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Dynamically corrected gates in silicon singlet-triplet spin qubits
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Fault-tolerant quantum computation requires low physical-qubit gate errors. Many approaches exist to
reduce gate errors, including both hardware- and control-optimization strategies. Dynamically corrected
gates are designed to cancel specific errors and offer the potential for high-fidelity gates, but they have yet
to be implemented in singlet-triplet spin qubits in semiconductor quantum dots, due in part to the stringent
control constraints in these systems. In this work, we experimentally implement dynamically corrected
gates designed to mitigate hyperfine noise in a singlet-triplet qubit realized in a Si/SiGe double quantum
dot. The corrected gates reduce infidelities by about a factor of 3, resulting in gate fidelities above 0.99
for both identity and Hadamard gates. The gate performances depend sensitively on pulse distortions, and
their specific performance reveals an unexpected distortion in our experimental setup.
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I. INTRODUCTION

Quantum computers are predicted to solve some prob-
lems exponentially faster than classical computers [1,2].
One important challenge in realizing this potential is that
single- and multiqubit gate fidelities must be high enough
to enable use of error-correcting codes. For example, the
surface code has been shown to tolerate gate infidelities
in the range of 0.6% to 1% [3,4]. Moreover, the resource
requirements of error-correction schemes increase with
error rates. Thus, implementing gates with high fidelities
is critically important for quantum computers.

There are many different approaches to eliminate gate
errors. Hardware-level approaches can involve altering the
qubit design or fabrication to suppress noise and deco-
herence. In superconducting systems, for example, adding
a large capacitance in parallel to a Josephson junction
mitigates charge noise [5]; and in semiconductor spin
qubits, isotopic purification reduces hyperfine noise [6].
Because such hardware modifications are often challeng-
ing, control approaches are an attractive alternative to
improving coherence and fidelities. For example, param-
eter regimes that feature reduced sensitivity to noise, or
“sweet spots,” offer one route to increased coherence and
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fidelity [7,8]. Other strategies, like dynamical decoupling,
involve additional pulses to refocus qubit states.

While effective, the control methods discussed above
have limitations. Sweet spots require operating qubits
in specific parameter regimes, and dynamical decou-
pling approaches usually only implement identity gates.
Another control approach involves dynamical error correc-
tion through the careful design of control fields to achieve a
target operation while at the same time canceling errors to
known sources of noise. Such dynamically corrected gates
(DCGs) offer the prospect of significantly increased gate
fidelities at the cost of precise pulse control [9,10]. There
are many highly developed theoretical formalisms for the
construction of such gates [11–17]. However, experimental
demonstrations of DCGs are limited. Dynamically cor-
rected gates have been implemented in nitrogen-vacancy
centers in diamond [18] and in single-electron spin qubits
in silicon [19], and related work has demonstrated the
suppression of infidelity due to 1/f electrical noise in
spin qubits [20]. Although theoretical proposals for imple-
menting DCGs in singlet-triplet qubits have existed for
some time [14,15], DCGs have yet to be demonstrated
in these systems. This is due in part to constraints on
exchange pulses, which must be real and non-negative
for quantum dots like ours with strong electronic confine-
ment and in small magnetic fields [21,22]. This constraint
on exchange couplings, which essentially results from the
Lieb-Mattis theorem, limits the applicability of standard
nuclear magnetic resonance sequences [14] or numerical
optimal control methods such as GRAPE [23].

2331-7019/24/22(6)/064029(11) 064029-1 © 2024 American Physical Society

https://orcid.org/0009-0003-1668-1058
https://orcid.org/0000-0002-6447-6927
https://orcid.org/0000-0001-5044-3131
https://orcid.org/0000-0003-1666-9385
https://ror.org/022kthw22
https://ror.org/02smfhw86
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevApplied.22.064029&domain=pdf&date_stamp=2024-12-10
http://dx.doi.org/10.1103/PhysRevApplied.22.064029


HABITAMU Y. WALELIGN et al. PHYS. REV. APPLIED 22, 064029 (2024)

In this work, we design, implement, and assess
dynamically corrected identity and Hadamard gates on a
silicon singlet-triplet qubit to correct for hyperfine noise.
We use the recently developed space-curve quantum con-
trol (SCQC) formalism [24] to design our control pulses.
Crucially, the control pulses feature a small number of
parameters, which we can systematically vary to calibrate
the gates. Through process tomography, we find that the
DCGs reduce infidelities by about a factor of 3, compared
with standard uncorrected gates. As expected, the perfor-
mance of the gates depends sensitively on pulse distortions
and charge noise in our system, as confirmed by numeri-
cal simulations. Based on these numerical simulations, we
hypothesize the presence of a partially broken gate in our
system, which leads to an unexpected pulse distortion.

In total, our results establish the potential for high-
fidelity operations with corrected gates generated via the
SCQC formalism. While we demonstrate suppression of
hyperfine errors, these gates can in principle correct for
various forms of noise while respecting qubit control con-
straints [25]. Corrected gates also work even better if
the errors of the uncorrected gate are small. In the con-
text of semiconductor spin qubits, for example, corrected
gates could in the future be used to correct residual errors
from both hyperfine and electrical noise while respecting
bandwidth constraints on control pulses. Even in isotopi-
cally purified silicon qubits, electrical fluctuations remain
a critical source of errors [26].

II. EXPERIMENTAL SETUP

We investigate DCGs in a silicon singlet-triplet (ST)
qubit [6]. Unlike single-spin qubits, which require only
time-dependent real or effective magnetic fields for uni-
versal control, universal control in ST qubits involves both
magnetic and electric fields, making them an ideal plat-
form in which to explore the effectiveness of DCGs in
mitigating different forms of noise. Specifically, we use a
four-electron ST qubit [27] realized in a double quantum
dot fabricated on an undoped natural-abundance Si/SiGe
heterostructure with an overlapping-gate architecture as
shown in Fig. 1(a). The device is cooled in a dilution refrig-
erator to a base temperature of approximately 10 mK. The
two dots are formed under the plunger gates P1 and P2,
and we use the dot under Ps for charge sensing via radio-
frequency reflectometry [28]. We initialize and measure
the qubit via standard Pauli spin-blockade techniques.

The Hamiltonian for the ST qubit is H = 1
2 h(J (V)σ z +

�EZσ x), where J (V) is the exchange coupling, which
depends on the voltage pulse V applied to the barrier gate
B12, and �EZ is the difference in Zeeman energy between
the two dots. Most of the experiments discussed below
involve pulsing the exchange coupling between the dots. In
our device, we expect that �EZ results primarily from a g-
factor difference between the two dots and does not depend
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FIG. 1. Experimental setup. (a) Silicon double quantum dot
similar to the one used in the experiment. The plunger gates
P1 and P2 define the qubit (small yellow circles). The voltage
V applied to the interdot barrier gate B12 controls the exchange
coupling between the electrons. During the barrier-gate pulses,
compensating pulses are applied to the plunger gates P1 and P2
to keep the dot chemical potential fixed. The plunger gate Ps
defines the sensor dot, which is configured for radio-frequency
reflectometry. (b) Calibration data used to determine J and �EZ
for the identity gate. The calibration data for the Hadamard gate
are similar. (c) Voltage-dependent qubit frequencies and corre-
sponding fits to extract J and �EZ for the identity and Hadamard
experiments. The identity data are the frequencies extracted from
panel (b).

significantly on gate voltages [29,30]. The two terms in
the ST-qubit Hamiltonian are sensitive to different types
of noise. Fluctuations in the exchange coupling δJ result
from electrical noise, while fluctuations in the Zeeman gra-
dient δ�EZ primarily result from nuclear hyperfine noise.
In the remainder of this work, we concentrate on reduc-
ing the infidelity resulting from hyperfine fluctuations. We
model hyperfine fluctuations as Gaussian quasistatic noise
with a standard deviation σ . Typical values of σ/�EZ
in our experiment are 0.1–0.2. Values of �EZ in our
experiments are 2–3 MHz (Fig. 1), corresponding to inho-
mogeneous dephasing times for singlet-triplet oscillations
of 1/(

√
2πσ) ≈ 800 ns. These results are consistent with

previous reports in natural-silicon devices [31,32]. Values
of σ/�EZ in isotopically purified silicon would be several
orders of magnitude lower.

Before implementing the corrected gates, we calibrate
both �EZ and J (V). To do this, we perform a Ramsey
experiment consisting of a free evolution period at dif-
ferent values of the barrier gate voltage V between Xπ/2
pulses generated as �EZ rotations. Figure 1(b) shows
the data from the calibration experiment for the iden-
tity gate. To extract both �EZ and J (V) from these
data, we fit each time series to a decaying sinusoid
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to extract the voltage-dependent qubit frequency fq(V).
Then, we fit fq(V) to a phenomenological function fq(V) =√

J (V)2 + �E2
Z , where J (V) = J0 exp(V/V0), with J0, V0,

and �EZ as fit parameters. The form of fq(V) reflects the
fact that J (v) and �EZ are orthogonal terms in the qubit
Hamiltonian, and the form of J (V) reflects the commonly
observed exponential dependence of exchange couplings
on gate voltages [8,33]. Figure 1(c) shows the fits used in
this work for the identity gate. We used a similar data set
for the Hadamard gate. The values of �EZ differ slightly
for the two gates because a slightly different magnetic field
(between 0.3 and 0.4 T) and device tuning were used.
In our device, g-factor differences between the two dots
determine the value of �EZ .

III. IDENTITY GATE

Our goal is to design a DCG that is robust to δ�EZ to
leading order. In SCQC, the space curve �r(t) is defined by
the first-order error in the evolution operator in the frame
defined by the error-free evolution operator U0(t) [24]:

δU(t) = −ihδ�EZ

2

∫ t

0
dt′ U†

0(t
′)σ xU0(t′)

≡ −ihδ�EZ

2
�r(t) · �σ . (1)

Here, the vector �r(t) of coefficients appearing in this
expression can be interpreted as a space curve living in
three Euclidean dimensions. Our goal is to construct an
exchange pulse J (t) such that �r(tf ) = 0 = �r(0), i.e., the
space curve forms a closed loop, where tf is the duration
of the pulse. This ensures the error cancels out at t = tf .
This is in principle possible since J (t) determines U0(t),
which in turn determines �r(t). The power of SCQC is that
it provides a direct connection between J (t) and �r(t): hJ (t)
is proportional to the curvature of the space curve �r(t).

This means we can construct a DCG by first construct-
ing a closed space curve and then computing its curvature
to obtain the exchange pulse that implements it. We also
need to make sure that we achieve the desired target opera-
tion, U0(tf ), which can be guaranteed by imposing suitable
boundary conditions on the derivative of the space curve,
since

�̇r(tf ) = 1
2

Tr[U†
0(tf )σ xU0(tf )�σ ]. (2)

In addition to its curvature, a space curve in three dimen-
sions is also characterized by a second function called
torsion. It was shown in Ref. [34] that, for the Hamilto-
nian H above, the torsion is given by −h�EZ . A generic
space curve will have nonconstant torsion, which means
that, when constructing �r(t), we must take care to choose a
curve that has constant torsion, in addition to being closed.

Another challenge is that we must also make sure that the
curvature of �r(t) remains positive at all times since the
exchange coupling is always positive in our device [see
Fig. 1(c)]. We can satisfy these constraints by utilizing the
systematic procedure for designing closed curves of con-
stant torsion for SCQC presented in Ref. [35]. The idea is
to express the space curve in terms of its binormal curve
�b(t),

�r(t) = − 1
h�EZ

∫ t

0
dt′ �b(t′) × �̇b(t′), (3)

where �b(t) is a unit vector: |�b(t)| = 1. Any �b(t) will gen-
erate a space curve of constant torsion using the above
formula.

Each component of the integral in Eq. (3) is in fact the
area enclosed by the curve after projecting it onto a Carte-
sian plane orthogonal to that component. This means that
we can ensure that the space curve closes by construct-
ing a �b(t) that has vanishing-area projections. Following
Ref. [35], we can do this by first constructing a planar
curve

�bs(t) = 2
(

bx(t)
1 + bz(t)

,
by(t)

1 + bz(t)

)

with a discrete rotational symmetry and then stereographi-
cally projecting (from the south pole) the result onto the
surface of a unit sphere: �b(t) = (bx(t), by(t), bz(t)). The
rotational symmetry guarantees that the projected areas of
the spherical curve vanish. This procedure for constructing
�b(t) is illustrated in Fig. 2(a), while the resulting closed
space curve �r(t) is shown in Fig. 2(b). In this example, the
boundary conditions �b(tf ) = �b(0) and �̇b(tf ) = �̇b(0), which
ensure the curve closes smoothly (�̇r(tf ) = �̇r(0)), yield an
identity gate.

We can also extract the corresponding exchange pulse
directly from �b(t) by computing its geodesic curvature:

κg(t) =
�̈b · (�b × �̇b)

|�̇b|3
= J (t)

|�EZ | . (4)

The geodesic curvature gives the exchange coupling as a
function of time for the error-corrected identity gate, as
shown in Fig. 2(c). Based on the underlying threefold sym-
metry of �bs(t), the gate alternates between two values of J ,
which we refer to as J1 and J2, for different amounts of
time t1 and t2, respectively. The values of these parame-
ters depend on �EZ . For the experiments on the identity
gate described below, �EZ = 2.9 MHz, so J1 = 9.7 MHz,
J2 = 0.4 MHz, t1 = 60 ns, and t2 = 121 ns. The expected
infidelity of the gate is shown in Fig. 2(d).

A major benefit of our gate construction, compared with
other types of corrected gates, is the relatively small num-
ber of parameters (J1, J2, t1, and t2) required to describe
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FIG. 2. Constructing a dynamically corrected identity gate. (a)
To design a closed space curve of constant torsion and posi-
tive curvature, we first construct a planar binormal curve �bs(t)
with threefold rotational symmetry and then project it onto the
unit sphere to obtain a normalized binormal curve �b(t). The van-
ishing projected areas of �b(t) guarantee that the space curve
�r(t) is closed, as shown in panel (b), where the orthonormal
frame defined by the tangent vector �T(t) = �̇r(t), the normal vec-
tor �N = (1/|�̈r|) �̇T, and the binormal vector �b(t) = �T(t) × �N (t) is
also shown. (c) The resulting noise-robust exchange pulse is pro-
portional to the geodesic curvature κg(t) of �b(t). (d) The predicted
infidelity of the corrected and uncorrected gates as a function
of noise strength σ . The uncorrected gate is a 2π rotation when
�EZ � J .

the pulses. As a result, we can sweep the parameters to
calibrate the gate in a reasonable amount of time. Empiri-
cally, we find that sweeping J1 and J2 alone can relatively
quickly yield gates with high fidelity, as discussed further
below. Including the coarse tuning discussed in the previ-
ous section and the fine tuning discussed here, the entire
tune-up process takes a few hours. We usually implement
the full tune-up process each day.

To assess the performance of the gate, we perform
self-consistent standard quantum process tomography. To
account for state-preparation and measurement errors, as
well as tomographic rotation errors, we follow the calibra-
tion procedures described in Refs. [36–38]. In brief, we
use a fitting process that self-consistently finds the positive
operator-valued measure (POVM) operators that describe
our tomographic measurements. Our primary assumption
in this fitting process is that the purity of the qubit state
should smoothly decay in time as a result of dephasing.

Tomographic errors, for example, can result in a state
purity that appears to oscillate rapidly in time if the POVM
operators are imperfectly calibrated [36]. Once the POVM
operators are calibrated, we measure both the input and
output states for the specific DCG configuration, using a
maximum-likelihood method to determine the most likely
physical density matrices [39]. Through a constrained
direct inversion process, we find the most likely physical
process matrix corresponding to the gate and the resulting
gate fidelity F . See Appendix A for further information on
our tomographic calibration procedure.

To characterize the corrected identity gate, we sweep
β1 = J ′

1/J1 and β2 = J ′
2/J2, where J ′

1 and J ′
2 are the actual

exchange values during the gate, and J1 and J2 are the theo-
retically predicted values. We measure the process fidelity
at each value of β1 and β2 [Fig. 3(a)]. The observed opti-
mal configuration is similar to the predicted configuration,
and it has an optimal fidelity larger than 0.99, as shown
in Fig. 3. The measured performance of the gate also
agrees with numerical simulations that include the finite
timing resolution of our arbitrary waveform generator,
quasistatic hyperfine noise, quasistatic charge noise, and
pulse distortions, which arise from imperfections in our
setup (discussed further below), as shown in Fig. 3(c). The
simulations assume perfect state preparation and readout.
A main cause for the difference between the predicted opti-
mal configuration (β1 = β2 = 1) and the observed optimal
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FIG. 3. Process fidelity result for the identity gate. (a) Mea-
sured fidelity for the corrected gate. Here β1 and β2 are scaling
factors for the two exchange couplings which parameterize the
gate. The red dot indicates the predicted optimal configuration
β1 = β2 = 1, and the blue dot corresponds to the observed con-
figuration with the maximum fidelity. The black symbols indicate
other configurations with a fidelity equal to the maximum within
the uncertainty. (b) Measured fidelity of an uncorrected identity
gate, where t is the gate duration. (c) Simulated fidelity of the
corrected identity gate. (d) Simulated fidelity of the uncorrected
identity gate.
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configuration involves pulse distortions in our setup, which
we discuss in detail below. We also measure the fidelity of
an uncorrected identity gate [Fig. 3(b)], implemented as a
2π rotation when J = �EZ , and we find that the corrected
identity gate reduces the infidelity by more than a factor
of 10. The corresponding simulation for the uncorrected
identity gate is shown in Fig. 3(d).

IV. HADAMARD GATE

To design a nonidentity gate, we need to construct a
closed space curve of constant torsion that has a cusp at the
origin. For example, in the case where U0(tf ) is chosen to
be a Hadamard gate, we have �̇r(0) = x̂, while from Eq. (2)
we have �̇r(tf ) = ẑ. The boundary condition for the space
curve is ( �T, �b)t=tf = (�b, �T)t=0. We again use the method
of Ref. [35] to construct a binormal curve and impose
the boundary conditions on �b and its first derivative at
t = 0 and t = tf to ensure a Hadamard gate is generated.
To construct a suitable curve, we follow the approach of
Refs. [14,15,40] in which errors are canceled by concate-
nating a noisy target gate with a noisy identity gate with
equal but opposite error. In this spirit, we design �b(t) to
consist of segments corresponding to a noisy Hadamard
gate and segments corresponding to a noisy identity gate.
Our explicit construction is shown in Fig. 4 along with the
resulting exchange pulse.

While, in principle, this approach should enable high-
fidelity gates, we find that implementing these gates can
require exchange couplings outside the range of possi-
ble values for this device [Fig. 4(c)]. One way to solve
this challenge is to generate gates with longer times
and smaller exchange values. Another approach is to
relax the condition for complete closure of the space
curve. Empirically, we find that this process can gen-
erate gates with smaller exchange pulses and relatively
short times. The resulting partially closed gate is shown
in Fig. 4(c), and the expected infidelities are shown in
Fig. 4(d). While the partially closed gate does not per-
form quite as well as the fully closed gate, it requires
exchange pulses only about half as large as for the fully
closed gate. The resulting gate is parameterized by three
exchange values, JH , J1, and J2, and four time values,
tH , t1, t2, and tb, and the actual gate sequence consists
of exchange pulses (JH , J1, J2, J1, J2, J1, J2, J1) for times
(tH , t1−tb, t2, t1, t2, t1, t2, tb). For these experiments, �EZ =
2.5 MHz. Here JH = �EZ and tH = 1/(2

√
2�EZ) are

the noisy Hadamard gate parameters, which we optimize
through a calibration routine (see Appendix A). In addi-
tion, J1 = 22 MHz, J2 = 0.1 MHz, tb = 21.7 ns, t1 = 32
ns, and t2 = 109 ns.

To optimize the corrected Hadamard gate, we sweep β1
and β2 as before, and we measure the process fidelity at
each value of β1 and β2 [Fig. 5(a)]. For a range of parame-
ter configurations that differ slightly from the theoretically
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FIG. 4. Constructing a dynamically corrected Hadamard gate.
(a) A planar binormal curve �bs(t) comprising a piece with three-
fold rotational symmetry that generates a noisy identity gate
connected to an arc that generates a noisy Hadamard gate. The
stereographic projection of �bs(t) onto the unit sphere, �b(t), is
also shown. (b) The corresponding closed space curve �r(t). (c)
The resulting noise-robust exchange pulse is proportional to the
geodesic curvature κg(t) of �b(t). The shaded area corresponds to
the noisy Hadamard gate, while the unshaded area generates an
identity gate whose error cancels that of the Hadamard gate. (d)
Expected infidelity of the gate as a function of hyperfine noise
strength.

predicted values, we find gate fidelities > 0.99. Experi-
mentally, we find a maximum process fidelity of 0.9918 ±
0.0037. To assess how well the DCG corrects for errors, we
measure the process fidelity of the uncorrected Hadamard
gate, implemented as a square pulse with J = �EZ . In this
case, since the magnetic field determines the mean value
of �EZ , we sweep both ξ1 = J/JH and the gate duration
ξ2 = t/tH , where J is the actual value of the exchange cou-
pling during the gate, and t is the gate time. We find a
maximum uncorrected fidelity of about 0.9710 ± 0.0037
[Fig. 5(b)]. Thus, the DCG reduces the infidelity by about
a factor of 3. We compute uncertainties in the fidelities by
fitting the measured fidelities versus the scaling factors to
smooth polynomials. Then we take the standard deviations
of the distributions of the residuals. For numerical simula-
tions (discussed below), we find that this method appears
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FIG. 5. Process fidelity results for the Hadamard gate. (a)
Measured fidelity for the corrected gate. The red dot indicates
β1 = β2 = 1, and the blue dot corresponds to the observed con-
figuration with the maximum fidelity. The black symbols indi-
cate other configurations with a fidelity equal to the maximum
within the uncertainty. (b) Measured fidelity for the uncorrected
Hadamard gate. For each configuration, J = ξ1�EZ and the gate
duration t = ξ2/(2

√
2�EZ). (c) Simulated fidelity of the cor-

rected Hadamard gate. (d) Simulated fidelity of the uncorrected
Hadamard gate.

not to underestimate the actual standard deviations of the
distributions of fidelities over multiple runs with the same
configuration. See Appendix B for further details on the
uncertainty estimation.

We also numerically simulate the performance of the
Hadamard gate. Unsurprisingly, simulations without any
pulse distortions [Fig. 6(a)] disagree qualitatively with our
data. In particular, the measured high-fidelity region bends
down at small values of β2 [Fig. 5(a)], but the simula-
tion [Fig. 6(a)] does not show this effect. At first, one
might suspect the presence of an effective low-pass filter
in our setup, which would result from stray capacitances
and resistances in our cryostat wiring. However, simu-
lations including only an effective low-pass filter with a
time constant of a few nanoseconds also fail to qualita-
tively match our data [Fig. 6(b)]. Such a model gives a
result that slightly curves up at small values of β2. One
pulse distortion model that yields a downward curve con-
sists of a “partial” high-pass filter [Figs. 6(c) and 6(d)] (see
Appendix C). We envision that such a scenario could result
from a partially broken gate electrode. While we cannot
definitively say that one of our gates is broken, this sce-
nario is plausible because the grain size of the Al film used
to create the gates approaches the size of the gates them-
selves. Moreover, this model and the circuit parameters
we use to generate this pulse distortion yield simulation
results consistent with our data [Figs. 5(c) and 5(d)] and
physical expectations for a broken gate. Figure 6(e) shows
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FIG. 6. Effects of pulse distortions. (a) Simulated Hadamard
gate fidelity without pulse distortion. (b) Simulated Hadamard
gate fidelity with low-pass pulse distortion. (c) Cartoon of a
possible broken gate and its circuit representation. While the
drawing is not to scale, the typical lateral width of a gate is about
50 nm. (d) Circuit model that reproduces the pulse distortions
used in our simulations. The component values that match the
hypothesized distortion are R = 10 G	, C1 = 1 aF, C2 = 4 aF,
and C3 = 0.05 aF. (e) Pulse sequences used in simulating panel
(a) (red), panel (b) (green), and the output of our circuit model,
panel (d) (black). Overlapping the black curve is a blue curve
that implements the partial high-pass filter in our simulations
(see Appendix C). The black curve has been rescaled to account
for the capacitances in the circuit. Such a rescaling would be
accounted for in our calibration of J (V).

both the undistorted Hadamard pulse sequence as well as
the Hadamard sequence distorted by the circuit discussed
above. We expect that the differences between the simu-
lated and observed gate fidelities shown in Figs. 3 and 5
have to do with properties of the pulse distortions not
captured by our model.

V. DISCUSSION

One notable feature of our results is a larger improve-
ment in gate fidelity for the identity gate than the
Hadamard gate. In part, this occurs because the measured
uncorrected identity gate has a lower fidelity than the sim-
ulated uncorrected gate. The reason for this discrepancy is
unclear and is the subject of ongoing work. It may have
to do with possible correlated effects of hyperfine fluctu-
ations on both state preparation and readout and the gate
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TABLE I. Simulation of the effects of charge noise and hyper-
fine noise on DCG performance. Each number is a simulated
fidelity for the gate indicated by the row label, with the noise
configuration indicated with the column label. In the labels, “H”
and “I” refer to the uncorrected Hadamard and identity gates,
respectively. The “undistorted” gates refer to gates without pulse
distortions and with infinitely precise timing resolution. In the
column labels, �EZ represents hyperfine noise and J represents
charge noise. In the column labeled �EZ & J , both noise sources
are taken into account.

Gate �EZ & J �EZ J No noise

H 0.9881 0.9888 0.9996 1
DCG H 0.9977 0.9987 0.9981 0.9999
I 0.9754 0.9760 0.9994 0.9999
DCG I 0.9985 0.9989 0.9994 1
Undistorted DCG H 0.9974 0.9989 0.9983 1
Undistorted DCG I 0.9992 0.9996 1 1

itself (see Appendix A) or a potential violation of the qua-
sistatic noise assumption during experimental conditions.
In addition, the fidelity of the corrected identity gate is
also considerably higher than the fidelity of the corrected
Hadamard gate. The imperfect cancelation of errors in our
Hadamard construction likely contributes to this effect.

To assess the contribution of the different noise sources
to the overall infidelity of the DCGs, we conducted sim-
ulations with different combinations of charge noise and
hyperfine noise, as shown in Table I. For the uncorrected
gates, dephasing due to hyperfine noise contributes the
largest error. For the corrected gates, dephasing due to both
hyperfine and electrical noise appears to contribute roughly
equally to the infidelity. Based on these simulations, it also
appears that the fidelity of the corrected Hadamard gate is
not strongly affected by pulse distortions in our setup. On
the other hand, it appears that the identity gate could per-
form even better without pulse distortions. The reason for
this difference in sensitivity to pulse distortions is not clear
and will be the subject of future work. The last column
under “No noise” confirms perfect fidelity in the absence
of noise.

In summary, we have described the construction and
implementation of corrected Hadamard and identity gates
in a silicon singlet-triplet qubit. Because of the small num-
ber of parameters describing the pulses, we optimized
the gates by sweeping the control parameters, finding
improved fidelities for both the Hadamard and identity
gates. The results demonstrate the effectiveness of the
SCQC approach for designing the gates, as well as the
importance of pulse distortions on the overall gate fidelity.
For the gates we have explored here, areas of future work
include investigating the difference in sensitivity to pulse
distortions between the Hadamard and identity gates and
varying other pulse parameters, such as the timing, to
optimize the gates further.

We also envision that our results will motivate future
work on implementing corrected gates to correct for other
types of errors, such as those originating from electrical
noise in semiconductor spin qubits [25]. Corrected gates
of the type we have explored can also be implemented as
smooth pulses to respect control-pulse bandwidth restric-
tions [16] and even correct for pulse errors [25]. We also
emphasize that the relative improvement in gate fidelity
generally increases with the fidelity of the uncorrected gate
[Figs. 2(d) and 4(d)]. Thus, we expect that the gates that
we describe here should perform even better in isotopi-
cally purified spin qubits. As a result, corrected gates will
likely complement other techniques in the effort to lower
gate errors in quantum computing devices.
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APPENDIX A: STATE AND PROCESS
TOMOGRAPHY

To perform state tomography for experiments on the
identity gate, we used the following operations to project
the qubit state along the x, y, and z axes of the Bloch
sphere: H , HH ′H 1/2, and H 2. Here, H represents a
Hadamard gate, and H ′ represents a π rotation when the
direction of the effective field represented by the Hamil-
tonian points at 22.5◦ away from the z axis, compared
with the usual Hadamard, which points at 45◦. Both gates
were calibrated with a process similar to that described in
Ref. [27]. While the corrected identity gate is minimally
sensitive to hyperfine fluctuations, the state preparation
operations, which rely heavily on the Hadamard gate, are

H’
H

Z

X

FIG. 7. Operations used to calibrate gates and perform state
and process tomography.
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sensitive to hyperfine noise. We therefore suspect that the
uncorrected identity gate’s relatively low fidelity could
result from hyperfine errors that affect both the state prepa-
ration and gate. Our simulations do not include this effect
and assume perfect state preparation and readout.

To perform state tomography for experiments on the
corrected Hadamard gate, we used an adiabatic readout
to measure along the x direction, a Zπ/2 gate followed by
an adiabatic readout to measure along the y direction, and
an adiabatic readout to measure along the z direction. We
avoided using Hadamard gates during the state tomogra-
phy operations to minimize correlated errors during pro-
cess tomography. We calibrated our state tomography by
fitting the values of the POVM operators describing our
tomographic measurements [37] using a process similar to

that described in Ref. [36]. Figure 7 shows a Bloch-sphere
schematic of the operations used in the state preparations.
The tomographic calibration used for the Hadamard gate
is shown in Fig. 8. Similar calibration data are used for the
identity gate.

The initial states for process tomography were prepared
with operations similar to our readout operations with one
additional initial state that is needed for normalization. The
qubit states along the −y and −x axes of the Bloch sphere
were used for the identity and Hadamard gate, respec-
tively. These were prepared, respectively, using H 3/2H ′H
and an adiabatic ramp followed by a Z gate. We calculated
process matrices using a constrained maximum-likelihood
approach using a process similar to that described in
Ref. [38].
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FIG. 8. State tomography calibration of the measurement operators used for the Hadamard gate. We prepare multiple different initial
states, and we evolve these initial states under different exchange coupling strengths. By measuring and fitting the data at different
times, we can extract the parameters of our tomographic measurements. Each row of the table above corresponds to a different initial
state and control-field combination. The “Initial state” column lists the approximate initial state on the Bloch sphere (Fig. 7), and
the “V (mV)” column lists the barrier gate voltage applied during the evolution. At different evolution times, we perform tomographic
measurements of the states. The column marked “Measured” shows the tomographic reconstruction of the state without calibration. The
state purity A oscillates in time, violating our assumption that it should smoothly decay because of dephasing and relaxation. To correct
for this, we perform a least-squares fit of the POVM operators to minimize the oscillations in the state purity. The column marked
“Calculated” shows the tomographic reconstructions with the fitted POVM operators, and the state purity decays more smoothly than
the “Measured” case. The “ML E” column represents the most likely physical density matrix [39] corresponding to the “Calculated”
density matrices.
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FIG. 9. Extraction of the uncertainties for the Hadamard gate. (a) Data for the corrected Hadamard gate and line cut. (b) Line-cut
data and fit to a quartic function. (c) Cumulative probability plot for the data in panel (b), showing that the distribution of the residuals
(blue crosses) can be approximated by a normal distribution (dashed line). (d) Data for the uncorrected Hadamard gate and line cut.
(e) Line-cut data and fit to a quartic function. (f) Cumulative probability plot for the residuals in panel (e).

APPENDIX B: ERROR BARS

We estimate uncertainties for our extracted gate fideli-
ties by fitting line cuts of our measured fidelities to
smooth polynomials. We assume that deviations from the
smooth curve represent Gaussian random errors in our
procedure, and we report the uncertainty as the stan-
dard deviation of the distribution of residuals. Shown in
Figs. 9 and 10(a)–(e) are the line cuts and fits for the
corrected Hadamard and identity gates from the experi-
ment, respectively. The probability plots, which compare

the cumulative distributions of the residuals with a nor-
mal distribution, in Figs. 9(c) and 9(f), are to show that the
residuals can be approximated as normally distributed and
hence the standard deviation can be used as the error bar.

To justify this approach for estimating the uncertainties,
we simulated the measurements and confirmed that the
standard deviation extracted in the way we have discussed
agrees reasonably with the standard deviation of the distri-
bution of fidelities of a single configuration. Figures 11(a)
and 11(b) show the simulated distribution of fidelities of
optimal Hadamard and identity gates, respectively. For the
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FIG. 10. Extraction of the uncertainties for the identity gate. (a) Data for the corrected identity gate and line cut. (b) Line-cut data
and fit to a quartic function. (c) Probability plot to test for normality of the residuals of the data in panel (b). (d) Data for the uncorrected
identity gate and line cut. (e) Line-cut data and fit to a quartic function. (f) Probability plot for the residuals in panel (e).
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FIG. 11. Scatter plot of the fidelity for different noise realizations of the optimal gate, from simulations of (a) DCG Hadamard gate
and (b) DCG identity gate. The different colors are for different noise conditions. Red corresponds to hyperfine noise only, orange
corresponds to charge noise only, and blue is when both noises are considered. Respectively for red, orange, and blue colors, the
fidelities are 0.9977 ± 0.0007, 0.9969 ± 0.0007, and 0.9955 ± 0.001 for the Hadamard gate, and 0.9988 ± 0.0001, 0.9984 ± 0.0003,
and 0.9979 ± 0.0004 for the identity gate. The Hadamard gate is averaged over 128 noise realizations, while the identity gate is
averaged over 256 realizations to match the experimental conditions.

Hadamard gate, the fitted uncertainty [0.0016, see Fig. 5(c)
in the main text] is a factor of 1.6 larger than the actual
standard deviation (0.001), while for the identity gate, the
fitted uncertainty [0.0016, see Fig. 3(c) in the main text] is
about a factor of 4 larger than the actual standard deviation
(0.0004). Figure 11 also shows the expected gate perfor-
mance of the three different noise configurations shown in
Table I of the main text.

APPENDIX C: SIMULATION

Our simulations assume quasistatic hyperfine and
charge noise, pulse distortions due to our setup, the tem-
poral resolution of our arbitrary waveform generator, and
perfect state preparations and measurements. We assumed
σ = 0.2867 MHz, corresponding to a T∗

2 = 785 ns of �EZ
rotations. We assumed fractional exchange noise, such
that σJ /J = 0.012, corresponding to an exchange oscil-
lation quality factor of about 18, appropriate for barrier-
controlled exchange pulses. Except for the last two rows
of Table I in the main text, all segment times are rounded
to the nearest whole nanosecond. We use a 1-ns time step
for our simulations, and we solve the time-independent
Schrödinger equation for each time step.

To implement the pulse distortions used in our simula-
tion, we used a low-pass filter with time constant τlp = 1 ns
and kernel Klp(t) = exp(−t/τlp)/τlp , and a “partial” high-
pass filter with amplitude Ahp = 0.05, time constant τhp =
40 ns, and kernel Khp(t) = Ahp(δ(t) − exp(−t/τhp)/τhp).
We implemented the pulse distortion for a given gate
sequence by first creating a voltage time series V(t) using
the exchange-to-voltage conversions discussed in the main
text. Then, we created a distorted waveform V′(t) = V ◦
Klp ◦ (1 + Khp), where ◦ indicates a convolution, and 1
indicates an identity operation by convolution with the

Dirac delta function. We converted this distorted volt-
age waveform back to a distorted exchange waveform
and solved the Schrödinger equation as described above.
We envision that the low-pass filter results from stray
resistances or capacitances in our setup, and the partial
high-pass filter could result from a broken gate. The cir-
cuit discussed in the main text yields actual waveforms
that are highly similar to the waveforms generated using
the filtering process described here.

In all cases, the reported fidelities are extracted from
process matrices calculated using a maximum-likelihood
estimation process using the CVX optimization package,
where the Choi matrices were constrained to be completely
positive and trace-preserving.

[1] P. W. Shor, in Proceedings 35th Annual Symposium on
Foundations of Computer Science (IEEE, Santa Fe, NM,
1994), p. 124.

[2] A. Ekert and R. Jozsa, Quantum computation and Shor’s
factoring algorithm, Rev. Mod. Phys. 68, 733 (1996).

[3] A. G. Fowler, A. M. Stephens, and P. Groszkowski, High-
threshold universal quantum computation on the surface
code, Phys. Rev. A 80, 052312 (2009).

[4] R. Raussendorf and J. Harrington, Fault-tolerant quantum
computation with high threshold in two dimensions, Phys.
Rev. Lett. 98, 190504 (2007).

[5] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Charge-insensitive qubit design derived from
the Cooper pair box, Phys. Rev. A 76, 042319 (2007).

[6] G. Burkard, T. D. Ladd, A. Pan, J. M. Nichol, and J.
R. Petta, Semiconductor spin qubits, Rev. Mod. Phys. 95,
025003 (2023).

[7] M. Reed, B. Maune, R. Andrews, M. Borselli, K. Eng, M.
Jura, A. Kiselev, T. Ladd, S. Merkel, and I. Milosavljevic

064029-10

https://doi.org/10.1103/RevModPhys.68.733
https://doi.org/10.1103/PhysRevA.80.052312
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/RevModPhys.95.025003


DYNAMICALLY CORRECTED GATES. . . PHYS. REV. APPLIED 22, 064029 (2024)

et al., Reduced sensitivity to charge noise in semiconductor
spin qubits via symmetric operation, Phys. Rev. Lett. 116,
110402 (2016).

[8] F. Martins, F. K. Malinowski, P. D. Nissen, E. Barnes, S.
Fallahi, G. C. Gardner, M. J. Manfra, C. M. Marcus, and F.
Kuemmeth, Noise suppression using symmetric exchange
gates in spin qubits, Phys. Rev. Lett. 116, 116801 (2016).

[9] K. Khodjasteh and L. Viola, Dynamical quantum error cor-
rection of unitary operations with bounded controls, Phys.
Rev. A 80, 032314 (2009).

[10] E. Barnes, X. Wang, and S. Das Sarma, Robust quantum
control using smooth pulses and topological winding, Sci.
Rep. 5, 12685 (2015).

[11] K. Khodjasteh and L. Viola, Dynamically error-corrected
gates for universal quantum computation, Phys. Rev. Lett.
102, 080501 (2009).

[12] M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M.
Itano, and J. J. Bollinger, Optimized dynamical decoupling
in a model quantum memory, Nature 458, 996 (2009).

[13] K. Khodjasteh, D. A. Lidar, and L. Viola, Arbitrarily accu-
rate dynamical control in open quantum systems, Phys.
Rev. Lett. 104, 090501 (2010).

[14] X. Wang, L. S. Bishop, J. Kestner, E. Barnes, K. Sun, and S.
Das Sarma, Composite pulses for robust universal control
of singlet–triplet qubits, Nat. Commun. 3, 997 (2012).

[15] J. P. Kestner, X. Wang, L. S. Bishop, E. Barnes, and S. Das
Sarma, Noise-resistant control for a spin qubit array, Phys.
Rev. Lett. 110, 140502 (2013).

[16] J. Zeng, X.-H. Deng, A. Russo, and E. Barnes, General
solution to inhomogeneous dephasing and smooth pulse
dynamical decoupling, New J. Phys. 20, 033011 (2018).

[17] C.-H. Huang, C.-H. Yang, C.-C. Chen, A. S. Dzurak, and
H.-S. Goan, High-fidelity and robust two-qubit gates for
quantum-dot spin qubits in silicon, Phys. Rev. A 99, 042310
(2019).

[18] X. Rong, J. Geng, Z. Wang, Q. Zhang, C. Ju, F. Shi, C.-K.
Duan, and J. Du, Implementation of dynamically corrected
gates on a single electron spin in diamond, Phys. Rev. Lett.
112, 050503 (2014).

[19] C. Yang, K. Chan, R. Harper, W. Huang, T. Evans, J.
Hwang, B. Hensen, A. Laucht, T. Tanttu, and F. Hudson
et al., Silicon qubit fidelities approaching incoherent noise
limits via pulse engineering, Nat. Electron. 2, 151 (2019).

[20] C.-H. Huang and H.-S. Goan, Robust quantum gates for
stochastic time-varying noise, Phys. Rev. A 95, 062325
(2017).
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