based on other gauged basins within 
the HUC8 as all 1451 HUC8 basins have at least one USGS gauged station and 1178 out of 1451 HUC8 basins 
have at least two or more USGS gauged stations. Hence, the procedure is applicable within the CONUS for PUB 
without any further modification. Given that the NWM for real-time streamflow forecasts are available for any 
locations within the US, the proposed STHM could be employed for real-time flood forecasts for both gauged 
and ungauged basins. The proposed modeling approach is also hybrid as it combines physical attributes outputs 
with statistical modeling for developing flood prediction across the CONUS. These hybrid approaches are essen-
tial as real-time weather forecasts always have considered both dynamical model predictions with statistical 
correction scheme, which is popularly known as Model Output Statistics, in the weather forecasting community 
(Antolik, 2000). Thus, the STHM could be eventually employed for both ungauged flood prediction as well as for 
issuing real-time flood forecasts.

Data Availability Statement
The data for this paper are available in S. Fang (2023) from Zenodo repository.
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