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Abstract

Brute force cross-validation (CV) is a method for predictive assessment and model selection that is general and applicable to
a wide range of Bayesian models. Naive or ‘brute force’ CV approaches are often too computationally costly for interactive
modeling workflows, especially when inference relies on Markov chain Monte Carlo (MCMC). We propose overcoming this
limitation using massively parallel MCMC. Using accelerator hardware such as graphics processor units, our approach can
be about as fast (in wall clock time) as a single full-data model fit. Parallel CV is flexible because it can easily exploit a
wide range data partitioning schemes, such as those designed for non-exchangeable data. It can also accommodate a range of
scoring rules. We propose MCMC diagnostics, including a summary of MCMC mixing based on the popular potential scale
reduction factor (ﬁ) and MCMC effective sample size (ES\S) measures. We also describe a method for determining whether
anR diagnostic indicates approximate stationarity of the chains, that may be of more general interest for applications beyond
parallel CV. Finally, we show that parallel CV and its diagnostics can be implemented with online algorithms, allowing

parallel CV to scale up to very large blocking designs on memory-constrained computing accelerators.

Keywords Bayesian inference - Convergence diagnostics - Parallel computation - R statistic

1 Overview

Bayesian cross-validation (CV; Geisser 1975; Vehtari and
Lampinen 2002) is a method for assessing models’ predictive
ability, and is a popular basis for model selection. Naive or
‘brute force’ approaches to CV, which repeatedly fits models
to data subsets, are computationally demanding. Brute force
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CV s especially costly when the number of model fits is large
and inference is performed by Markov chain Monte Carlo
(MCMC) sampling. Furthermore, since MCMC inference
must be closely supervised to identify issues and to monitor
convergence, assessing many models fits can also be labor-
intensive. Consequently, brute force CV is often impractical
under conventional inference workflows (e.g., Gelman et al.
2020).

Fast alternatives to brute force CV exist for special cases.
Importance sampling and Pareto-smoothed importance sam-
pling (Gelfand et al. 1992; Vehtari et al. 2017) require only
a single MCMC model fit to approximate leave-one-out
(LOO) CV. However, importance sampling is known to fail
when the resampling weights have thick-tailed distributions,
which is especially likely for CV schemes designed for non-
exchangeable data. Examples include iv-block CV for time
series applications (Racine 2000) and leave-one-group-out
(LOGO) CV for grouped hierarchical models, where several
observations are left out at the same time. In these cases, the
analyst must usually fall back on brute force methods.

In this paper, we show that general brute force CV
by MCMC is feasible on computing accelerator hardware,
specifically on graphics processor units (GPUs). Our method,
which we call parallel CV (PCV), includes an inference
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workflow and associated MCMC diagnostic methods. PCV
is not a replacement for standard inference workflows, but
rather an extension that applies after criticism of candidate
models. PCV runs inference for all folds in parallel, poten-
tially requiring thousands of independent MCMC chains, and
assesses convergence across all chains simultaneously using
diagnostic statistics that target the overall CV objective. Our
experiments show that PCV can estimate moderately large
CV problems on an ‘interactive’ timescale—that is, a similar
elapsed wall clock time as the original full-data model fit by
MCMC.

PCV is an application of massively parallel MCMC, which
takes advantage of recent developments in hardware and
software (see e.g. Lao et al. 2020) and CV’s embarrass-
ingly parallel nature. Unlike the ‘short chain’ parallel MCMC
approach which targets a single posterior, we target multiple
independent posteriors concurrently on a single computer.
Other approaches include independent chains run on sep-
arate CPU cores and/or within-chain parallelism, both of
which are available in the Stan language (Stan Development
Team 2022). Local balancing approaches parallel inference
by generating ‘clouds’ of proposals for each MCMC step
(Glatt-Holtz et al. 2022; Gagnon et al. 2023; Holbrook 2023).
Neiswanger et al. (2014) handle large datasets by targeting
a single composite posterior with distributed MCMC sam-
plers applied to different data subsets (see also Vehtari et al.
2020b; Scott et al. 2016).

In addition to parallelism, PCV further reduces computa-
tional effort compared with naive brute force CV. First, PCV
simplifies warm-up runs by reusing information generated
during full-data inference, in effect exploiting the similarity
between the full-data and partial-data CV posteriors. Sec-
ond, running chains in parallel allows early termination as
soon as the required accuracy is achieved. Since Monte Carlo
(MC) uncertainty is usually small relative to the irreducible
CV epistemic uncertainty (see Sect. 2.2), applications of CV
for model selection typically require only relatively short
MCMC runs. The third way is technical, and applies where
online algorithms are used. These have small, stable working
sets and make effective use of memory caches on mod-
ern computer architectures (see e.g. Nissen 2023; Stallings
2015), although we do not analyze this phenomenon in this
paper.

Figure 1 previews a PCV model selection application
for a hierarchical Gaussian regression model, described in
Sect.2.1. The goal of this exercise is to estimate the proba-
bility that one model predicts better than another under the
logarithmic scoring rule and a LOGO-CV design. The results
clearly stabilize after just a few hundred MCMC iterations.
This is explained by the fact that the MC uncertainty is small
relative to epistemic uncertainty, so that running the MCMC
algorithm for longer confers little additional insight.

@ Springer

In summary, this paper makes the following contributions
to a methodological toolkit for parallel CV:

e A practical workflow for fast, general brute force CV on
computing accelerators (Sect. 3);

e A massively parallel sampler and associated diagnostics
for PCV (Sect.3.3); and

e A measure of MC and epistemic uncertainty (Sivula et al.
2022), the effective sample size (ES\S; Robert and Casella
(2004)), and a measure of mixing based on the R statistic
(Gelman and Rubin 1992; Vehtari et al. 2020a) (Sect. 4).

e Examples with accompanying software implementations
(Sect. 5 and supplement).

2 Background

This section provides a brief overview of predictive model
assessment and MCMC-based Bayesian inference. Consider
an observed data vector y ~ pgue, Where pyye denotes
some ‘correct’ but unknown joint data distribution. Suppose
an analyst fits some Bayesian model M for the purpose of
predicting unseen realizations y from pyye. Having fit the
posterior distribution p (6 | y, M), the predictive density [,
is a posterior-weighted mixture,

Foty () = /py (516, M) p @]y, M) db. )

With the predictive fj y in hand, two natural question arise.
First, how well does fy,, predict unseen observations (out
of sample)? Second, if multiple models are available, which
one predicts better?

2.1 Predictive assessment

If the true data distribution pyye (¥) were somehow known,
one could assess the predictive performance of f, y directly
using a scoring rule. A scoring rule S (g, y) is a functional
that maps a predictive density ¢ and a realization y to a
numerical assessment of that prediction. A natural summary
of the performance of fy y is the expected score,

Sm,y = /ptrue (i)S(fM,yv 5;) dy. 2

Itis straightforward to use Sy,  as abasis for model selection.
For a pairwise model comparison between candidate models,
say M 4 and Mp, a simple decision rule relies only on the sign
of the difference

A= Spyy— Smy,y- (3)
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Fig.1 Model selection for a leave-one-group-out CV (LOGO-CV) for
a toy hierarchical Gaussian regression problem, using the log score
(Example 1). Model M4 is correctly specified, including all 4 regres-
sors, while Mp is misspecified and includes only 3. The plot shows
progressive statistics for MCMC inference using 4 chains per fold, for
atotal of 200 chains. Panel (a) shows the score difference A and 2 Monte

Positive values of A indicate M4 is preferred to M p under
S (an event we denote M4 > Mp) and vice-versa.

Ideally, the choice of scoring rule would be tailored to
the application at hand. However, in the absence of an
application-driven loss function, generic scoring rules are
available. By far the most commonly-used scoring rule is
the log predictive density LogS (f, y) := log f(y), which
has the desirable mathematical properties of being local and
strictly proper (Gneiting and Raftery 2007). LogS also has
deep connections to the statistical concepts of KL divergence
and entropy (see, e.g., Dawid and Musio 2014). While we
focus on LogS, it is worth noting that LogS has drawbacks
too: it requires stronger theoretical conditions to reliably
estimate scores using sampling methods and can encounter
problems with models fit using improper priors (Dawid and
Musio 2015). More stable results can be obtained by alter-
native scoring rules, albeit at the cost of statistical power
(Kriiger et al. 2021). To demonstrate the flexibility of PCV in
Appendix A we briefly discuss the use of alternative scoring
rules, the Dawid-Sebastini score (DSS; Dawid and Sebas-
tiani (1999)) and Hyvirinen score (HS; Hyvirinen and Dayan
(2005)).

Throughout the paper, we illustrate ideas using the fol-
lowing example, with results in Fig. 1.

Example 1 (Model selection for a grouped Gaussian regres-
sion) Consider the following regression model of grouped
data:

ind
vijlaj, B.o2 ™~ N(aj +x)B. o). )

T 0 T T
1000 200 400
MCMC iterations per chain

T 0 T T T T T
1000 200 400 600 800 1000

MCMC iterations per chain

600 800

Carlo standard error (MCSE) interval as a function of MCMC iterations
per chain. Positive (negative) score values favor M4 (Mp). Panel (b)
shows that epistemic uncertainty dominates MC uncertainty, demon-
strating the limited utility of further reducing MC uncertainty. Panel
(c) shows that Pr (M4 > Mp | y) quickly stabilizes close to 100%. See
Sect. 2.1 for full details

fori =1,..., Nj,
hierarchical,

j =1,...,J.The group effect prior is

o _
Wjltta. 07 ~ N (o 02, j=1,....J, )

where g ~ N0, 1) and o, ~ N0, 10), the half-normal
distribution with variance 10 and positive support. The
remaining priors are oy, ~ N 0, 10) and B ~ M0, I). Con-
sider two candidate models distinguished by their group-wise
explanatory variables x;. Model My is correctly specified,
while model M p is missing one covariate. To assess an obser-
vation § from group ;" with explanatory variables X ; with
respect to LogS, the predictive density is

s ) = [ N (5 ay+ £8.03) p ey 3. )
p (ﬁ,a§|y,M) daj dfdo?. 6)

Here and for the remainder of the paper, \(x | , o'?) denotes
the density of NV(u, 0?) evaluated at x. In the case where
group j’ does not appear in the training data vector y, the
marginal posterior density p (a iy, M ) that appears in (6)
is defined using the posterior distributions for p, and oy, as

/p(aj’lllfou O'oc)p(/"as Ou |y, M) dpgdog. (7N

We simulate J = 50 groups with N; = 5 observations per
group. The elements of the J x 4 matrix X is simulated using
N (0, 10) variates. The true values of o, 8 and o2 used in the
simulation are drawn from the priors. We use L = 4 chains
and K = J = 50 folds, a total of 200 chains.

@ Springer
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2.2 Cross-validation

In practice the true process pyye (7) is not known, so (2) can-
not be computed directly. Rather, CV approximates (2) using
only the observed data y instead of future data y. CV proceeds
by repeatedly fitting models to data subsets, assessing the
resulting model predictions on left-out data. A CV scheme
includes the choice of scoring rule and a data partitioning
scheme that divides the data into pairs of mutually dis-
joint test and training sets (testy, traing), fork =1,..., K.
The resulting partial-data posteriors p (- | ytrain,, M) can be
viewed as K random perturbations of the full-data posterior
pCly, M).

Popular CV schemes include leave-one-out (LOO-CV)
which drops a single observation each fold, and K -fold which
divides the data into K disjoint subsets. However, for non-
exchangeable data, CV schemes often need to be tailored
to the underlying structure of the data, or to the question at
hand. For example, time-series, spatial, and spatio-temporal
applications can benefit from specifically tailored partition-
ing schemes (see e.g., Roberts et al. 2017; Cooper et al. 2024;
Mahoney et al. 2023). For some data structures the resulting
K can be particularly large, such as for LOO-CV and 4 (v)-
block CV.

There may be several appropriate CV schemes for a given
candidate model and dataset. The CV scheme should also
reflect the nature of the generalization required. For exam-
ple, in hierarchical models with group effects (Example 1),
LOGO-CV measures the model’s ability to generalize to
unseen data groups, while non-groupwise schemes applied
to the same model and data would characterize predictive
ability for the current set of groups only.

We focus on two CV objectives. First, the CV score §M
is an estimate of predictive ability Sy. It is constructed as a
sum over all K folds,

K

Su =) S(fuk Vesy) » ®)

k=1

where fir r denotes the model M predictive constructed
using the posterior p (9 | ytraink). The quantity Sy can be
viewed as a Monte Carlo estimate of S/, up to a scaling fac-
tor. Second, a CV estimate for the model selection objective
A in (3) is the sum of the K differences,

>)
Il
§J>
S
I
§J>
>

I
M=

[S (fMA,kv ytestk) ) (fMB,k’ Ytestk)]

~
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Herein we use the generic notation = ) ,le 7k to denote
the CV objective, whether it be Sy; or A.

2.3 Epistemic uncertainty

The MC estimators in (8) and (9) are random quantities that
are subject to sampling variability. The associated predictive
assessments of out-of-sample model performance are there-
fore subject to uncertainty (Sivula et al. 2022). Naturally,
there would be no uncertainty at all if py,e were fully known
or if an infinitely large dataset were available. But since (8)
and (9) are estimated from finite data, an assessment of the
uncertainty of these predictions is useful for interpreting CV
results ( Sivula et al. 2022, Section 2.2). We call this random
erTor epistemic uncertainty.

It can be helpful to view as-yet-unseen data as missing
data. CV imputes that missing data with finite number of
left-out observations. The epistemic uncertainty about the
unseen future data can be regarded as uncertainty from the
imputation process.

For a given dataset, epistemic uncertainty is irreducible in
the sense that it cannot be driven to zero by additional compu-
tational effort or the use of more accurate inference methods.
This contrasts with Monte Carlo uncertainty in MCMC infer-
ence, discussed in the next subsection. The limiting factor is
the information in the available dataset.

We adopt the following popular approach to modeling
epistemic uncertainty. First, we regard the individual con-
tributions (7)) to 7 as exchangeable, drawn from a large
population with finite variance (Vehtari and Lampinen 2002;
Sivula et al. 2022). That is, we presume that K is reasonably
large. Then, 77 will satisfy a central limit theorem (CLT) so
that a normal approximation for the out-of-sample predictive
performance of 7 is appropriate.

In particular, for model selection applications we are inter-
ested in the probability that M4 predicts better than Mp,
which we denote Pr (M4 > Mp | y). We approximate

Pr(My > Mp|y) ~ & , (10)
KE%

where A% = 2 Y (Ak - Z/K)2 is the sample vari-
ance of the contributions to (9) and ® denotes the standard
normal cdf.

There are other ways to model Pr (M4 > Mp |y), such
as the Bayesian Bootstrap (Rubin 1981; Sivula et al. 2022).
We prefer the normal approximation in this setting because
it performs well (Sivula et al. 2022) and is simple to approxi-
mate with online estimators, making it particularly useful on

parallel hardware.



Statistics and Computing (2024) 34:119

Page50f15 119

2.4 MCMC inference

MCMC is by far the dominant method for conducting
Bayesian inference. It characterizes posterior distributions
with samples from a stationary Markov chain, for which the
invariant distribution is the target posterior. MCMC sampling
algorithms are initialized with a starting parameter value 6 (%,
usually in a region of relatively high posterior density. Then,
an MCMC algorithm is used to sequentially draw a sample
oW 9@ . from the chain. This sample can be used to
construct Monte Carlo estimators for functionals g(0) such
as the predictive density fu,,(¥) that appears in (1). Many
MCMC algorithms are available: Gelman et al. (2014) pro-
vide a general overview.

For brute-force CV applications, posteriors are separately
estimated for each model and fold. Furthermore, typical
inference workflows for MCMC inference call for draws
from L > 1 independent chains targeting the same poste-
rior. For model M, fold k, and chain ¢, denote the sequence
of N MCMC parameter draws 91(1/(1),)k,z7 91(\,}’),(’[, e, 01(1,]1\{,){’4, SO
that the expectation E [g (0) | M, yirain, | can be estimated
for each model M and fold k as

N
1
(V) IICH

The main assumption needed is quite standard (see e.g.
Jones et al. (2006)): a CLT for ?}évz so thatas N — oo,

o2
Jﬁ(?ﬁ% _E [g ) | M, Ytraink]> i> N <O’ %) ‘

12)

Because MCMC parameter draws are auto-correlated, a
naive estimate of the uncertainty associated with (11) from
these draws will be biased. Instead, a Monte Carlo standard
error (MCSE) estimator should be used. We use MCSE esti-
mators based on batch means (Jones et al. 2006) because
these can be efficiently implemented on accelerator hardware
(see Appendix A). Let the chain length be a whole number
representing a batches each of b samples, so that N = ab.
Then the Ath batch mean is given by

hb

1
EM ke = b Z

n=(h—1)b+1

0L (13)

The MCSE o3, /LN can then be computed using the

sample variance of the gﬁg’)k, ¢S across all L chains for model

M and fold k, where

b a 2

A2 =(h) ~(N)

Temrk = Tg 1 Z (gM,k,e - gM,k) . (14)
=1 h=1

There is a large literature on estimators for 0% but we use
(14) since it is simple and it performed well in our experi-
ments. The batch size b is a hyper-parameter to be chosen
before inference starts, and large enough for the Y; to be
approximately independent. Where the MCMC chain length
is known (in the case where a data-dependent stopping rule is
not used), asymptotic arguments suggest b = LMJ, for
which a rough guess can be made a priori (see for instance
Jones et al. (2006) for a discussion).

To reliably fit Bayesian models, the inference workflow
needs to include careful verification of model fit. MCMC
algorithms must also be carefully checked for pathological
behaviors and monitored for convergence so that inference
can be terminated (Gelman et al. 2020). Most workflows are
oriented toward parameter inference, ensuring that the sam-
ples adequately characterize the desired posterior distribution
p (0]y). Assessing convergence effectively amounts to ver-
ifying that (a) each posterior’s chains are correctly mixing,
and (b) the sample size is large enough to characterize the
posterior distribution to the desired degree of accuracy. To
support these assessments, several diagnostic statistics are
available (Roy 2020). We describe two diagnostic statistics
specifically adapted for parallel MCMC in Sect. 4.

3 Parallel cross-validation

In this section we describe the proposed PCV workflow.
PCV aims to make brute force CV feasible by reduc-
ing computation (wall clock) time as well as the analyst’s
time spent checking diagnostics. Of course, given unlim-
ited computing power and effort, an analyst could simply
implement Bayesian CV by sequentially fitting each CV fold
using MCMC, checking convergence statistics for each, then
constructing the objective 7 using (8) or (9). This is com-
putationally and practically infeasible for CV designs with
large K.

Many existing applications of massively parallel MCMC
target just a single posterior. In contrast, PCV simultane-
ously estimates multiple posteriors using parallel samplers
that execute in lock-step. Under our approach, the algorithm
draws vectors of combined parameter vectors representing
all chains for all folds. Estimating 7 by brute force MCMC
requires samples from O (K L) parallel independent MCMC
chains. In some cases, posteriors for different models can be
sampled in parallel, too (see Appendix B).

@ Springer
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The main challenge that must be solved for estimating
all K posteriors (or 2K posteriors for a pairwise model
comparison) is that model criticism, diagnostics, and con-
vergence checking must be applied to all of the posteriors.
However, since full model criticism and checking should be
performed on the full-data models anyway, for which the
partial-data posteriors are simply random perturbations, we
argue that model criticism need only be applied to the full-
data candidate models. Furthermore, we can sharply reduce
the computational effort required for sampling by using infor-
mation from full-data inference to initialize the partial-data
inference (Sect.3.1).

We propose the following extension to conventional
Bayesian inference workflows:

Step 1. Full-data model criticism and inference. Perform
model criticism on candidate model(s) using the full
data set (Gelman et al. 2020), revising candidate
models as necessary, and obtain MCMC posterior
draws for each model;

Step 2. Parallel MCMC warmup (see Sect.3.1). Initialize L
parallel chains for each of K folds using random
draws from the full-data MCMC draws obtained in
Step 1. Run short warm-up chains in parallel and
discard the output;

Step 3. Parallel sampling. Run the O(K L) parallel MCMC

chains for N iterations, accumulating statistics required

to evaluate 77 and associated uncertainty measures
(see Sect.3.2); and

Step 4. Check convergence. Compute and check parallel
inference diagnostics (Sect.4), and if necessary
adjust inference settings and repeat.

3.1 Efficient MCMC warmup

General-purpose MCMC sampling procedures typically begin
with a warmup phase. The warmup serves two goals: (i)
it reduces MCMC estimator bias due to initialization, and
(ii) adapts tuning parameters of the sampler. Warm-up pro-
cedures aim to ensure the distribution of the initial chain
values 9,;0) is close to that of the target posterior. An example
is Stan’s window adaptation algorithm (Stan Development
Team 2022), designed for samplers from the Hamiltonian
Monte Carlo (HMC; Neal 2011) family. Hyperparameter
choices are algorithm-specific: for example, HMC requires
a step size, trajectory length, and inverse mass matrix.

The warm-up phase is computationally costly. It would be
especially costly and time consuming to run complete, inde-
pendent tuning procedures for each fold in parallel to obtain
kernel hyperparameters and initial conditions O (K L) for
each fold. In addition, running many independent tuning pro-
cedures can be unreliable. Tuning procedures are stochastic
in nature, and as the number of chains increases, the probabil-

@ Springer

ity of initializing at least one chain with problematic starting
conditions increases. An example of such a starting condition
is a parameter draw far in a region of the parameter space that
leads to numerical problems and a ‘stuck chain’.

Instead of running independent warm-up procedures for
each fold, we propose re-using the warm-up results from
the full-data model for each CV fold, under the assumption
that the full-data and partial-data posteriors are close. This
assumption seems reasonable if the folds are similar enough
to the full-data model for CV to be interpretable as a predic-
tive assessment of the full-data model (Sect.2.2).

Under this approach, each fold’s MCMC kernel uses the
same inference tuning parameters (e.g. step size and trajec-
tory length) as the full-data model. Starting positions are
randomly drawn from the full-data posterior MCMC sample.
To ensure distribution of the starting conditions are close to
the fold model’s posterior distribution, PCV then simulates
and discards a very short warm-up sample.

3.2 Estimating uncertainty

Practical CV applications require estimates of the uncertainty
of 77 estimates. Both MC and epistemic uncertainty contribute
to the variability in 7).

We estimate epistemic uncertainty by applying the normal
approximation described in Sect.2.3. For model selection
application, we substitute fold-level estimates (K k) into (10).

MC uncertainty can be estimated using an extension of
standard methods described in Sect.2.4. Because each fold
is estimated using independent MCMC runs, the overall MC
uncertainty for 77 is simply the sum of the MC variance of
each fold’s contribution. When an estimated scoring rule may
be represented as a smooth function of an ergodic mean (like
LogS), oﬁz can be estimated using the delta method. In the
case of LogS, we have

15)

where summation over models reflects the fact that the MC
error for a difference is the sum of the error for both terms.
The MCSE for 7) is then MCSE; = o3/ /LN . Independence
of the contributions to the overall MC error is helpful for
producing accurate estimates quickly.

Even when 7 and its associated standard error can theo-
retically be estimated using MC estimators (for instance if
its first two moments are finite), in practice theoretical con-
ditions may not be enough to prevent numerical problems
during inference. A common cause of numerical overflow is
the presence of outliers that fall far in the tails of predictive
distributions.



Statistics and Computing (2024) 34:119

Page7of15 119

In model selection applications, it is typical for MC uncer-
tainty to be an order of magnitude smaller than epistemic
uncertainty (see e.g. Fig.1). This discrepancy implies that,
provided that the chains have mixed, long MCMC runs are
not usually necessary in model selection applications, since
additional effort applied to MCMC sampling will not mean-
ingfully improve the accuracy of 77. An overall measure that
provides a single picture of uncertainty is also useful because
the MCMC efficiency of individual folds can vary tremen-
dously (see Sect.4.1 and Fig.2).

Since PCV applications typically require only relatively
small N to make MC uncertainty insignificant compared to
epistemic uncertainty, we do not propose a stopping rule for
of the type discussed by Jones et al. (2006). In most cases
these rules are justified by asymptotic arguments (i.e. for
large N), whereas in our examples N is on the order of 103

3.3 Implementation on accelerator hardware

Massively parallel samplers are able to take advantage
of modern computing accelerators, which can offer thou-
sands of compute units per device. Accelerators typically
offer more cost-effective throughput, measured in floating-
point operations per second (FLOPS), than conventional
CPU-based workstations. However, despite their impres-
sive parallel computing throughput and cost per FLOPS, the
design of computing accelerators impose heavy restrictions
on the design of inference algorithms.

Programs with heavy control flow beyond standard lin-
ear algebra operations tend to be inefficient, including those
commonly used in Bayesian inference such as sorting large
data vectors. In addition, accelerators have limited onboard
memory for storing and manipulating draws generated by
MCMC samplers. The need to transfer MCMC draws to
main memory for diagnostics and manipulation would repre-
sent a significant performance penalty. These problems could
be alleviated if all analysis steps could be conducted on the
accelerator device, within its memory limits.

The Hamiltonian Monte Carlo (HMC; Neal 2011) sam-
pling algorithm lends itself well to implementation on accel-
erator hardware. To implement PCV, we augment the HMC
kernel with an additional parameter representing the fold
identifier. This allows the unnormalized log joint density—
and its gradient via automatic differentiation—to select the
appropriate data subsets for each chain. HMC is suitable
for parallel operations because its integrator follows a fixed
trajectory length at each MCMC iteration. The lack of a
dynamic trajectory allows HMC to be vectorized across a
large number of parallel chains, with each evolving in lock-
step. In contrast, efficient parallel sampling is extremely
difficult with dynamic algorithms such as the popular No-
U-Turn Sampler (NUTS; Hoffman et al. 2014). Assessing
chain efficiency (Sect.4.1) is more important with samplers

with non-adaptive step size like HMC, since samples tend to
be more strongly auto-correlated than for adaptive methods,
delivering fewer effective draws per iteration.

A further constraint inherent to computing accelerators is
the size of the device’s on-board memory. Limited accelera-
tor memory means it is usually infeasible to store all MCMC
parameter draws from all chains for later analysis, which
requires only O (K LN dim (#)) memory. This cost can be
prohibitive, especially when dim (0) is large. However, in
many cases it is feasible to store draws required to construct
the objective, that is the univariate draws required to esti-
mate 7, reducing the memory requirement to @ (K LN). This
approach is very simple to implement (see Algorithm 1).

Where accelerator device memory is so constrained that
even the draws for 7 cannot be stored on the accelera-
tor, online algorithms are available. The memory footprint
for such algorithms does not depend on the chain length
N. However, as Algorithm A2 in the supplementary mate-
rial demonstrates, the fully-online approach is significantly
more complicated. (See also the sampler implemented in
Appendix D in the supplementary material.) While the online
approach is very memory efficient, it is also less flexible.
Conventional workflows recommend first running inference
then computing diagnostics from the resulting draws. How-
ever, under the online approach one must predetermine which
diagnostics will be run after inference, then accumulate
enough information during inference to compute those diag-
nostics without reference to the full set of predictive draws
(see Appendix A).

Algorithm 1 Non-online parallel CV sampler for LogS.
Superscripts index array elements. See also Algorithm A2
in the supplementary material.

Input: Posterior draws {Gl(fd) R ..,,01(\2?}, MCMC  kernels

{7x (0, -)},{{:1, log predictive densities {log p (Jx |9)},f:1, folds
K, chains L, warm-up length Ny, chain length N
Output: §.
Initialize:
K x L x N array §
fork € 1,..., K doin parallel:
for £ € 1,..., L do in parallel:

> fold loop
> chain loop

o*0 « draw from Gl(fd>, e, 91(\21)

fori € 1,..., Ny do sequentially > warm-up sampling loop
6%*-0 « draw from 7 (9(/“'4), )

end for

fori € 1,..., N do sequentially > sampling loop

o*-0 « draw from 7 (G(k*l), )
g(k,l.l) <« 10gp (yk |9(k.l))
end for
end for
end for
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(a) Overall
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2000 A
1500 +

1000 A

Effective sample size ESS

500 A

(b) Model M, folds

(c) Model Mg folds

200 400 600 800 1000 200

MCMC iterations/chain

Fig.2 Progressive estimated effective sample size (ﬁ) for Example 1
(grouped Gaussian regression), a scale-free measure of information con-
tent for the MCMC sample, as a function of MCMC iterations. Panel
(a) shows ESS for the overall model selection statistic (incorporating

4 MCMC diagnostics

We propose that diagnostics focus on 7 rather than fold-
specific parameters. Under our proposed workflow, the
analyst will have completed model criticism on the full-data
model before attempting brute force CV. Soundness of the
full-data model strongly suggests that the CV folds, which
by construction have the same model structure and similar
data, will also behave well. However, inference of all folds
should nonetheless be monitored to ensure convergence has
been reached, and to identify common problems that may
arise during computation.

A focus on the predictive quantity 7 rather than the
model parameters carries several advantages. First, it pro-
vides a single view of convergence that targets the desired
output and ignores any inference problems in irrelevant
parts of the model, such as group-level random effects that
are not required to predict the group of interest. Second,
unlike parameter convergence diagnostics, diagnostics for
7 are sensitive to numerical issues arising in the predic-
tive components of the model. Third, these diagnostics can
be significantly cheaper to compute than whole-parameter
diagnostics, in part because the target is univariate or low-
dimensional.

Other diagnostic statistics for massively parallel inference
include nR (Margossian et al. 2023), which is applicable to
large numbers of short chains targeting the same posterior.
In contrast, our diagnostics target a small number of longer
chains per fold, and are applied to a large number of distinct
posteriors.
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400

MCMC iterations/chain

200 400 600 800 1000

MCMC iterations/chain

600 800 1000

all chains), while panels (b) and (c) respectively show the ESS for each
fold of models M4 and Mp. Note the overall measure falls within the
range of all folds

4.1 Effective sample size

An (estimated) effective sample size (ES\S; Geyer (1992))
provides a scale-free measure of the information content of
an autocorrelated sample. Since MCMC samples from a sin-
gle chain are not independent, an estimate of the limiting
variance G§2 in (12), denoted by 6}2, is typically greater than

the usual sample variance sg%, and hence the degree of auto-

correlation must be taken into account when computing the
Monte Carlo standard error (MCSE) of estimates computed
from the resulting MCMC sample.

The standard ESS measure targets individual parame-
ter estimates, say 6;. Define ﬁei, as the raw sample size
adjusted by the ratio of the unadjusted sample variance 502’_ to

the corresponding MC variance 692’, Z€S§9i =LN S02i / 6921 .For
parallel inference we use the batch means method described
in Sect.2.4 to estimate 802[_ , for which online estimators are
simple to implement. (For alternatives see e.g., the review by
Roy (2020).)

For PCYV, an aggregate measure of the sample size ESS
can be computed similarly. Define ESS = LN srg] /&ﬁz. ESS
is useful as a single scale-free measure across all folds (see
Fig.2).

4.2 Mixing: aggregate ﬁmax

To assess mixing of the ensemble of chains, we propose a
combined measure of mixing based on the potential scale
reduction factor R (Gelman and Rubin 1992; Vehtari et al.
2020a). Most of the chains in the ensemble should have Rs
below a suitable threshold (Vehtari et al. (2020a) suggest
1.01). In addition, we assess overall chain convergence by
i?\max, the maximum of the Rs measured across all folds.
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Fig. 3 Progressive R measures as a function of iterations/chain for the toy grouped regression model comparison. Note that the 1.01 threshold
(Vehtari et al. 2020a) is exceeded by at least one chain, and hence by Rpax, for most of the 1000 iterations/chain plotted in this diagram

Below, we describe a simple problem-specific method for
interpreting ﬁmax.

The canonical R measure aims to assess whether the
independent chains targeting the same posterior adequately
characterize the whole posterior distribution. R usually tar-
gets parameter means, but in our experiments we found that
the mean of the log score draws to be a useful R target.
Other targets are of course possible, and wide range of other
functionals appear in the literature (e.g. Vehtari et al. 2020a;
Moins et al. 2023).

R is a scaled measure of the variance of between-chain
means B, a quantity that should decrease to zero as the chains
converge in distribution and become more similar. Several
variants of R exist. To simplify computation on accelerators,
the simple version we use here omits chain splitting and rank-
normalization (these features are described by Vehtari et al.
(2020a)). For a given model M and fold k, define R as

_]WMk‘I‘ BMk
WMk

Ryi = (16)

The within-chain variance Wy x and between-chain variance
By  are, respectively

| L N 5
WMk—LZN_lnX:(Sng_SMkE) )
L
N
By = mZ(EM,k,K —5ma)’

~
I

1

where § sM k. is the nth draw of log p(¥|0) in chain €, 5y k¢
is the chain sample mean, and 53/ k. is the sample mean of
parameter draws for the fold k chains.

The summary mixing measure is then

max

17
MeM. k=1 an

Rmax =

,,,,,

Since all the R\M, ¢ tend to 1 as chains converge and K is
fixed, it follows that ﬁmax tends to 1 as all posterior chains
converge.

However, while ﬁmax has the same limiting value as ﬁ,
it is not at all clear that the broadly accepted threshold of
R < 1.01 (Vehtari et al. 2020a) for a single posterior is
an appropriate indicator that all folds have fully mixed. Each
ﬁM k 1s a stochastic quantity, and the extremum statistic ﬁmax
is likely to be large relatlve to the ma]orlty of chains.

Figure 3 compares Rinax with the R computed for each fold
of both regression models M4 and Mp. Recall from Fig. 1
that that the 7] estimates stabilize after a few hundred MCMC
iterations per chain. However, well beyond this point, }’?\max
exceeds the conventional convergence threshold for Rof1.01
(Vehtari et al. 2020a).

To estimate an appropriate benchmark for I?max for a
given problem, we propose the following simulation-based
procedure. This procedure empirically accounts for the auto-
correlation in each chain, without the need to model the
behavior of each fold’s posterior, and with only minimal addi-
tional computation. This approach is conceptually similar to
the block bootstrap, and it directly accounts for the autocor-
relation in each fold’s MCMC chains.

Suppose (hypothetically) that all chains are well-mixed, so
that the mean and variance of any chain should be roughly the
same. In that case, if we also assume that autocorrelation is
close to zero within the block size, then computing R should
not be greatly affected if blocks of each chains are ‘shuffled’
as shown in Panel (a) of Fig. 4. To construct an estimate of the
likely range of R values under the assumption that the chains
have mixed, we simply repeatedly compute R from a large

@ Springer
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(b) 50 MCMC iterations

(c) 100 MCMC iterations
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1.0 11 1.2 1.3 1.4 1.0 1.1 1.2 1.3 1.4
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Fig. 4 Two values of I/Q:Lnax for the toy regression problem, compared
with emulated mixed Rp.x benchmark draws, computed by block-
shuffling chains. Panel (a) shows a stylized shuffling scheme, where
chains are broken into contiguous blocks and recombined by shuffling
with replacement. Panels (b) and (c¢) show I/?\max estimates at 50 and

(a) Original
200 A . :
Rmax

- 150 A :
(&)
c
(0]
>

= 100 A :
i

50 A . :

Emulated mixed Rpmax
benchmark
O - T T T =
1.02 104 1.06 1.08 1.02

Fig. 5 Artificially constructed pathological inference examples,
detected by Rpmax. Panel (a) shows the original comparison in Fig.4,
after 1000 iterations. In Panel (b) a single chain for one of the folds has
been fixed to a constant value (its first draw). In Panel (c) a single chain

sample of shuffled draws. Rather than adopt a threshold based
on an arbitrary summary statistic of the shuffled draws as a
single benchmark (say an upper quantile), we instead simply
present the draws as a histogram for visual comparison.
Figure 5 demonstrates k\max detecting two artificially-
created pathological conditions: a stuck chain and a shifted
chain, both of which correspond to non-convergence of one
of the folds. To be clear, we do not claim that this ﬁmax bench-
mark is foolproof or even that it will detect most convergence
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(b) One stuck chain

Emulated mixed
R max benchmark

100 parallel MCMC iterations, respectively (vertical line), alongside
histograms of 500 shuffled Ry,ax draws for comparison. 5 blocks were
used. In this example, we conclude that the parallel chains have not
converged after 50 iterations, but they have after 100

(c) One shifted chain

Rmax T Rmax

_— Emulated mixed

Rmax benchmark

T T T T
1.08 1.04 106 1.08

1.04 1.02

1.06

for one of the folds has been shifted by 5 units. In both panels (b) and
(’c\), Rmax lies to the right of the histogram of 100 emulated stationary
Rmax draws, estimated using 5 blocks

issues, but it did perform well in our examples when the bulk
of folds had mixed (Sect.5).

5 Illustrative examples

In this section we present three additional applied examples
of PCV. Each example uses PCV to select between two can-
didate models for a given application. Code can be found
online at https://github.com/kuperov/ParallelCV. For each
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Fig.6 Progressive estimates for groupwise cross-validation for Exam-
ple 2 (rat weight). The model selection statistic A shown in Panel (a) is
clearly positive, favoring model M 4. Panel (b) shows that MC uncer-

candidate model, we first perform model checking on the
full-data model prior to running CV, where chains are initial-
ized using prior draws. For all experiments, we fix the batch
size b = 50, and check that this batch size yields reasonable
ESS estimates compared with window methods (Kumar et al.
2019) on the full-data models.

The core procedure we use for our experiments requires
only alog joint likelihood function and log predictive density
function compatible with JAX’s primitives, and is therefore
amenable to automatic vectorization. Our examples use the
HMC and window adaptation implementations in Blackjax
v1.0 (Lao and Louf 2020), as well as primitives in Tensor-
Flow Probability (TFP; Dillon et al. (2017)). All experiments
use double-precision (64-bit) arithmetic. Full-data inference
is performed on the CPU while parallel inference is run on
the GPU. CPU and GPU details are noted in each results
table.

Example 2 (Rat weight) This example demonstrates PCV
on grouped data. Gelfand et al. (1990) present a model of
the weight of J = 30 rats, for each of which five weight
measurements are available. The rat weights are modeled as
a function of time,

MAZyj’t|Olj,,3j,GyNN<0lj -|—,3jl‘,03), (18)
forj =1,...,J;t € {8,15,22,29, 36}, where «; and f;

denote random effects per rat. The model M 4 random effects
and per-rat effects are modeled hierarchically,

o | ta 00 ~ N (ar02) . B ~ N (g, 0}) (19)

with hyper-priors g ~ N (250, 20), g ~ N (6, 2), 0q ~
Gamma (25, 2), and og ~ Gamma (5, 10). The observation

T T T
1000 1500 2000
MCMC iterations per chain

T T T T
500 1000 1500 2000
MCMC iterations per chain

tainty is a very small component of the total. Panel (c¢) shows that the
probability of M4 predicting better than M p stabilizes after about 1000
iterations

noise prior is o, ~ Gamma(l, 2). Prior parameters were
chosen using prior predictive checks.

In this example, we use parallel CV to check whether the
random effect (i.e. rat-specific slope ;) does a better job of
predicting the weight of a new rat, than if a common S had
been used. The CV scheme leaves a rat out for each fold, for
a total of K = 30 folds. The alternative model is

My : yjilaj, B,o® ~ N (o) + r.0?), 20)

for j = 1,...,J;t € {8,15,22,29, 36}, where the prior
B ~ N (6, 2) was chosen using prior predictive checks (Gel-
man et al. 2014).

Figure 6 shows that the PCV results have stabilized by
1000 iterations, and Pr (M4 > Mp) ~ 90%. On an NVIDIA
T4 GPU, PCV with 480 chains targeting all 60 posteriors
took 18s, which included a 10s warm-up phase (Table C2 in
Appendix C). Full-data inference took 11 and 15s, respec-
tively, which suggests naive brute force CV would take about
13 min. Riax plots suggest convergence after around 500 iter-
ations per chain (Figure C2, Appendix C). In contrast, many
chains still exceeded the 1.01 benchmark for R even after
2, 000 iterations (Figure C1, Appendix C).

Example 3 (Home radon) Radon is a naturally-occurring
radioactive element that is known to cause lung cancer in
patients exposed to sufficiently high concentrations. Gelman
and Hill (2006) present a hierarchical model of radon concen-
trations in U.S. homes. The data cover Np = 12,573 homes
in J = 386 counties. For our purposes we will assume that
the goal of the model is to predict the level of radon in U.S.
counties, including those not in the sample (i.e. out-of-sample
county-wise prediction). The authors model the level of radon
y; in the ith house as normal, conditional on a random county
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effect o and the floor of the house x; where the measurement
was taken. We will compare two model formulations:

Myl B.of ~ N (o + i o2 @
My yila oo ~N (e 0f). (22)
fori = 1,..., Np,, where B is a fixed effect, a ;) is the

random effect for the county corresponding to observation i,
and o2 is a common observation variance. For both models
the county effect is modeled hierarchically,

@t 03 ~ N (e 03 (23)

for j = 1,...,J. The remaining priors are chosen to be
weakly informative, 1, ~ A (0, 4) and 0(3 ~ Gamma (6, 9).
The other parameter priors are 8 ~ N (0, 1) and 03 ~
Gamma (10, 10). A non-centered parameterization is used
for MCMC inference and the model is fit by HMC. Prior
parameters were chosen using prior predictive checks.

We will use county-wise PCV to determine whether the
floor measure improves predictive performance. The esti-
mate Pr (M4 > Mp) ~ 100% stabilizes quickly (Fig.7).

The parallel inference procedure takes a total of 925 to
draw 2000 parallel MCMC iterations plus 2000 warmup iter-
ations across a total of 3088 chains targeting 772 posteriors.
The 386 fold posteriors are sampled consecutively for each
model. This compares with 45 and 35 s for the full-data mod-
els (see Table C3 in Appendix C for details). At 35 s per fold,
a naive implementation of brute force CV across all would
have taken 7.5h to run.

Example 4 (Passenger arrivals) Australia is an island nation,
for which almost all migration is by air travel. Models of
passenger arrivals and departures are useful for estimating
airport service requirements, the health of the tourist sector,
and economic growth resulting from immigration.

We compare two simple models of monthly international
air arrivals to all Australian airports in the period 1985-2019,
using data provided by the Australian Bureau of Transport
and Infrastructure Research Economic (BITRE). The data
are seasonal and nonstationary (Figure C5, Appendix C),
so we model month-on-month (M 4) and year-on-year (Mp)
changes with a seasonal autoregression. The power spectrum
of the month/month growth rates display seasonality at sev-
eral frequencies, while annual figures do not, suggesting that
annual seasonality is present (Figure C6, Appendix C).

It is therefore natural to model these series using seasonal
autoregressions on the month/month or year/year growth
rates. Let y; € R denote the growth rate, observed monthly.
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We model
p q

Yo=Y pivi-i+Bo+ Y Bidj +oe, (24)
i=1 j=1

forr =1,...,T, & kS N (0, 1) .. The noise standard devi-

ation prior is ¢ ~ Nt (0, 1). For AR effects we impose the
prior (2p; — 1) ~ Beta (5, 5) and for the constant and sea-
sonal effects B; ~ N (0, 1).

Parallel CV results stabilize after a few hundred iterations
per chain (Fig. 8). PCV took a total of 6.1s to draw to draw
500 iterations per chain (Table C4, Appendix C). Naively
running all 790 models in succession would have taken about
4.4h.

6 Discussion

We have demonstrated a practical workflow for conducting
fast, general brute force CV in parallel on modern computing
accelerator hardware. We have also contributed methods for
implementing and checking the resulting output.

Our proposed workflow is a natural extension of standard
Bayesian inference workflows for MCMC-based inference
(Gelman et al. 2020), extended to include initialization of
parallel MCMC chains and joint convergence assessment for
the overall CV objective.

The use of parallel hardware enables significantly faster
CV procedures (in wall clock time), and on a practical
level represents a sharp improvement in both flexibility and
speed over existing CPU-based approaches. In contrast to
approximate CV methods, our approach reflects a transi-
tion from computing environments that are predominantly
compute-bound ( storage and bandwidth are not practically
constrained), to a new era with fewer constraints on com-
puting power but where memory and bandwidth are more
limited. Efficient use of parallel hardware can in some cases
reduce the energy required and associated carbon release for
compute-heavy tasks, such as simulation studies involving
repeated applications of CV.

Our proposed diagnostic criteria provide the analyst with
tools for assessing convergence across a large number of
estimated posteriors, alleviating the need to examine each
posterior individually. Further efficiencies could be gained
by developing formal stopping rules for halting inference
when chains have mixed and the desired accuracy has been
attained, although stopping rules should be applied with care
as they can also increase bias (e.g., Jones et al. 2006; Cowles
et al. 1999). We leave this to future research.

Moreover, online algorithms’ frugal memory require-
ments carries advantages for several classes of users. Top-end
GPUs can run larger models (and/or more folds simultane-
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Fig.8 Progressive estimates for groupwise cross-validation for Example 4 (passenger arrivals). The model selection statistic (a) is clearly positive
and the probability of M4 predicting better than Mp stabilizes within a few hundred iterations

ously), while commodity computers (e.g. laptops with less
capable integrated GPUs) can perform a larger range of use-
ful tasks. Beyond accelerator hardware, our approach may
have benefits on CPU-based architectures too, by exploiting
within-core vector units and possibly improving processor
cache performance because of the tight memory footprint of
online samplers.

Two possible extensions to this work could further reduce
memory footprint on accelerators. The adaptive subsampling
approach of Magnusson et al. (2020) would require that only
a subset of folds be estimated before a decision became clear.
In addition, the use of stochastic HMC (Chen et al. 2014)
would permit that only a subset of the dataset be loaded on
the accelerator at any one time.

Further work could include adaptive methods to focus
computational effort in the areas that would most benefit
from further MCMC draws, for example on fold posteriors
with the largest MC variance, as well as a stopping rule to halt

inference when a decision is clear. Turn-key parallel brute-
force CV routines would be a useful extension to probabilistic
programming languages. Parallel CV can also be done using
inference methods other than MCMC, such as variational
inference.

Supplementary Information  The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-024-10404-
w.
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