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Abstract 

Antimicrobial peptides (AMPs) are attractive materials for combating the antimicrobial resistance crisis 

because they can kill target microbes by directly disrupting cell membranes. Although thousands of AMPs 

have been discovered, their molecular mechanisms of action are still poorly understood. One broad 

mechanism for membrane disruption is the formation of membrane-spanning hydrophilic pores which can 

be stabilized by AMPs. In this study, we use molecular dynamics (MD) simulations to investigate the 

thermodynamics of pore formation in model single-component lipid membranes in the presence of one of 

three AMPs: aurein 1.2, melittin and magainin 2. To overcome the general challenge of modeling long 

timescale membrane-related behaviors, including AMP binding, clustering, and pore formation, we develop 

a generalizable methodology for sampling AMP-induced pore formation. This approach involves the long 

equilibration of peptides around a pore created with a nucleation collective variable by performing coarse-

grained simulations, then backmapping equilibrated AMP-membrane configurations to all-atom resolution. 

We then perform all-atom simulations to resolve free energy profiles for pore formation while accurately 

modeling the interplay of lipid-peptide-solvent interactions that dictate pore formation free energies. Using 

this approach, we quantify free energy barriers for pore formation without direct biases on peptides or whole 

lipids, allowing us to investigate mechanisms of pore formation for these 3 AMPs that are a consequence 

of unbiased peptide diffusion and clustering. Further analysis of simulation trajectories then relates 

variations in pore lining by AMPs, AMP-induced lipid disruptions, and salt bridges between AMPs to the 

observed pore formation free energies and corresponding mechanisms. This methodology and mechanistic 

analysis have the potential to generalize beyond the AMPs in this study to improve our understanding of 

pore formation by AMPs and related antimicrobial materials.  
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Introduction 
A pressing issue in society today is the rise of antimicrobial resistance to currently available drugs due to 

overprescription and overuse.1 Microbes have a variety of mechanisms to decrease the efficacy of 

antimicrobial drugs, including thick biofilm matrices that restrict diffusional transport,2, 3 mutations in target 

enzymes to prevent drug binding,4 and transporter proteins (efflux pumps) that expel drugs into the 

extracellular environment.5 As a result, there is significant interest in developing antimicrobial peptides 

(AMPs) that function via membrane disruption and are less likely to lead to resistance.6 Naturally occurring 

AMPs are α-helical and typically cationic peptides that are present in the immune systems of plants and 

animals and contribute to their defense against foreign pathogens.7 Their mechanism of action is generally 

understood as first involving the binding of AMPs to microbial membranes due to attractive electrostatic 

interactions between cationic side chains and anionic lipid head groups (or other membrane components).8 

How bound AMPs then lead to membrane disruption and eventual cell death, however, is less well-

understood, inhibiting the rational design of new synthetic AMPs to address limitations of proteolytic 

degradation and low selectivity for naturally sourced AMPs when introduced in vivo.9-11 

Two broad mechanisms – pore formation and the carpet mechanism – have been proposed to explain AMP-

induced membrane disruption and have been shown to depend on a variety of AMP physiochemical 

properties such as charge, length, hydrophobic sector, and rigidity.12 In the carpet mechanism, a high local 

concentration of AMPs on the surface of a membrane leads to membrane rupture and lipid micellization.13 

The carpet mechanism is typically promoted by AMPs too short to span cell membranes as an α-helix.14, 15 

For instance, aurein 1.2 is a 13-residue +1 charged peptide sourced from bell frogs that is believed to disrupt 

membranes via the carpet mechanism as supported by dye leakage experiments from unilamellar vesicles.16 

In the pore formation mechanism, AMPs stabilize membrane-spanning pores that compromise the 

membrane’s ability to regulate transport. Melittin, a 26-residue +6 charged peptide that is the major 

component of bee venom,17 ,18 is an example of an AMP believed to disrupt membranes via pore formation 

as supported by x-ray diffraction19 and calcein leakage experiments.20 Pore formation can be further sub-

divided into two separate mechanisms: the barrel-stave mechanism, in which peptides completely line the 

walls of the pore to minimize lipid disruption, and the toroidal pore mechanism, in which a combination of 

peptides and lipid head groups line the pore. The barrel-stave model is favored by AMPs that are rigid, 

membrane-spanning, and have a high hydrophobic content to mediate both peptide-peptide and peptide-

lipid interactions while excluding lipid headgroups from the aqueous pore,21 ,22 ,23 whereas the toroidal 

model allows for more flexibility in AMP structure (such as proline and glycine ‘kinks’ in the α-helix that 

reduce rigidity21,24, 25) because lipids deform such that their head groups line the pore and interact with 

peptides. 

Although experiments can provide insight into the preference of AMPs to disrupt membranes by either the 

carpet mechanism or pore formation, it remains difficult to gain molecular-scale insight into peptide-lipid 

interactions that dictate the thermodynamics of these processes or distinguish between the barrel-stave and 

toroidal pore models. To corroborate experimental data, molecular dynamics (MD) simulations have been 

used to resolve mechanistic pathways for peptide-membrane interactions, including pore formation.22, 25-34 

Theory and simulation studies suggest that long-lived metastable pores form in membranes once a critical 

pore radius is reached, which requires the system to overcome a free energy penalty associated with 

unfavorable water-lipid tail interactions or lipid bending at the pore edge.28, 32 Therefore, variations in this 

free energy due to the addition of AMPs can resolve whether pore formation mechanisms are favorable.  

A robust enhanced sampling method that has been applied for studying pore formation in bilayers is 

umbrella sampling, which permits a potential of mean force (PMF) to be calculated as a function of a pre-

defined collective variable (CV) that is biased across an interval of interest.35 Harmonic biasing potentials 
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are applied along this CV to sample a large range of system configurations and then energetic free energy 

barriers and metastable states can be determined with the weighted histogram analysis method (WHAM).36 

Umbrella sampling requires the selection of an appropriate CV, however, to ensure that the sampled PMF 

is physically relevant. Tolpekina, et al. proposed an early CV (which we refer to as the tanh CV) to study 

the free energy of pore formation in bilayers with MD simulations. The tanh CV is calculated using a 

hyperbolic tangent function applied to the lateral distance of lipid tails which increases when lipid tails 

atoms are farther from a pre-defined pore center.37 Recently, the tanh CV has been used with umbrella 

sampling to study the energetics of pore formation in 18 different lipid membrane compositions in the 

presence of cationic cyclic nonaarginine peptides with coarse-grained simulations38 and fully atomistic 

POPC membranes with an increasing number of melittin peptides.28  In the latter case, metastable free 

energy minima were resolved with 4 or more melittin peptides lining a toroidal transmembrane pore, which 

could imply a long-lived pore that would eventually lead to cytotoxicity. This observation, however, 

required the orientation of peptides to be hand-selected a priori on the outer leaflet of the membrane, mainly 

due to slow diffusional limitations of peptides relative to the membrane in umbrella sampling.28 

Despite its promise, a limitation of the tanh CV is that it exhibits large hysteresis during umbrella sampling 

depending upon initial system configurations, suggesting that the pore formation process is not fully 

captured through a bias applied to lipid tail groups only.39 To address this issue, Hub and Awasthi developed 

a pore nucleation CV (referred to as ξ) that captures pore formation by biasing both water molecules and 

lipid headgroups.40 The value of ξ is determined by first defining a transmembrane cylinder of set radius 

that spans the lipid bilayer and is divided into horizontal slices, and then calculating the occupancy of slices 

by oxygen atoms in lipid head groups and water molecules; ξ increases in value with increased occupancy, 

which occurs when either lipid head groups or water molecules span the bilayer to form a hydrophilic 

pore.40 A typical PMF predicted with ξ has a minimum for an unperturbed membrane around ξ = 0.2, a 

maximum due to the formation of a continuous polar defect (nucleation) when ξ > 0.7, and a local minimum 

at ξ = 1.0 for a fully nucleated pore. ξ has been shown to be hysteresis-free and quickly converge in umbrella 

sampling simulations of pore formation in pure membranes40,41 and in simulations of pore formation 

stabilized by drugs42 and polycations.43 Nonetheless, ξ has yet to be applied in membranes in the presence 

of AMPs, which may be due to the long-timescale lateral diffusion of peptides during pore lining28, 44 

required to resolve physically relevant free energy profiles. 

In this study, we utilize umbrella sampling simulations as a function of ξ to study membrane pore formation 

in the presence of different AMPs with the goal of resolving corresponding free energy profiles and 

observing cooperative peptide aggregation and pore lining. To address the challenge of long-timescale AMP 

diffusion, we first nucleate aqueous pores in a model DMPC membrane using the MARTINI coarse-grained 

force field, then apply a backmapping procedure to obtain fully atomistic system representations that better 

capture the interplay of lipid-AMP-water interactions during pore formation. Using melittin as a model pore 

former and aurein 1.2 as a non-pore former, we calculate the free energy barrier for pore formation in the 

presence of these peptides and show that melittin preferentially forms toroidal-like pores in membranes by 

significantly decreasing the energy barrier required for pore nucleation relative to pure DMPC. To further 

test the robustness of this methodology, we model the 23-residue +3 charged AMP magainin 2 to compare 

its propensity for pore formation to aurein 1.2, melittin, and previous MD studies.25,45 Analysis of bilayer 

structural perturbations and peptide-peptide interactions provide insight into variations in pore formation 

free energies for these three peptides. Overall, we find that this methodology can be utilized to 

mechanistically support pore formation affinities of AMPs of varying physiochemical properties (e.g., 

length, charge, hydrophobicity) previously reported in the literature, and expect that this approach may 

further be applied to understand the behavior of new AMP structures discovered as part of ongoing efforts 

to combat the antimicrobial resistance crisis. 
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Methods 

System Preparation and Coarse-Grained Simulation Parameters 
Four different coarse-grained (CG) simulation systems were modeled with the MARTINI 2.2 forcefield46 

to test the influence of AMPs on pore formation. The four systems all included a bilayer containing 288 

DMPC lipids and with either zero peptides (Pure DMPC), 8 aurein 1.2 (8 AUR) peptides, 8 melittin (8 

MEL) peptides, or 8 magainin 2 (8 MAG) peptides. This number of peptides was chosen based on the 

peptide to lipid ratios observed to form fully lined melittin pores (the reference pore-forming peptide in our 

study); past studies have found that between 4 and 7 peptides line pores in phosphatidyl choline lipid 

membranes during full nucleation.25, 28 Each system was initially built with the insane script.47 Atomistic 

representations of each peptide were first created using Avogadro,48 and the martinize script46 was utilized 

to convert these to CG representations based on an average 4:1 mapping of heavy atoms to CG beads. The 

DMPC membrane was placed in the center of a solvated simulation box (spanning the xy-plane). For 

systems with peptides, the peptides were initialized in a 2 by 4 grid located 2.5 nm above the z center of 

mass (COM) of the membrane. Each system was solvated with at least 10 MARTINI W beads (representing 

40 water molecules) per lipid molecule to prevent inter-bilayer interactions in the z direction across the 

simulation periodic boundaries and to match prior simulations of pore nucleation.40 Additionally, chloride 

counterions were added to neutralize peptide-containing systems. Table 1 shows a summary of these 

systems and components. 

Table 1: Summary of systems modeled in coarse-grained (MARTINI) and all-atom (CHARMM36) molecular 

dynamics simulations. 

 Pure DMPC 8 AUR 8 MEL 8 MAG 

Peptides None 8 Aurein 1.2 8 Melittin 8 Magainin 2 

DMPC Lipids 288 288 288 288 

CG Water beads (W) 2888 3375 2939 2980 

AA Water molecules (TIP3P) 11552 13532 11948 12016 

Chloride (Cl-) 0 8 48 24 

 

All MD simulations were conducted using Gromacs 2021.5 patched with PLUMED 2.849. Energy 

minimization used the steepest descent algorithm with a maximum step size of 0.01 nm and tolerance of 

100 kJ mol-1 nm-1. A 2-step equilibration process was implemented to ensure peptide binding to the upper 

leaflet of the DMPC membrane (as visualized in Figure S1). In the first step, peptides were permitted to 

equilibrate in MD simulations in which a bias was applied using the PLUMED upper walls approach 

between the COM of each peptide and the membrane in the z direction to prevent peptides from diffusing 

into solution away from the membrane. In addition, 1000 kJ/mol harmonic restraints were placed on the x 

and y positions of backbone termini beads (Figure S1b). This equilibration step promotes peptide rotation 

and electrostatic binding to DMPC while maintaining the initial grid-like setup (Figure S1a) and preventing 

peptide aggregation in solution because the goal of this study is to observe collective aggregation of peptides 

as a consequence of diffusion at the membrane surface. In the second step, the system was further 

equilibrated without any bias applied to allow for the natural clustering and lateral diffusion of peptides on 

the membrane (Figure S1c). Both equilibration steps were performed for 50 ns with a timestep of 0.02 ps. 

All CG simulations were performed at a temperature of 323 K. This temperature was chosen because the 

freezing temperature is as high as 300 K for MARTINI water beads represented with P4 particles50; 

moreover, this temperature permits comparison to free energy profiles from prior literature results utilizing 

the ξ CV at 323 K.40 While alternative versions of the MARTINI force field more accurately treat 

electrostatic interactions to eliminate the unphysical freezing of MARTINI beads,51, 52 MARTINI 2.2 was 
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adequate for our study by permitting the computationally efficient binding of peptides to DMPC membranes 

and capturing lipid structural deformations important to the pore formation process that are not expected to 

be driven by electrostatic interactions. Moreover, the primary goal of the CG simulations was to generate 

reasonable atomistic configurations after following the backmapping procedure described below. The Verlet 

cutoff scheme was implemented for neighbor searching with a buffer tolerance of 0.005 kJ mol-1 ps-1. 

Lennard Jones interactions were cut off at a distance of 1.1 nm, and electrostatic interactions were calculated 

with the particle mesh Ewald (PME) method with a short-range cutoff of 1.1 nm.53 A velocity-rescale 

thermostat54 was used to control the temperature at 323 K with a time constant of 1 ps and the Berendsen 

barostat55 controlled the pressure at 1 bar with a semi-isotropic pressure coupling scheme with 3×10-4 bar-1 

compressibility and a 5 ps time constant. The system dielectric constant was set to 15 as recommended for 

the MARTINI 2.2 force field.50  

Backmapping Coarse-Grained Systems to All-Atom Representations 
CG systems were backmapped to all-atom (AA) representations compatible with the CHARMM36 force 

field using an implementation of the backward tool.56 AMP amino acid sequences along with CG and AA 

representations are shown in Figure 1a-c, and corresponding helical wheel representations for all AMPs are 

shown in Figure S3. Each system was energy minimized using a two-step approach as recommended by the 

initial implementation of backward56. First, all peptide-peptide and membrane-membrane nonbonded 

interactions were set to zero and the group cutoff scheme was implemented to resolve atomic clashes and 

overlap from backmapping. Second, all nonbonded interactions set to their standard values for the 

CHARMM36 force field and the Verlet cutoff scheme was used. Both energy minimization steps 

implemented the steepest descent algorithm with a maximum step size of 0.1 nm and tolerance of 1000 kJ 

mol-1 nm-1 for a maximum of 1000 steps. 

 

 

Figure 1: All-atom to coarse-grained mapping representation and amino acid sequence for each of the antimicrobial 

peptides studied: (a) Aurein 1.2, (b) Melittin, and (c) Magainin 2. Positively and negatively charged side chains are 

colored blue and red respectively. Additionally, the protonated N-terminus is blue for Aurein 1.2 and Melittin. (d) 

Schematic demonstrating nucleation CV (ξ) implementation along with representative system configurations at key ξ 

values for general peptide-containing (orange cylinders). DMPC systems. DMPC heads are red, peptides are orange 

cylinders, and water molecules as blue spheres. 
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Energy minimization of the AA systems was followed with 4 steps of NVT equilibration using timesteps of 

0.0002, 0.0005, 0.001, and 0.002 ps with 1000 kJ/mol position restraints on all lipid and peptide heavy 

atoms for 500 steps each. The Verlet cutoff scheme was implemented for neighbor searching with a buffer 

tolerance of 0.005 kJ mol-1 ps-1. Lennard-Jones interactions were implemented by smoothly switching 

forces to zero between 1 to 1.2 nm, and electrostatic interactions were calculated with the PME method 

with a short-range cutoff of 1.2 nm. A velocity-rescale thermostat was used to control the temperature at 

323 K to match the CG system temperature with a time constant of 0.1 ps. After NVT equilibration, three 

500 step NPT equilibration simulations were then conducted: the first with a timestep of 0.001 ps and 1000 

kJ/mol heavy atom position restraints, then with a timestep of 0.002 ps and 1000 kJ/mol heavy atom position 

restraints, and finally with a timestep of 0.002 ps and no restraints. The Berendsen barostat was 

implemented to control the pressure at 1 bar using a semi-isotropic pressure coupling scheme with a 4.5×10-

5 bar-1 compressibility and a 5 ps time constant. All other parameters were identical to NVT equilibration. 

The final configurations obtained from the backmapping and AA system equilibration were then used for 

further umbrella sampling calculations as detailed below. 

Implementation of Nucleation Collective Variable 
To bias the formation of transmembrane pores, the nucleation CV (ξ) proposed by Hub and Awasthi40 was 

implemented as a collective variable in PLUMED by adapting a previous methodology used to form a 

fusion stalk between parallel bilayers in MARTINI.57 As described previously,40 ξ increases from 0 to 1 as 

more polar atoms occupy Ns cylinder slices each of height ds that span a cylinder of height Ns × ds and radius 

R. The cylinder height is chosen to match the thickness of the lipid membrane, including the polar head 

group region, as schematically shown in Figure 1d. Equation 1 defines ξ as: 

 

ξ =  𝑁𝑠
−1 ∑ 𝛿𝑠(𝑁𝑠

(𝑝))

𝑁𝑠−1

𝑠=0

 

 

(1) 

In this equation, 𝑁𝑠
(𝑝)

 is the number of phosphate oxygen and water oxygen atoms in a slice s of the 

cylinder. The switching function δs is applied to 𝑁𝑠
(𝑝) to smoothly increase  𝛿𝑠(𝑁𝑠

(𝑝)) from 0 to 1 for each 

slice as defined in Equation 2: 

 
 𝛿𝑠(𝑁𝑠

(𝑝)) = { 
𝜁 ×  𝑁𝑠

(𝑝)                 , 𝑁𝑠
(𝑝) ≤ 1

1 − 𝑐 ×  𝑒−𝑏 × 𝑁𝑠
(𝑝)

, 𝑁𝑠
(𝑝) > 1

 
 

(2) 

ζ indicates the value of 𝛿𝑠(𝑁𝑠
(𝑝)) upon the addition of the first polar atom (𝑁𝑠

(𝑝)
 = 1), which exponentially 

approaches 𝛿𝑠(𝑁𝑠
(𝑝)) = 1 when 2 or more polar atoms occupy a slice (𝑁𝑠

(𝑝)
 > 1). ζ is a coefficient that is 

constant during the implementation of ξ and is equal to 0.75 for all simulations in this work. The other 

parameters are b = ζ/(1- ζ) and c = (1- ζ)eb. A value of ξ = 0.2 corresponds to a flat, pore-free membrane, 

whereas a value of ξ = 1.0 corresponds to a fully nucleated pore with 3 or more polar atoms in each slice.40 

Figure 1d shows the parameters used to calculate ξ, along with expected behavior for a representative 

peptide-containing system during the evolution of ξ from 0.2 to 1.0. 

For the AA systems, recommended parameters from the initial implementation of ξ for DMPC were utilized: 

R = 0.8 nm, ζ = 0.75, ds = 0.1 nm, and Ns = 26. However, to adapt ξ to CG systems, PO4 beads in DMPC 

(representative of phosphate groups) and W beads (representative of 4 atomistic water molecules) were 

counted in the implementation of ξ instead. To account for the reduced granularity of the system, the height 

of the cylinder slices ds was increased from 0.1 nm to 0.2 nm, which is consistent with previous studies that 

implemented the nucleation CV for CG systems.58, 59 Additionally, Figure S6 shows that trends in pore water 
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content as a function of ξ for CG systems are in good agreement with AA systems when using this larger 

slice thickness. The values of R and ζ were kept as 0.8 nm and 0.75 respectively. To determine the value of 

Ns, unbiased simulations of the pure 288-lipid DMPC membrane system were performed for a range of 

values and Ns was chosen as 16 to match an average value of ξ = 0.2 most closely (Figure S2).  

Umbrella Sampling Calculations 
To prepare CG systems for umbrella sampling, starting configurations were generated by increasing ξ 

during a 50 ns steered MD simulation from an initial value of ξ = 0.2 to ξ = 1.0 using a harmonic potential 

with a force constant of 30,000 kJ mol–1. A total of 23 windows were used for umbrella sampling: 11 

windows from ξ = 0.2 to ξ = 0.7 with an increment of 0.05 and force constant 10,000 kJ mol-1 and 12 

windows from ξ = 0.725 to ξ = 1.0 with an increment of 0.025 and force constant 20,000 kJ/mol-1. Each 

window was simulated for 600 ns. The first 500 ns of each umbrella sampling trajectory was discarded to 

account for long timescale equilibration and diffusion of peptides around the pore. The same simulation 

parameters from the unbiased equilibration system preparation step (‘System Preparation and Coarse-

Grained Simulation Parameters’ section) were adapted for these production umbrella sampling runs, except 

the Parrinello-Rahman barostat60 with a 12 ns time constant was used instead of the Berendsen barostat. 

Simulation configurations were saved every 0.1 ns for analysis. 

For AA systems, final configurations from the 500 ns CG equilibration simulations were backmapped to 

AA resolution (as described above in the ‘Backmapping Coarse-Grained Systems to All-Atom 

Representations’ section) and used as starting configurations for umbrella sampling, using the same number 

of windows and ξ spacing as CG systems. A force constant of 5,000 kJ mol-1 was used for the ξ = 0.2 to ξ 

= 0.7 windows, and a force constant of 10,000 kJ mol-1 was used for the ξ = 0.7 to ξ = 1.0 windows. Each 

window for the Pure DMPC and 8 MAG systems was simulated for 50 ns and each window for the 8 AUR 

and 8 MEL systems was simulated for 70 ns. The first 10 ns was discarded for equilibration. System 

parameters were adapted from the last NPT simulation for system preparation (‘Backmapping Coarse-

Grained Systems to All-Atom Representations’ section), using the Parrinello-Rahman barostat instead of 

the Berendsen barostat and using either a temperature of 300 K or 323 K. Simulation configurations were 

saved every 0.1 ns for analysis. Potential of Mean Force (PMF) profiles were then constructed using 

Grossfield’s implementation of the Weighted Histogram Analysis Method61 for both the CG and AA 

representations of the four systems. 

Results and Discussion 

Coarse-Graining Increases Peptide Lateral Diffusion and Pore Lining 
The goal of this study is to investigate the impact of membrane-bound peptides on the thermodynamics of 

pore formation, which requires simulation workflows that obtain configurations of reasonable peptide-lined 

pore structures. While atomistic simulations can generate physically reasonable pore formation free 

energies,40 the slow lateral diffusion of membrane-bound peptides typically requires the configuration of 

peptides near the pore to be predetermined.28 To overcome this challenge, we first perform CG simulations 

using the MARTINI 2.2 force field to accelerate lateral diffusion of membrane-bound peptides prior to 

eventual backmapping to enable AA simulation. Compared to AA forcefields, the smoothed energy 

landscape of CG simulations accelerates the dynamics of lipids and proteins relative to experimental 

measurements.50, 62, 63 Faster lateral diffusion permits peptides to line pores as a consequence of long 

timescale natural clustering27 at multiple ξ values. To corroborate that this approach would expedite peptide 

pore lining, we compared lateral diffusion coefficients (Dlat) computed from CG and AA simulations for 

DMPC lipids (from the Pure DMPC system) and for the aurein 1.2 (AUR), melittin (MEL), and magainin 

2 (MAG) peptides (see Section S2 for more details). Figure S8 shows that the value of Dlat for DMPC from 
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AA simulations (19.68 x 10-12 m2s-1) is comparable to experimental measurements using pulsed field 

gradient NMR (20 x 10-12 m2s-1)64 while CG systems yield Dlat values that are 2.2 to 9.3 times larger. The 

lower Dlat for MEL (1.38 x 10-12 m2s-1) and MAG (1.56 x 10-12 m2s-1) peptides compared to AUR (3.35 x 

10-12 m2s-1) can be partially explained by molecular crowding and electrostatic repulsion for these peptides 

because they are longer and more charged than AUR. Similar findings and rationale were previously found 

in atomistic simulations of the lateral diffusion of polycations adsorbed to POPC as the number of highly 

charged cations increased.43  

We next determined the propensity of each peptide to line pores, and if the number of peptides lining the 

pore converges, during the 500 ns CG equilibration simulations that were performed for the umbrella 

sampling windows with CV values corresponding to the onset of pore nucleation (ξ ≥ 0.7). For each system, 

we first define the pore peptide density as the peptide density within 0.5 nm in the z direction (1 nm total) 

of the pore center and was calculated using the gmx density tool by integrating the density profile of all 

peptide beads (in kg/m3) from z = -0.5 nm to z = 0.5 nm. This range corresponds to the central, hydrophobic 

region of the membrane, and consequently only peptides in the middle of the pore contribute to the pore 

peptide density and no radial distance threshold relative to the pore is needed. Pore peptide densities were 

then divided by the density attributed to one pore-lining peptide (see Figure S10) to approximate the number 

of pore-lining peptides as a function of equilibration time. Figure 2 shows the average number of pore-

lining peptides averaged over 5 ns intervals (trajectories saved every 0.1 ns) for windows with ξ = 0.7, 0.85, 

and 1.0. Further information and visualization on how pore peptide density is calculated are included in 

Section S3. Figure S4 includes additional visualization of pore structures for ξ = 1.0 from all three 

simulation trials, and additionally illustrates that during equilibration it is possible for some peptides to 

diffuse to the lower leaflet (through the pore).  
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Figure 2: Analysis of peptide pore-lining during CG equilibration simulations for (a) 8 AUR, (b) 8 MEL, and (c) 8 

MAG. Plots at left indicate the number of pore-lining peptides vs. simulation time for umbrella sampling windows 

with ξ = 0.7 (blue), 0.85 (green), and 1.0 (red), corresponding to the onset of pore formation. Each point reports the 

average number of pore-lining peptides within a 5 ns interval (see Section S3 for calculation details). Analysis of pore 

lining for two simulation replicates are provided in Figure S10. Simulation snapshots show the top (middle image) 

and side (right image) views of the last simulation configurations for the ξ = 1.0 window. DMPC beads are grey, 

peptides are orange cylinders, and water beads are blue. Water beads are omitted in the top view and DMPC beads are 

omitted in the side view image for visual clarity. Simulation snapshots of the pure DMPC membrane at ξ = 0.7, 0.85, 

and 1.0 are provided for reference in Figure S5. 

For the AUR peptides (Figure 2a), both the ξ = 0.85 and 1.0 windows end with around 4 peptides lining the 

transmembrane pore. The number of pore-lining peptides exhibit large fluctuations throughout the 

simulations, and consequently it is unclear if there is a preferred number of peptides near the pore. 

Simulation snapshots indicate that the AUR peptides appear to line the pore on only one side in disordered 

structures for these ξ values. This observation could be indicative of unfavorable pore formation as 

supported by previous research pointing to AUR being too short to span lipid membranes as an α-helix65, 66 
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and MARTINI studies that observe strong clustering behavior between AUR peptides mostly mediated by 

favorable hydrophobic interactions with isoleucine.15 

Conversely, there is clear convergence after only 300 ns of equilibration for the MEL peptides in all three 

windows (Figure 2b), with 6 peptides lining the pore at ξ = 1.0. Although the peptides themselves are not 

directly biased when biasing ξ, during system equilibration the N-termini of the peptides are involved in 

pore lining while the highly charged C-termini remain in the interfacial region of the membrane. This 

behavior is similar to previous unbiased coarse-grained simulations of MEL peptides in POPC membranes, 

where a star-like configuration of 4 MEL peptides with their N-termini facing each other was a precursor 

to cooperative membrane penetration and pore formation.67 The high positive charge due to the lack of 

amphiphilicity at the C-terminus of MEL (Figure 1b) is the most likely contributor to this lining behavior 

by MEL N-termini, preventing unfavorable interactions of hydrophobic DMPC tails with charged MEL 

sidechains if the C-terminus were to line the pore. Unlike AUR and MAG, MEL also preferentially lines 

the pore at ξ = 0.7, further supporting its propensity to line pores. Coupled with its relatively small molecular 

diameter near the N-terminus (Figure 1b), MEL has a large number of hydrophobic residues (I, L) in this 

region to mediate favorable interactions with lipid tails, while hydrophilic residues (K, T) face the aqueous 

environment.68   

Lastly, MAG has similar pore lining tendencies to AUR, including a lack of peptides in the pore at small 

pore sizes (ξ = 0.7, Figure 2c). Approximately 3 peptides line the aqueous pore in a disordered structure 

while the remainder cluster on the membrane surface as visualized in the simulation snapshots shown in 

Figure 2c. We attribute the larger fluctuations of the converged number of pore-lining peptides for MAG 

compared to MEL (Figure 2) to the number of large side chains for MAG compared to MEL (Figure 1) in 

the mid-helix that line the pore and contribute to fluctuations in the pore peptide density. These observations 

suggest that a higher peptide to lipid ratio (~1/20) than studied in our simulations (1/36) may be required 

to promote pore lining by a larger number of MAG peptides, as supported by early MARTINI simulations 

of DPPC bilayers25 as well as experimental NMR spectroscopy69 and LUV calcein leakage70 results. 

Alternatively, the relatively low number of pore-lining MAG peptides could be because the diameter of 

MAG is large compared to the pore radius sampled by ξ due to bulkier sidechains in the helix (e.g. K and F 

in Figure 1c) compared to MEL.71, 72 Nonetheless, we note that the number of pore-lining peptides for the 

fully nucleated ξ = 1.0 state is comparable to AUR, motivating further analysis of the effect of MAG on 

pore nucleation.  

To further support convergence of peptide configurations in the pore, we analyzed the prevalence of 

sidechain-sidechain interactions between peptides for the ξ = 1.0 window for the beginning (0-50 ns) and 

end (400-450 ns and 450-500 ns) of the 500 ns equilibration simulations. We summed the total number of 

instances where the centers of geometry for pairs of sidechains from different peptides were within 0.8 nm, 

and normalized them by the total number of sidechain-sidechain interactions between all peptides. Figure 

S11 shows heatmaps of peptide sidechain interactions as percentages of the total number of peptide 

sidechain interactions. AUR shows large differences in these sidechain interaction distributions when 

comparing the 400-450 ns and 450-500 ns trajectory blocks, reflecting the disordered pore structure 

described above. For AUR, pore lining is largely stabilized by strong C-terminal interactions (Figure S11a), 

which have been shown to be important for peptide aggregation and membrane disruption in DMPC 

membranes.15 Conversely, MEL and MAG sidechain interaction profiles are stable for the last 100 ns of 

equilibration, further supporting convergence of the number of pore-lining peptides (Figure 2b-c) for the ξ 

= 1.0 window. Final MEL interactions are concentrated near the N-terminus due to preferential pore lining 

of this region (Figure S11b). Final MAG configurations appear to be largely stabilized by strong hydrogen 
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bonding interactions such as H7-S23, K11-E19, and K11-S23 (Figure S11c), as discussed in more detail 

below. 

Taken together, these results demonstrate that coarse-grained simulations using the ξ CV can lead to the 

observation of peptide-lined aqueous pores without needing to predefine peptide configurations on the 

membrane surface or biasing the peptide beads themselves, motivating further analysis of the 

thermodynamics of pore formation in the presence of peptides. 

Peptides Decrease Free Energies for Pore Formation in CG Simulations 
We next computed PMFs for pore formation in the presence of peptides for the CG systems. Because ξ was 

first developed to bias the oxygen atoms of water molecules and lipid head phosphates for the atomistic 

Berger and CHARMM36 force fields,40 we performed several tests comparing PMFs for pure DMPC 

obtained from biasing MARTINI water beads and DMPC lipid PO4 beads to confirm sufficient membrane 

size, absence of hysteresis, and convergence (see section S4 for more details). These comparisons indicate 

that 288 lipids are sufficient to avoid finite-size artifacts (Figure S12a), initial configurations sampled from 

either a forward (ξ = 0.2 to 1.0) or backward (ξ = 1.0 to 0.2) steered molecular dynamics simulation lead to 

identical PMF profiles (Figure S12a), and PMF convergence is observed within 20 ns of sampling for each 

window (Figure S12b). There is also a PMF minimum near ξ = 0.2 which confirms proper selection of the 

number of slices of the membrane-spanning cylinder. These results support the choice of parameters used 

to apply the nucleation CV for the CG simulations. 

Figure 3a shows PMFs for the Pure DMPC, 8 AUR, 8 MEL, 8 MAG systems for values of ξ ranging from 

0.2 (flat membrane) to 1.0 (fully nucleated pore). Each curve is the average of three replicas that differ in 

the random sampling of velocities after 500 ns of equilibration, leading to unique 100 ns production 

simulations. Each replica is set to zero independently at its minimum value and the standard error across 

the 3 trials is indicated by the shaded region around each PMF. Consistent with the Pure DMPC umbrella 

sampling simulations, membrane systems containing 8 peptides (AUR, MEL, or MAG) embedded in the 

upper leaflet also demonstrate a free energy minimum at ξ ≈ 0.2, and there is sufficient convergence after 

only 40 ns of umbrella sampling for each system (Figure S13). 
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Figure 3: PMF profiles for (a) CG systems at 323 K, (b) AA systems at 300 K, and (c) AA systems at 323 K. Shaded 

regions indicate the standard error from 3 replicate umbrella sampling trials. PMFs were computed using WHAM with 

100 bins from ξ = 0.12 to ξ = 1.0. The onset of pore lining by peptides corresponds to kinks in the CG PMF profiles 

for the 8 AUR, 8 MEL, and 8 MAG as captioned in (a). Pore formation barriers (in kJ/mol) are reported for AA systems 

(b-c) on each plot for pure DMPC (blue) and 8 MEL (green) systems. Convergence analyses for all PMF profiles are 

provided in Figure S13-S15. 
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Previous studies implementing ξ with all-atom force fields have observed nonmonotonic PMF that exhibit 

maxima coinciding with pore nucleation at approximately ξ = 0.7 – 0.9 followed by minima at ξ = 1.0, 

which is consistent with pore metastability with a nucleation barrier at intermediate values of ξ. 40, 42, 43 

Conversely, Figure 3a shows that all PMFs computed for the CG systems monotonically increase up to ξ = 

1.0. The decrease in slope of the PMF for ξ > 0.6 suggests that peptides lining the pore (Figure 2) help to 

alleviate the energetic penalty of pore formation; however, there is no nucleation barrier that would indicate 

possible metastability for larger pore sizes. This behavior and significant overestimates of pore free energies 

have been observed in the literature before33, 73 and may be a consequence of higher line tensions and 

bending moduli of membranes in CG systems. For instance, previous molecular dynamics studies have 

related the change in the surface tension of POPC membranes with respect to the change in bilayer area 

through the calculation of the compressibility modulus (KA) and found that the MARTINI 2.2 force field 

overestimates KA by over 100 mN/m compared to the CHARMM36 force field (297 vs. 188 mN/m) using 

the same run conditions and bilayer size.74 We also calculated KA from additional 500 ns simulations of pure 

DMPC membranes at 323 K and found that MARTINI overestimates KA by 38% compared to CHARMM 

(Figure S16), which we interpret as partially responsible for the higher free energy for pore formation in 

CG (Figure 3a) vs. AA (Figure 3c) simulations at 323 K. 

Although ξ has not been tested for AMP-aided pore formation in the literature, similar monotonically 

increasing PMF trends have been observed in MARTINI systems for the tanh CV37 applied to DPPC 

bilayers in the presence of cyclic nonarginines38 and an adaptation of ξ to combine bilayer fusion and pore 

formation.59 Nonetheless, the lower value of ξ at which the PMF slope starts to decrease for MEL (ξ =0.65) 

compared to MAG and AUR (ξ > 0.7) and the overall larger decrease in PMF relative to the Pure DMPC 

system (on the order of 40 to 50 kJ/mol) hints at the greater propensity for MEL to form and stabilize pores. 

The rank-ordering of the PMFs at ξ = 1.0 for the 3 peptide systems also supports observations of equilibrated 

pore lining (Figure 2). The disordered pore lining of AUR and MAG leads to PMF values between those of 

the pure DMPC system and MEL system, the latter of which displayed significant toroidal-type pore lining 

at the upper limit of ξ (Figure 2b). These observations suggest that MARTINI can capture trends in the 

degree to which peptide pore lining promotes pore formation by reducing corresponding pore nucleation 

free energies, although the model does not predict metastable, long-lived pores. 

Peptides Reduce Pore Nucleation Free Energy Barriers in AA Simulations 
To better resolve energetic barriers for pore formation and more accurately capture system interactions, 

umbrella sampling was performed for AA systems after backmapping final configurations from the 500 ns 

equilibrated CG configurations. Figure 3b-c shows average PMFs obtained from 3 replicate simulations at 

both 300 K and 323 K. Standard errors across the 3 replicates are visualized as shaded regions. Consistent 

with the initial implementation of ξ,40 the observation of a nucleation barrier (i.e., a PMF maximum) 

depends upon temperature. There is a clear PMF maximum between ξ = 0.7 and ξ = 0.9 at 300 K (Figure 

3b) for all systems, but this barrier is less clear or non-existent depending on the system at 323 K (Figure 

3c). Additionally, there is roughly a 10 kJ/mol difference between the 300 K and 323 K systems as expected. 

Small differences in the values of the energy barrier obtained in this study compared to values reported by 

Hub et al. for a 128 lipid DMPC bilayer (45.3 vs. ~42 kJ/mol for 300 K and 58.1 vs ~52 kJ/mol for 323 K) 

using the same CHARMM36 force field can be attributed to the larger 288 lipid DMPC systems used in 

this study, which has been shown to slightly affect barrier magnitudes.40  

The key takeaways from the AA PMFs are: (1) all systems exhibit a free energy barrier for pore nucleation, 

since the PMF always has a positive maximum relative to a flat membrane state (ξ = 0.2) for the conditions 

studied; (2) there is a local minimum in the PMF at ξ = 1.0 (unlike in CG systems, Figure 3a), which implies 

the formation of a long-lived metastable pore; (3) the barrier for forming this metastable pore decreases in 
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the presence of peptides (AUR, MEL, MAG) compared to pure DMPC, implying a higher likelihood of 

pore formation; and (4) AA PMFs show a similar rank ordering of the 4 system types compared to CG 

PMFs (Figure 3a). We note that expanding the pore to larger sizes not accessible to ξ may decrease the free 

energy further towards a metastable minimum, which has been demonstrated in a recent extension to the 

nucleation CV that promotes pore expansion, although we expect the relative values of the barriers to be 

unchanged.75 Therefore, the PMF values at ξ = 1.0 for the systems in this study are not necessarily 

metastable free energy minima. Similarly, the difference in free energy between the value of the PMF at ξ 

= 1.0 and the PMF maximum may not correspond to the free energy barrier for pore closing; such a barrier 

would be higher if the free energy decreases upon pore expansion. For instance, the difference between the 

free energy of the fully nucleated pore (ξ = 1.0) and the PMF maximum for MEL is seemingly low for the 

AA system at 300 K (Fig. 3b), suggesting rapid pore closing. However, experimental studies have shown 

that MEL strongly stabilizes long-lived DMPC pores76, even with a peptide to lipid ratio as low as 1/100 

above the critical transition temperature (~=24 °C), indicating that MEL-lined pores do not close rapidly.77 

To confirm that the fully nucleated pore does not close rapidly in simulations, we conducted a 500 ns 

unbiased simulation starting from the last configuration of the ξ = 1.0 window for the AA MEL system at 

300 K. Figure S17 shows that the pore not only remains stable but also grows in size during this simulation 

(Figure S17b), which suggests that the MEL-lined pore may expand after full nucleation past the upper 

limit of ξ to a more stable, larger pore. These considerations highlight that the PMFs primarily permit 

analysis of nucleation free energy barriers and the structures of fully nucleated pores. 

Of the three peptides, MEL reduces the nucleation free energy barrier to the greatest extent regardless of 

temperature, with the nucleation barrier decreasing by 35% from 45.3 kJ/mol to 29.3 kJ/mol at 300 K and 

by 44% from 58.1 kJ/mol to 32.2 kJ/mol. This decrease is consistent with the ability of MEL to act as a 

pore-forming AMP, and is comparable to similar decreases in nucleation free energy barriers predicted for 

POPC membranes in the presence of other pore-forming compounds, such as the antifungal drug 

itraconazole42 and polycationic species.43 At 300 K, both AUR and MAG have similar free energy barriers 

for pore nucleation (~38-40 kJ/mol); however, the PMF at ξ = 1.0 is significantly decreased for MAG 

compared to AUR. These results suggest that while barriers to pore formation are similar for both peptides, 

the increased energetic stability of MAG-lined pores for larges values of ξ (corresponding to fully nucleated 

pores) would lead to longer-lived pores once formed, especially given the sharp decrease in the PMF slope 

past the nucleation barrier for MAG compared to AUR and MEL (Figure 3b). However, as noted above, 

confirming this increase in pore stability would require further analysis of larger pore sizes.  Nonetheless, 

these results are consistent with experimental observations that MEL promotes pore formation, AUR does 

not, and MAG exhibits behavior between these extremes. 

Melittin Pore Structure Differs from Other Peptide-Containing Systems  
We next sought to understand differences in the PMFs by analyzing the simulation configurations at full 

pore nucleation (ξ = 1.0) and relating simulation observations to known mechanisms of pore formation. We 

first performed number density analysis for each system at 300 K to study the spatial distribution of different 

system components. Starting from the radial and z center of the pore, atomic positions obtained from the 

last 20 ns of each trajectory were histogrammed into bins with radius 0.1 nm (from 0 to 5 nm) and height 

0.1 nm in z direction (from -3.5 to 3.5 nm), and the number of atoms for each group present per bin was 

divided by bin volume in nm3 using an in-house python script. 

Figure 4 shows number densities for the phosphates of DMPC and oxygen atoms of water (biased as part 

of ξ), all peptide atoms, and Cl- counterions, with horizontal lines indicating the approximate regions 

corresponding to DMPC head groups. Using the pure DMPC system (Figure 4a) as reference, there is a 

clear correlation between the densities of DMPC head phosphate groups and water oxygen atoms when a 
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pore with a maximum diameter of roughly 2 nm is formed at ξ=1.0, which is because lipid head groups 

deform to line the pore and alleviate unfavorable water-lipid tail interactions. This pore size during full 

nucleation and hourglass shape is consistent with previous studies of pores that have conducted group 

density analysis with the implementation of this CV.42, 78, 79  

Comparing DMPC head phosphate and water oxygen profiles with peptide-containing systems (Figure 4 b-

d), the 8 AUR system (Figure 4b) only alleviates pore phosphate density slightly, and the peptide density 

indicates that there is tight clustering amongst the peptides but no full pore lining between upper and lower 

leaflets. This peptide clustering behavior is consistent with equilibrated CG systems at the ξ=1.0 sampling 

window (Figure 2a). Conversely, the 8 MEL system (Figure 4c) shows a significant decrease in head 

phosphate density across the length of the pore and near 0 nm-3 density within the middle 0.5 nm. This is 

supported by the large peptide number density across the full range of the membrane. Interestingly, the 

elliptical character of the nucleated pore is also diminished as the pore appears to reach a size of close to 3 

nm. This more squarish water profile could be indicative of a higher likelihood of a structured toroidal pore 

mechanism of MEL relative to AUR and MAG peptides (further supported with visualizations of pore 

structures across replicate trials in Figure S4), similar to previous findings in the literature for both 

experimental19, 77 and computational29 studies. Additionally, the 8 MEL system is the only system with a 

substantial counterion density in the pore, implying the formation of a larger, more permissive pore. 
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Figure 4: Group number densities (nm-3) from AA umbrella sampling trajectories for ξ = 1.0. Number densities are 

shown for DMPC lipid head phosphate groups, water oxygen atoms, any peptide atom, and Cl- counterions for (a) 

Pure DMPC, (b) 8 AUR, (c) 8 MEL, and (d) 8 MAG. Number density heat maps are based on 0.1 nm bins for the 

distance projected onto the z-axis (z-distance) and radial distance in the xy-plane away from the geometric center of 

the pore in the membrane. Horizontal black lines on each plot represent the fluctuation range of DMPC head 

phosphates. All replicate and trial-averaged number density profiles are provided in Figures S23-S24. 

 

The 8 MAG system (Figure 4d) demonstrates some decrease in phosphate density near the upper but not 

lower membrane leaflet, and the peptide density confirms that MAG prefers to remain near the upper leaflet 

after membrane binding compared to MEL. Further analysis of the AA umbrella sampling trajectories 

(described below) details this observation; however, one simple explanation is that pores of ~2 nm diameter 

are not large enough to adequately incorporate all 8 peptides given prior literature that MAG-induced pores 

of up to 8 nm in diameter have been resolved in lipid vesicles using neutron scattering and cryo-EM.72 

However, MAG pore diameters of 2-4 nm have also been resolved using fluorescence and neutron-
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scattering studies.80, 81 Taken together, these results point to MAG preferring larger pore sizes than the upper 

limit of ξ, which supports free energy trends discussed for this peptide (Figure 3b). 

Peptide Tilt Angles Corroborate Melittin’s Increased Propensity to Line Pores 
To better quantify the pore-lining propensity of each peptide, peptide tilt angles were calculated from the 

umbrella sampling production trajectories at different stages of the pore nucleation process. The tilt angle 

of each peptide was defined as the average angle between the vector connecting the N-terminus backbone 

nitrogen to the C-terminus backbone carbon and the membrane xy-plane. Angles close to 0° indicate 

peptides lying approximately in the plane of the membrane that are adsorbed to the membrane surface 

whereas angles close to 90° indicate peptides aligned parallel to the membrane normal that are lining the 

pore. Figure 5a shows time-averaged peptide tilt angles with highlighted regions indicating ranges of tilt 

angles for membrane-bound peptides in the absence of the pore (ξ = 0.2). Figures 5b-5d show representative 

system configurations at the onset of peptide pore lining (ξ = 0.7 or 0.8) and for fully nucleated pores (ξ = 

1.0) for all three peptides. Similar trends are observed for all three replicas as shown in Figure S18. 

The tilt angles in Figure 5a indicate that MEL is capable of lining aqueous pores at earlier stages in the 

nucleation process (ξ =0.7) relative to AUR and MAG (ξ =0.8) as indicated by values much larger than the 

tilt-angles in the pore-free membranes. Simulation snapshots (Figure 5c) and the large tilt angles indicate 

that 3 MEL peptides line the pore for ξ =0.7 with the tight tilt angle distribution suggesting the formation 

of well-ordered toroidal-type pores. This result is consistent with previous MD simulations in DPPC 

bilayers that have shown that the N-terminus of MEL has a strong affinity for small local defects in 

membranes induced by thermal fluctuations, where the insertion of 1 MEL leads to a cooperative response 

of other MEL inserting their N-termini into the defect68, 82. This behavior can be largely attributed to the 

affinity of the largely hydrophobic N-terminus of MEL to the lipid tail region of membranes83. In 

comparison, only 1 peptide begins to line the pore starting at ξ =0.8 for AUR (Figure 5b) and MAG (Figure 

5d). These results are consistent with the CG (Figure 3a) and AA (Figure 3b-c) free energy profiles, in 

which MEL introduces either a kink in the PMF or a decrease in the PMF at a smaller value of ξ than the 

other two peptides, pointing to the effect of peptide-stabilized pores on these PMFs. Additionally, at full 

nucleation (ξ =1.0), there is some peptide diffusion to the lower leaflet for AUR and MAG but not for MEL 

as shown in Figure 5. The absence of MEL diffusion can be attributed to the strong anchoring of the highly 

cationic C-terminus of MEL to the lipid phosphate region of the upper leaflet, which has been corroborated 

by previous computational studies.68, 84
  

At full nucleation (ξ =1.0), only 2 MAG peptides have lined the pore in a transmembrane orientation (based 

on large tilt angles) compared to 5 and 6 for AUR and MEL respectively, suggesting that MAG less 

efficiently stabilizes membrane pores. The snapshots indicate that most MAG peptides instead retain a more 

disordered structure and stay in membrane-bound states near the pore. For AUR and MEL, the wider range 

of tilt angles (~30 degrees for AUR compared to ~20 degrees for MEL) at ξ =1.0 suggests a more disordered 

pore structure (Figure 5a) despite a similar number of peptides lining the pore. This disordered behavior for 

AUR is similar to a previous MD study in which 5 AUR peptides were pre-configured to vertically line a 

DPPC pore at similar peptide to lipid ratios as our study (1:25 vs. 1:36 for our systems), with large tilt angle 

ranges of 15-80 degrees.85 The consistent observation of disordered structures in both studies indicates that 

AUR is unlikely to form structured toroidal pores even in simple short-tail (DMPC and DPPC) lipid 

bilayers, which agrees with the less favorable free energy of pore formation observed in the PMFs. Together, 

these results support the general variations in the PMFs for the three peptides (Figure 3b) and indicate that 

the PMF for MEL has the earliest decrease in slope and lowest energetic barrier for nucleation across the 4 

systems studied due to its stronger propensity to line pores in ordered structures. 
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Figure 5: (a) Tilt angles vs. ξ for each of the 8 peptides in the Aurein 1.2 (AUR), Melittin (MEL), and Magainin 2 

(MAG) AA systems at 300 K. Shaded regions indicate the range of tilt angles for the pore-free membrane at ξ = 0.2. 

(b-d) Simulation configurations at the onset and end of pore formation for the (b) AUR, (c) MEL, and (d) MAG 

systems. All peptides are represented as orange cylinders; opaque peptides are lining the pore and semi-transparent 

peptides are not. Water molecules are represented as transparent blue spheres. 

 

Pore Formation Alleviates Lipid Disruption Associated with Peptide Binding 
Based on the relatively ordered structures observed for MEL-lined pores (Figures 4 and 5) compared to the 

other peptides, we next sought to determine if the disruption of lipid structure due to peptide interactions 
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and pore formation could be related to the PMF trends. A common metric for quantifying lipid structural 

order is the deuterium order parameter (SCD), which measures the alignment of lipid tail bonds (θ) relative 

to the membrane normal and is defined in Equation 3: 

 
𝑆𝐶𝐷 = <

3

2
cos2𝜃 −

1

2
> 

(3) 

Larger values (up to 1) indicate a higher degree of alignment of lipid tails to the membrane normal. This 

parameter has been extensively utilized in the literature to quantify lipid order in membrane simulations86, 

including due to changes in the value of ξ.43, 79 We calculated SCD relative to the DMPC membrane normal 

(taken as the z-axis of the simulation box). Figure 6a shows variation in SCD for the pore-free membrane (ξ 

= 0.2) and fully nucleated pore (ξ = 1.0) for one tail of the DMPC lipids; values for the other tail exhibit 

similar trends and are shown in Figure S19. Additionally, to compare lipid order profiles for lipids within 

close proximity of the fully nucleated pore (ξ = 1.0), Figure 6c shows values of SCD for lipids with head 

phosphate groups that are within a 2 nm radial distance of the pore center (schematically illustrated in 

Figure 6b), which we refer to as radial SCD values. 

 

 
Figure 6: Deuterium order parameter (SCD) values for atoms in one tail of DMPC for AA systems at 300 K. Values 

for the other tail are shown in Figure S19. (a) SCD for a pore-free membrane (ξ = 0.2) and fully nucleated pore (ξ = 

1.0). (b) Schematic showing the lipid groups used to compute radial SCD values, which include DMPC lipids with head 

phosphates (orange spheres) within a 2 nm radial distance (in the xy-plane) of the pore center. (c) Radial SCD values 

for the fully nucleated pore (ξ = 1.0). Error bars indicate the standard error computed from three replicates (Figures 

S20-S22). 
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For ξ = 0.2, the binding of 8 MEL (green) or 8 MAG (red) peptides to the membrane disrupt lipid tail 

structure relative to the Pure DMPC case (blue), which is apparent from the decrease in SCD values. By 

comparison, 8 AUR peptides (orange) have a minimal effect on lipid order when bound to the membrane.  

The difference between these peptides can be attributed to the higher positive charge density of MEL and 

MAG peptides compared to AUR and generally agree with prior results indicating membrane disruption 

upon MEL and MAG binding. For example, previous studies of MEL interactions with POPC-POPG 

bilayers have observed conformational realignments of lipids given the large influx of positive surface 

charge upon peptide binding, leading to orientation changes in the choline head group.87 For MAG, 

reductions in lipid tail order parameters of up to 25% have been observed for a variety of membrane types 

when 2 mol% peptide (roughly 1:50 P/L ratio) are bound based upon quadrupolar splittings of the 2H-NMR 

spectra.88 Additionally, experimental measurements have shown that increasing MAG adsorption leads to 

decreases in bilayer thickness in DMPC89, which would also lead to increased tail disorder at ξ = 0.2. 

Once the pore is fully nucleated (ξ = 1.0 in Figure 6b), the SCD values for the pure DMPC system decrease 

as expected compared to ξ = 0.2 due to lipids bending towards the hydrophilic pore; such disruption is 

energetically unfavorable. For the AUR system, SCD values remain similar for both ξ = 0.2 and ξ = 1.0, with 

values in the latter case again similar to the SCD values for the pore-free pure DMPC membrane. This 

comparison indicates that the 5 AUR peptides lining the pore alleviate tail disruption and thus decrease the 

energy for pore formation, which can explain the decrease in the PMF at ξ = 1.0 for the AUR system 

compared to pure DMPC (Figure 3b). For both the MEL and MAG systems, SCD values increase for ξ = 1.0 

to obtain values similar to those of pure DMPC in the pore-free membrane (ξ = 0.2). Counterintuitively, 

this result indicates that the disruption of lipid order due to binding of these peptides to the membrane in 

the absence of the pore is alleviated upon pore formation, which we attribute to the motion of peptides from 

membrane-bound regions to pore-lining structures. This favorable change in SCD values is in agreement 

with the PMFs for these peptides, which show deeper minima at ξ = 1.0 than the AUR peptides (Figure 3b), 

and which we can attribute to the decreased penalty for lipid disruption upon pore nucleation. 

To further support this hypothesis that lipid bending during pore formation is partially alleviated by peptide 

lining of the pore, Figure 6c presents radial SCD values to highlight lipid tail disruption for those lipids close 

to the pore itself. These values again support trends in the PMFs observed for the 4 systems (Figure 3b) – 

all peptides lead to lipid order parameters more similar (larger) to the pore-free system (pure DMPC in 

Figure 6a) indicating that peptide pore lining reduces the need for lipids to deform such that that phosphate 

head groups line the pore. MEL has the largest radial SCD values of the peptide-containing systems, pointing 

to its increased propensity to reduce lipid deformation and supporting the data in Figures 4 and 5. 

 

Pore Lining by Magainin 2 is Influenced by Salt Bridge Formation 
The analysis in Figures 4-6 supports the ability of MEL to most effectively stabilize pore formation through 

pore lining, while AUR least effectively does so, explaining the difference between these peptides in the 

PMFs shown in Figure 3b. The lipid tail order data also supports why MAG can have a metastable PMF 

minimum comparable to MEL by alleviating lipid disruption to a similar extent. The PMF barrier for MAG 

at ξ = 0.8, however, is large and comparable to AUR, which merits further analysis. Motivated by the low 

Cl- number densities observed for AUR and MAG within the pore center (Figure 4b and d) and the presence 

of both positively and negatively charged sidechains compared to MEL (Figure 1a and c), we next sought 

to calculate the propensity for AUR and MAG peptides to form salt bridges as a function of ξ to determine 

if these strong peptide-peptide interactions affect trends in the PMFs. Previous studies have suggested that 
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salt bridges between peptides stabilize their alpha-helical secondary structure90-92 and can lead to stabilized 

heterodimers in membranes that precede pore formation.93 

 

   

Figure 7: Comparison of salt bridge formation between Aurein 1.2 (AUR) and Magainin 2 (MAG) peptides 

at representative ξ values for the pore-free membrane (ξ = 0.2) compared to pore formation (ξ = 0.7, 0.8, 

0.9, 1.0) AA system at 300 K. (a) Normalized salt bridge values for AUR and MAG. Bold numbers indicate 

the sum across all four salt bridge types. (b) Top-down simulation view of salt bridges formed for MAG at 

ξ = 0.8 (beginning of peptide pore lining) vs. ξ = 1.0 (fully nucleated pore). Peptides are shown as orange 

cylinders, negative E sidechains as red sticks, positive K sidechains as cyan sticks, and DMPC lipids as 

grey sticks. Salt bridges are circled. 

 

AUR peptides have 2 cationic (K7, K8) and 2 anionic side chains (D4, E11), whereas MAG peptides have 

4 cationic (K4, K10, K11, K14) and 1 anionic (E19) side chain, so there are 4 possible types of salt bridge 

to consider for each peptide. We calculated the number of salt bridges for different values of ξ by defining 

a salt bridge as consisting of a nitrogen atom of a basic residue (K) and oxygen atom of an acid residue (D, 

E) within 0.4 nm of each other. We further defined the number of ‘normalized salt bridges’ as the total 

number of configurations in which a particular type of salt bridge (among the four possible) was observed 

in each umbrella sampling window divided by the total number of configurations (Figure S25). 



Page 22 of 30 

 

Figure 7a compares the number of normalized salt bridges (averaged across three replicates) for AUR and 

MAG peptides at four different values of ξ. For both peptides, there is negligible salt bridge formation for 

ξ values prior to pore formation and peptide lining of the pore (ξ = 0.2, 0.7). Interestingly, at the beginning 

of pore lining for both peptides (ξ = 0.8), MAG has over 4 times the probability to form salt bridges relative 

to AUR across all types of salt bridges. To understand this behavior for MAG, we analyzed all salt bridges 

sustained for at least half of the timesteps in the ξ = 0.8 umbrella sampling window (defined as ‘long-lasting 

salt bridges’) and identified 6 long-lasting salt bridges in the first simulation replica (visualized in Figure 

7b, ξ = 0.8). By comparison, salt bridges for AUR were more transient in nature, with only 1 long-lasting 

salt bridge during any of the three replicate simulations. 

This chain of salt bridges across the pore opening for the 8 MAG system and the much higher propensity 

for salt bridge formation in general over AUR could lead to the sharp peak in the PMF for this system prior 

to the ξ = 0.8 window (Figure 3b), which is not seen in any other system studied.  This is further supported 

by the decrease in overall salt bridges for MAG as the pore becomes larger (ξ = 0.9, 1.0). In the visualization 

of the ξ = 1.0 window (Figure 7b), there appears to be a restructuring of salt bridges to stabilize one of the 

two MAG peptides lining the fully nucleated pore (Figure 5a and d). With these results, we hypothesize the 

following behavior during pore formation in the 8 MAG system: (1) salt bridges force MAG peptides into 

unfavorable “disordered” pore lining configurations at the early stages of nucleation (0.7 < ξ < 0.8), leading 

to the sharp, large peak in the PMF for pore formation; (2) increasing the pore size (ξ > 0.8) releases spatial 

constraints on MAG and permits the peptides to span the pore and interact with counterions, leading to a 

significant decrease in the nucleation free energy (Figure 3b). These behaviors would be unique to MAG 

due to its strong propensity for salt bridge formation among the three peptides studied. 

Conclusions 
In this study, we have provided a generalizable methodology for investigating the energetics of membrane 

pore nucleation and pore lining by membrane-active species. Through the implementation of a hysteresis-

free nucleation collective variable (ξ)40, we have shown that a CG-to-AA backmapping approach can be 

utilized to first equilibrate peptide positions quickly around a nucleating pore with MARTINI CG 

representations of lipids and peptides before then backmapping these systems to the CHARMM36 AA force 

field to resolve free energy profiles for pore formation in atomistic detail. The key advantage of this 

methodology over previous studies is that pore formation in membranes can be observed as a result of 

natural peptide clustering and lateral diffusion rather than having to bias peptide configurations around a 

pore a priori. 

To our knowledge, this has allowed us for the first time to resolve energetic barriers for pore formation for 

the antimicrobial peptides aurein 1.2, melittin, and magainin 2 from AA MD simulations without direct 

biases on whole lipids or peptides and without predefining peptide positions relative to the pore. 

Comparison of pore formation free energies resolved with umbrella sampling for both the CG and AA 

systems validated the need for the backmapping approach because only the AA simulations demonstrated 

expected free energy barriers, which is likely due to overestimations of membrane line tensions and bending 

moduli in the MARTINI force field. Nonetheless, both CG and AA free energy profiles demonstrated 

Melittin’s increased propensity to line pores in DMPC membranes at smaller pore sizes (lower ξ values), 

and both CG and AA simulations predict lower free energy barriers for pore formation for melittin compared 

to aurein 1.2 and magainin 2. These calculations are in good agreement with literature findings that melittin 

promotes pore formation as a mechanism of antimicrobial activity.19, 20, 25, 77, 94 

To understand the peptide-mediated differences in pore formation free energies, we analyzed the AA 

simulation trajectories to quantify peptide, pore, and lipid structure through calculation of densities, peptide 
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tilt angles, the deuterium order parameter (SCD), and intermolecular peptide salt bridges. Our main 

conclusions are as follows: (1) Aurein 1.2 lines pores in a disordered structure and does little to alleviate 

either DMPC head phosphate density in the pore or lipid deformations in general upon pore lining, leading 

to the smallest decrease in the pore nucleation free energy barrier; (2) Melittin is the best pore former of the 

peptides studied as supported by strong toroidal-type behavior in tilt angle and group density analysis as 

well as clear alleviation of lipid deformation adjacent to the pore, leading to the largest decrease in the pore 

nucleation free energy barrier; (3) Magainin 2 has a weak propensity to line pores with only ~2-3 peptides 

lining the pore at the maximum value of ξ, which appears to be due to salt bridges between peptides and 

leads to a large pore nucleation free energy barrier. However, magainin 2 also introduces lipid disruption 

upon membrane binding that is alleviated when a pore forms, leading to a comparable decrease in the free 

energy of the nucleated pore (ξ=1.0) as melittin.  

We note that even in the presence of pore-lining peptides the pore nucleation barriers predicted by the AA 

simulations are large compared to thermal energy (e.g., the pore nucleation barrier for melittin in Fig. 3b is 

11.8 kBT, where kB is Boltzmann’s constant and T is temperature), suggesting that pore formation should be 

rare. However, a limitation of our study is that peptide concentration effects are not evaluated given the 

fixed 1/36 peptide to lipid ratio (P/L) for all systems. Experimental studies have shown that increasing 

peptide concentration in lipid membranes leads to increased area per lipid and lateral tension which are 

precursors to pore formation once a critical peptide concentration is reached.95, 96 For example, pore 

formation by magainin 2 has been proposed to be ‘stretch-activated’ based on experiments finding that the 

fractional change in area of DOPC:PG GUVs is directly proportional to the surface concentration of MAG 

and pore formation rate constants are greatly increased with increasing GUV area.71, 97 For melittin, peptide 

flip-flop to the inner leaflet of DOPC:PG GUVs has been observed to occur prior to pore formation with a 

proposed critical P/L of 1/4519; however, spontaneous pore formation in MARTINI simulations of DPPC 

bilayers has only been observed within 2 µs at very large P/L (~1/21) with half of the peptides initiated in 

the lower leaflet.25 Therefore, further analysis on differing P/L for melittin and magainin 2 using the 

methodology is this work could provide a better understanding of the concentration-dependent effects of 

these peptides on the free energy barrier, along with a systematic exploration of membrane tension effects 

at differing P/L. Similarly, future work will also consider whether increasing the pore size, such as through 

implementation of the expansion CV proposed recently75, leads to increased pore lining by magainin 2 and 

further stabilization of pore formation in the CG and AA simulations. Overall, the results of our study 

illustrate the atomistic insights achievable from the combined CG and AA simulation approach, which we 

believe will provide a framework for future efforts to quantify clinically applicable activity and pore 

formation metrics for varied antimicrobial materials. 
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