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Abstract

Human respiratory mucus (HRM) is extremely soft, compelling passive microrheology for linear viscoelastic characterization. We focus this
study on the use of passive microrheology to characterize HRM heterogeneity, a phenomenon in normal HRM that becomes extreme during
cystic fibrosis (CF) disease. Specifically, a fraction of the mucin polymers comprising HRM phase-separate into insoluble structures, called
flakes, dispersed in mucin-depleted solution. We first reconstitute HRM samples to the MUC5B:MUC5AC mucin ratios consistent with
normal and CF clinical samples, which we show recapitulate progressive flake formation and heterogeneity. We then employ passive particle
tracking with 200 nm and 1 μm diameter beads in each reconstituted sample. To robustly analyze the tracking data, we introduce statistical
denoising methods for low signal-to-noise tracking data within flakes, tested and verified using model-generated synthetic data. These statisti-
cal methods provide a fractional Brownian motion classifier of all successfully denoised, tracked beads in flakes and the dilute solution.
From the ensemble of classifier data, per bead diameter and mucus sample, we then employ clustering methods to learn and infer multiple
levels of heterogeneity: (i) tracked bead data within vs. outside flakes and (ii) within-flake data buried within or distinguishable from the
experimental noise floor. Simulated data consistent with experimental data (within and outside flakes) are used to explore form(s) of the gen-
eralized Stokes–Einstein relation (GSER) that recover the dynamic moduli of homogeneous and heterogeneous truth sets of purely flakelike,
dilute solution, and mixture samples. The appropriate form of GSER is applied to experimental data to show (i) flakes are heterogeneous with
gel and sol domains; (ii) dilute solutions are heterogeneous with only sol domains; and (iii) flake and dilute solution properties vary with
probe diameter.© 2024 Published under an exclusive license by Society of Rheology. https://doi.org/10.1122/8.0000789

I. INTRODUCTION

The method of passive particle tracking microrheology
(PPTM) [1–4] has been applied across a wide range of
complex fluids to measure linear dynamic moduli, providing
an alternative to macrorheometry especially for soft, fragile
matter such as the mucus barriers in the respiratory, gastroin-
testinal, and female reproductive tracts [5–13]. PPTM pro-
vides dynamic moduli across a frequency range set by the
reciprocal timescales between tracked positions of the micro-
scope system, replacing frequency sweeps at controlled linear
stress or strain settings of macrorheometers. PPTM has been
indispensable for linear rheological characterization of bio-
logical soft matter sharing two properties: (i) extreme soft-
ness, i.e., materials that yield at or below the stress-strain
controls of macrorheometers and (ii) insufficient availability
of sample volumes for macrorheometers. The use of PPTM
to explore linear rheology of human respiratory mucus and

their disparities between health and disease has been well
documented, likewise motivating new methods for automated
tracking and measurement error correction [5–12,14–23].

We first briefly recall the experimental and data-analysis
protocols of passive particle-tracking microrheology (PPTM)
[1–4]. Microbeads are dispersed in a sample and their posi-
tion time series

{Xj ¼ X( j " τ), j ¼ 0, 1, . . . , N}

are extracted using particle-tracking microscopy, where X(t)
is the continuous-time trajectory of a given microbead, τ is
the experimental lag time between recorded positions of the
microscope, and Nτ is the total tracking time. We enforce
uniformity of τ and N for each tracked bead for statistical
robustness of data inference. From the time series data,
assumed free from experimental noise and tracking errors,
one then calculates increment statistics, specifically the time-
averaged mean-squared displacement (MSD) of each tracked
bead, computed for all lag times nτ,

MSDX(nτ) ¼
1

N # nþ 1

XN#n

j¼0

!!Xnþj # Xn
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Positions Xj have dimension d, typically d ¼ 2 with beads
tracked in distinct focal planes. These MSD statistics are then
inserted into the generalized Stokes–Einstein relation
(GSER) [1–4] [Eq. (2)], mapping from increments at lag
times nτ to dynamic moduli at frequencies ω ¼ 1/nτ. This
formalism, as with the Stokes–Einstein relation for viscous
fluids, applies to presumed homogeneous complex or simple
fluids. One performs ensemble averaging of the MSD over all
tracked beads, denoted as MSDX(nτ)h i, which is inserted into
the GSER (2). =(") denotes the Fourier transform, G*(ω) is the
complex shear modulus with the real part, the storage modulus
G0(ω), and the imaginary part, the loss modulus G00(ω),

G*(ω) ¼ G0(ω)þ iG00(ω) ¼ kBT
πriω=(MSDX(nτ))

: (2)

In heterogeneous complex or simple fluids, there is typi-
cally no a priori knowledge of the lengthscales of heteroge-
neity, nor where the probe diameter resides within the
lengthscale spectrum, nor is there any means to control the
sampling of the heterogeneous structure by the probes. Given
these limitations, it is not clear what, if anything, ensemble
averaging over all tracked beads reflects about the fluid. In
the reconstituted HRM samples studied here, we observe
highly heterogeneous mobilities of beads (described below in
terms of scaling behavior of the denoised MSD statistics per
bead). Every tracked and successfully denoised bead time
series, with 1800 position observations, yields increments
across all experimental lagtimes nτ. We find and verify that
the denoised MSDX(nτ) is extremely well approximated by a
unique, stationary, fractional Brownian motion (fBm)
process. We give detailed support of this statement with
experimental tracked bead data and synthetic simulated data
in Figs. S4 and S5 of the supplementary material. We illus-
trate an accurate reconstruction of the empirical MSD by
developing a robust fBm classifier for each tracked and
successfully denoised bead. We provide the fBm classifier
for 200 nm and 1 μm diameter beads that are experimentally
tracked in each reconstituted HRM sample. We, therefore,
assert that the denoised time series of every tracked bead in
each HRM sample provides a robust statistical sampling of
the local medium fluctuations imparted to that bead across
the experimental timescales of the increment time series.
These robust results strongly support that the surrounding
medium of each tracked bead is homogeneous over the
experimental timescales and lengthscale traversed by the
tracked bead. We are careful to filter out any data from beads
that are not isolated (within 2–5 diameters of another bead)
to ensure pure single-bead signal data or from beads without
full position time series. We then apply the GSER to
MSDX(nτ) of each tracked bead to get a statistical estimate of
the dynamic moduli surrounding that bead,

G*(ω) ¼ G0(ω)þ iG00(ω) ¼ kBT
πriω=(MSDX(nτ))

: (3)

Below, we illustrate the validity of this and the
ensemble-averaged form (2) of GSER using synthetic

simulated data consistent with experimentally tracked beads
in posited homogeneous samples of HRM. In addition to pre-
viously documented increases in mucus concentration [9,12],
as noted above, cystic fibrosis (CF) HRM networks progres-
sively reconfigure [17,21] through the formation of dense,
raftlike, structures called flakes dispersed in the remaining
dilute mucin solution. In advanced stages of CF, two clinical
observations have been documented: the ratio of the primary
mucins MUC5B and MUC5AC changes, while simultane-
ously a progressive fraction growing to 50% of the mucins
MUC5B and MUC5AC become sequestered within flakes
that do not swell nor dissolve in the remaining, dilute airway
surface salt-water solvent. Advanced CF mucus can, there-
fore, be described, at a coarse scale, as a two-phase mixture:
a dense phase of mucin-rich flakes, and a more dilute phase
consisting of the remaining mucins in solvent. Additional
scales of spatial heterogeneity potentially exist (and con-
firmed herein) within the two coarse phases for any given
sample: (1) the dilute phase is likely to have a spatially het-
erogeneous mucin concentration since it has been continu-
ously depleted as mucins stochastically condense and phase
separate to form flakes, leaving behind the dilute phase plus
encapsulated beads in the local concentration surrounding
each bead; (2) the flakes, on the other hand, are the conden-
sates of the mucin phase separation process, likewise encap-
sulating beads in the local, high mucin concentrations
surrounding each bead. We note that lateral flake dimensions
are highly variable, observed clinically, and in reconstituted
HRM samples, they range from 1 to 100 μm [21]. Unknown
free-volume pore-size distributions that govern the mobility
of passive probes in reconstituted HRM samples match
healthy and two stages of progressive CF clinical samples.
The diffusive mobility of beads within flakes is hindered,
sometimes sufficiently low to be indistinguishable from
immobile beads tracked by the instrumentation, i.e., the
tracked bead signal is sometimes entangled in the noise
floor. Heterogeneity and lack of control over bead spatial
sampling of the dilute and flake phases impose hard con-
straints on the form of the generalized Stokes–Einstein rela-
tion (GSER) one should use. The inherently low bead
numbers within flakes give a sparse, local sampling of flake
rheology. Ensemble averaging of bead MSDs in the GSER,
Eq. (2), is justified by an ergodicity assumption for homoge-
neous materials: ensemble averaging of bead MSDs in the
time domain is equivalent to frequency-domain averaging of
the Fourier-transformed MSDs, further assuming sufficient
sampling of the material. However, these assumptions are
strongly violated for flake-prevalent mucus. To overcome
these limitations, we proceed with the following steps:

• Experimental: Reconstitute bulk samples of HBE mucus
to match the MUC5B:MUC5AC ratio during three pro-
gressive stages of CF [24] with 200 nm and 1 μm diameter
beads uniformly dispersed at the outset of sample prepara-
tion. The beads then undergo unresolved repositioning as
the mucins undergo degrees of phase separation, leading
to beads encapsulated in dilute and flake phases of each
sample and bead diameter. Particle tracking microscopy
then records the position time series of all tracked beads
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per subsample from the three bulk HRM samples. (The
Experimental Methods: Materials and Data Collection
section provides more details.)

• Filtering of the data: Apply a proximity filter to ensure
beads are isolated and not within five diameters of another
bead to avoid bead-bead interactions and cross-correlations
that are the focus of two-bead microrheology, cf [25–27].

• Given that within-flake beads often have mobilities on the
order of the noise floor, use the denoising procedure of
[18], extended in [28] and here to analyze low mobility
data from beads in flakes. Explore several classifier
metrics of individual bead time series and seek the
optimal metric for the experimental data.

• Use synthetic simulated data to replicate features of the
experimental data, in particular, heterogeneous tracked
particle time series, including extremely low mobility and
low signal-to-noise-ratio (SNR) as well as moderate to
waterlike mobilities and higher SNRs. We then identify an
optimal classifier metric (described in detail below) that is
applied to each tracked bead time series.

• With the optimal classifier metric, hierarchically cluster
the experimental datasets. First, distinguish beads outside
and within flakes. [The accuracy of this automated task is
experimentally tested by visual assessment of beads
outside and inside flakes, with 209/212 (over 98%) beads
correctly identified.] Second, distinguish whether tracked
beads within flakes can be confidently disentangled from
the noise floor. Third, test whether the ensembles of
denoised within-flake and outside-flake beads, per bead
diameter and reconstituted sample, are statistically homo-
geneous. (N.B. All fail the homogeneity test.) Fourth,
given that within-flake and outside-flake ensembles are
nonhomogeneous, apply a clustering algorithm to the
within-flake and outside-flake classifier datasets for the
three bulk samples for each bead diameter. Fifth, test
homogeneity of all individual clusters containing at least
four beads. (N.B. All such clusters fail the homogeneity
test.)

• Given nonhomogeneity of each cluster, apply the GSER to
single beads in each cluster and then cluster average in
frequency space to infer the dynamic moduli of all
denoised data clusters within and outside of flakes, for
200 nm and 1 μm diameter beads. Assess the resulting
rheological heterogeneity between clusters within and
outside of flakes, for each probe size.

• Assess probe lengthscale dependence in the dynamic
moduli from the 200 nm and 1 μm bead diameter results
for all three mucin-ratio samples.

II. EXPERIMENTAL METHODS: MATERIALS AND
DATA COLLECTION

A. Mucus/mucin model systems

Mucus is harvested from normal human bronchial epithe-
lium (HBE) cell cultures as previously described [24,29,30].
HBE mucus has been shown to be similar to native mucus in
both biochemical composition [31,32] and biophysical prop-
erties [30]. Briefly, cells are recovered from surgical waste

by the UNC Marsico Lung Tissue Procurement Core. Cells
are seeded and grown on 1 cm diameter, collagen-coated
inserts. After ∼6 weeks, cells become confluent, form an air-
liquid interface, and begin to produce mucus. Culture lavages
are collected twice weekly with 200 μl phosphate buffered
saline (PBS) per 1 cm diameter insert. Washings from >100
cultures and >10 donors are pooled to minimize
patient-to-patient and insert-to-insert variability.

HBE cultures are also used as a source of MUC5B, while
Calu3 cells are the source for MUC5AC. Mucins are purified
from dilute culture washings by isopycnic density gradient as
previously described [10,33]. Cesium chloride is added to
washings to raise the density to 1.35 g/ml, and then loaded
into 40 ml centrifugation tubes. These tubes are spun at
40 000 rpm for 60 h, after which the samples are unloaded as
20 fractions. During centrifugation, mucins migrate to the
denser part of the tube, while globular proteins migrate to the
less dense fractions. Confirmation of mucin-rich fractions is
achieved with periodic acid-Shifts reaction to label the
heavily glycocholate mucins [33]. Mucin-rich fractions are
then pooled and concentrated against absorbent gel following
the protocol with HBE washings [29].

B. Mucus flake production

To synthetically produce flakes, mucin solutions are
diluted to 2% solids by weight and mixed to contain different
ratios of the primary gel-forming mucins, MUC5B and
MUC5AC, to ratios observed in HBE mucus from healthy
non-CF donors vs. progressive cystic fibrosis. Specifically,
we reconstitute mucin solutions with MUC5B:MUC5AC
ratios of 90%:10% (non-CF), 80%:20% (mild CF), and
60%:40% (severe CF). From different batches of the same
bulk samples, 200 nm and 1 μm carboxylate-modified
fluorescent beads (Invitrogen, F8811 or F8823) are mixed
with mucins overnight at 4 °C at 1:10 000 or 1:140 dilu-
tion, respectively. Flakes are formed by injecting one of
the above 3 mucin solutions (50 μl) into a 4 mM calcium
chloride solution (500 μl, Sigma 223506) to mimic the
in vivo environment, the corresponding solutions are
diluted to the concentration of 1.8 mg/ml.

C. Particle tracking microrheology

Diffusive mobility of microspheres incorporated in mucus
flakes are imaged by a combination of brightfield microscopy
with fluorescent microscopy. Data are collected on a Nikon
TE-U 2000 inverted microscope at 40× on a Grasshopper3
USB3 (Teledyne Flir) at 60 frames per second for 30 s, as
previously described [10,34]. Once image sequences are col-
lected, they are processed by the TrackPy particle tracking
software [35–37] to extract the individual particle trajectories
[21,24].

D. Flake visualization

Prior to the collection of image sequences used to gener-
ate particle trajectories, a bright field image is collected and
overlayed with the first frame of the fluorescent image
sequence to confirm if beads are contained within or outside
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flakes in the dilute solution. Some beads are encapsulated
within the phase-separated flakes, while others are encapsu-
lated outside the flakes in the dilute solution remaining after
the mucins condense to form flakes. Prior to applying the stat-
istical methods described below, all tracked bead time series
are first passed through a series of filters; the most notable of
which is the proximity filter, which ensures that the only
forces acting on the bead are from the medium itself and not
from other beads in proximity. A full analysis of the data and
details on the prefiltering is provided in the “Data Cleaning”
section of the supplementary material.

Figure 1 shows mucosal flakes with individual beads num-
bered and highlighted, showing vast differences in the flake
size as well as the number of beads within different flakes.

Next, we explain the predictor-corrector method for esti-
mating the MSD of tracked beads, and then we analyze data
from flake-prevalent mucus samples and discuss the results.

E. Particle position time series data and statistical
analysis of the data

Recall Eq. (1) for the MSD per lag time, nτ. For a spheri-
cal particle of radius r diffusing in a purely viscous medium,

e.g., water or glycerol of viscosity η, the position time series
is described by d-dimensional Brownian motion, for which
the MSD scales linearly with all lag times,

MSDX(nτ) ¼ 2dDnτ, (4)

where D is the diffusivity of the medium given by the
Stokes–Einstein relation

D ¼ kBT
6πηr

: (5)

Soft biological materials like mucus are both viscous and
elastic, with different responses at different frequencies of
forcing. In viscoelastic materials, the MSD of passive beads
is sublinear over the timescales for which the medium exhib-
its memory due to elastic storage and release. For 200 nm to
1 μm diameter passive beads in respiratory mucus, and for
our microscope system, the memory timescales encompass
the camera shutter timescale (1/60 s) and the total bead
observation time (30 s). Furthermore, over experimental time-
scales, each individual tracked bead approximately exhibits a

FIG. 1. Experimental images of reconstituted mucus flakes with microbeads. (a) Brightfield images of reconstituted mucus flakes. (b) Overlay with a
fluorescent image. (c) Reconstituted mucus flake overlaid with trajectories of tracked beads. (d) Higher resolution of individual trajectories of two tracked
beads, one within and one outside of a flake.
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subdiffusive MSD power law

MSDX(nτ) ¼ 2dDα(nτ)α, 0 , α % 1, (6)

identical to fractional Brownian motion. It is important to
emphasize that the statistical classifier for Brownian motion,
α ¼ 1, is one dimensional, the diffusivity D, whereas for
subdiffusive fractional Brownian motion, 0 , α , 1, the
classifier is two dimensional, (α, Dα) [17,18]. The power
law α reflects the degree of subdiffusivity of the medium sur-
rounding each tracked particle. The prefactor (generalized
diffusivity) Dα has α-dependent units so that one cannot
compare relative numerical values across different beads, nor
can one perform any numerical computations (e.g., ensemble
averaging of classifiers or cluster analysis). We return to this
point momentarily. For now, we note

Δ ¼ 2dDα(nτ)α ¼ MSDX(nτ), (7)

for any specific lag time nτ, e.g., nτ ¼ 0:1 or 1 s, has units of
μm2 and, therefore, can be readily compared across multiple
beads and used for averaging or cluster analysis. One can
also use the GSER per bead and compare the dynamic
moduli G0 and G00 of different tracked beads at any fre-
quency, e.g., 10 or 1 s−1. The potential problem with any of
these single lag time or frequency projections onto a scalar
quantity arises when the bead time series data have not been
denoised first; indeed, the potential for error is exaggerated
for the low-mobility, highly subdiffusive time series of beads
inside flakes. We illustrate this point below in Fig. 3, ampli-
fied further in the supplementary material. We perform
cluster analysis on the classifiers of the primitive data
(tracked bead time series), not on the GSER transform which
is a nonlinear function of the primitive data.

In our approach, the MSD classifier (α, Dα) is a
denoised projection onto fractional Brownian motion (fBm).
This classifier further provides an analytical formula for the
dynamic moduli surrounding each tracked bead by virtue of
the exact Fourier transform of any power-law MSD,

iωI
"
2dDα(nτ)α

#
¼ Γ(1þ α)4Dα

1
ωi

$ %α

: (8)

Using (8) in the GSER (3), the denoised classifier (α, Dα)
per individual bead yields an exact analytical formula for the
local G*(ω), thereby avoiding numerical error,

G*(ω)¼ kBTωα

πrΓ(1þα)4Dα
cos

απ
2

$ %
þ isin

απ
2

$ %& '
¼G0(ω)þ iG00(ω),

(9)

where Γ(") is the Gamma function. From the ensemble of suc-
cessfully denoised classifiers (α,Dα) per sample per bead
diameter, we perform three stages of clustering. Since Dα

has α-dependent fractional units to perform clustering, we
either nondimensionalize Dα or project onto an appropriate
scalar derived from the denoised classifier (α, Dα).

The first stage is binary: one cluster of all tracked beads
with a “waterlike” signal, which we define as a weakly sub-
diffusive signal consistent with tracking of beads in relatively
dilute mucin solutions from the same experimental instru-
mentation (thus, likely outside flakes); a second cluster of
tracked beads with a clear subdiffusive signal bounded away
from waterlike signals (thus, likely within flakes).

The second stage is also binary, applied to the within-
flake cluster. Bead increment time series are divided into
those that are, or are not, distinguishable from the noise
floor of the experimental instrumentation. The signature of
the noise floor is achieved by tracking stationary beads glued
to a glass plate with the experimental instrumentation,
thereby identifying the classifier range where the signal is
indistinguishable from the noise floor.

The third stage is the most intricate, consisting of three
levels of resolution applied independently to the successfully
denoised outside- and within-flake clusters from the above
stages. Level 1: apply a homogeneity test to each cluster
(Cochran’s Q test [38,39]), and all clusters with sufficient
data fail. Level 2: apply a standard clustering algorithm
(MCLUST [40]) that yields clusters of “water like” and
“within flake” denoised signals. Level 3: apply the homoge-
neity test to these refined (waterlike and within flake) clus-
ters. We found that whenever there is sufficient data within
clusters, they fail the test. These results guide the appropriate
application of the GSER to determine equilibrium dynamic
moduli associated with the denoised clusters within the
waterlike and flakelike ensembles. This three-stage analysis
of the experimental data yields several layers of heterogeneity
in each progressive flake-burdened mucus sample, using the
denoised classifier of particle mobility as the fundamental
signal, and then the GSER to superimpose the associated het-
erogeneity in dynamic moduli.

Figure 2 illustrates the stages of this analysis with syn-
thetic simulated data in the ideal scenario where clusters
within flakes (middle panel) and outside flakes (left panel)
are homogeneous and constructed from flakelike and dilute
solution classifier data. By construction, the mixture is pat-
ently heterogeneous. In each panel, G0 and G00 are computed
using the GSER in three different ways: (1) applying GSER
per bead using Eq. (9) with the denoised MSD classifier
(α, Dα), then ensemble averaging G0 and G00 in frequency
space; (2) ensemble averaging all denoised bead MSDs then
applying GSER, Eq. (2); (3) ensemble averaging of the
denoised MSD classifiers, giving a mean (α, Dα), inserted
into the GSER for fBm, Eq. (9). As noted earlier, averaging
requires nondimensionalization of Dα or replacing it by one
of the dimensional scalars derived from (α, Dα), then
ensemble averaging, then passing back to Dα.

The left and middle panels of Fig. 2 illustrate the equiva-
lence of using forms (1–3) of the GSER for synthetic homo-
geneous clusters. The left panel data mimics waterlike
signals from the dilute phase of HRM and the middle panel
mimics flakelike signals from HRM, with a nondimensional-
ized version of classifier (α, Dα), denoted as (α, ~Dα),
defined momentarily in Eq. (10), with each parameter drawn
from independent normal distributions. For the waterlike
signals, the means of (α, ~Dα) are chosen
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μ ¼ (0:9, 0:75) and their standard deviations are
σ ¼ (0:03, 0:05). For the flakelike signals, the analogous
means are μ ¼ (0:3, 0:065) and standard deviations
σ ¼ (0:07, 0:01). These synthetic clusters are homogeneous
in the practical experimental sense of possessing a mean and
standard deviation of parameters consistent with observed
empirical data from homogeneous complex fluids. The stan-
dard deviation for α in the waterlike signal is constrained to
be sufficiently small to avoid α . 1 (and anomalous
moduli).

The right-most panel shows the nonequivalence of the three
methods for averaging of tracked bead data in a heteroge-
neous two-phase mixture synthetically created by simply com-
bining these two normally distributed waterlike and flakelike
clusters. Within each homogeneous cluster, all three
approaches recover a power-law rheology scaling, i.e., approx-
imately linear in the log-log space, whereas only approach (3)
is mathematically guaranteed to do so. For the heterogeneous
mixture in the right panel, methods (1) and (2) produce a non-
power law scaling of G0, G00, distinct from method (3).

Neither of the methods for the heterogeneous mixture in
the right-most panel has meaningful physical relevance: they
average over the underlying heterogeneity without knowl-
edge of volume fractions of flakes and dilute solution and
proper weighting of each in the average. If this additional
information were experimentally accessible, and if we could
assume passive interactions between flakes and nonflake
solvent (which is completely unknown), one could infer

linear microrheology of flake-burdened HRM that should,
with sufficiently low stress-strain controls in a macrorheome-
ter (e.g., cone and plate), agree with linear microrheology.
We recall the local homogeneity assumption [41,42] of
passive microrheology, i.e., that the dynamics of each parti-
cle is adequately described by a homogeneous complex fluid
environment over the experimental timescale. This justifies
the application of the GSER to each particle trajectory in
order to estimate the local dynamic moduli of the fluid sur-
rounding the particle being tracked [1–3,43,44]. The rheo-
metric experiments used to validate the GSER theory for
homogeneous fluids (e.g., [1,3]) are effectively averaging
localized stress and strain in frequency sweeps over the full
sample volume of the fluid; such dynamic moduli measure-
ments are, we posit, consistent with the GSER averaging
method (1), rather than the MSD averaging method (2) [or
the corresponding model-based method (3)].

F. Data-analysis methods

Our strategy is to extract the pure stochastic fluctuation
signal using an extension of the fractional autoregressive
moving average (fARMA) denoising model developed in
[18]. From [28], Fig. 3 below and in the section “The
fARMAs Denoising Method” of the supplementary material,
we show that two extensions of the fARMA denoising proce-
dure are necessary to accurately recover the pure, i.e.,
denoised signal in simulated truth sets consistent with the

FIG. 2. Comparison between G0 and G00 computed in three ways: (1) GSER applied to denoised MSD classifier (α, Dα) per bead, Eq. (9), then averaging G0

and G00 in frequency space; (2) ensemble averaging over all denoised bead MSDs, then apply GSER, Eq. (2); (3) ensemble averaging of the denoised MSD clas-
sifiers, giving a mean (α, Dα), therefore, a denoised power law ensemble-average MSD, inserted into Eq. (9). These three approaches are implemented and
shown to be equivalent for homogenous clusters: a waterlike homogeneous cluster in the left panel, cluster 1, a flakelike homogeneous cluster in the middle
panel, cluster 2. Both left and middle panels illustrate consistency in all three approaches for homogeneous clusters. In stark contrast, the mean dynamic moduli
of a heterogeneous mixture of these two clusters are computed with each approach in the right panel, illustrating inconsistency of the three approaches for het-
erogeneous mixtures.
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extremely low signal-to-noise-ratio (SNR) ranges of tracked
beads within mucus flakes. First, fARMA is sensitive to the
initial condition in the nonlinear optimization procedure. We
resolve this hurdle with a least-squares predictor of the MSD
followed by the fARMA corrector, which ensures a stable
denoising procedure. Second, the inclusion of static noise in
the fARMA model, which we call fARMAs, gives more
accurate estimates of the pure signal in simulated truth data
with low SNR. The Least-Squares predictor—fARMAs cor-
rector method yields a two-parameter classifier for each
tracked bead of the purely entropic, medium-induced, subdif-
fusive MSD over measured timescales. In Fig. 3 and more
extensively Fig. S3 in the supplementary material, we illus-
trate the method on synthetic data, revealing estimators and
standard errors across ranges of truth datasets generated from
Brownian and subdiffusive processes, with superposition of
various combinations of experimental error.

The standard method for estimating the dimensional MSD
classifier parameters (α, Dα) is via least-squares (LS), which
consists of fitting the slope and intercept in the relation [45]

log (MSDX(nτ)) ¼ log (2dDα)þ α " log (nτ):

Since the empirical MSD is contaminated by noise at both
the smallest (static and dynamic camera error) [46] and
largest (drift of the sample) timescales [9,10], lag times nτ in
a restricted bandwidth are often used. This approach does
not remove the noise from the selected bandwidth: it merely
assumes that noise contamination is negligible therein.
However, this assumption is violated precisely in cases of

interest here, for dense flakes, where the particle mobility is
within or near the noise floor. To illustrate, Fig. 3(a) displays
the MSD of fBm-contaminated by a noise floor of magnitude
σ2, for which the MSD is given by

MSDfBmþnoise(t) ¼ 2dDα " tα þ 4 " σ2

and for which the corresponding signal-to-noise-ratio is
SNR ¼ (2dDα " τα)/(4 " σ2). LS is fit to the bandwidth of
0.1–2 s, and we see that the line of best fit agrees very well
with that of the empirical MSD over the bandwidth.
However, this fit is to the MSD consisting of signal plus
noise: Fig. 3(b) shows that the LS fit is very different from
the MSD of the pure signal. In contrast, we employ an
extension of the fARMA denoising model of [18]
that includes static noise, denoted fARMAs [28], using
the LS fit as a predictor step, which accurately recovers the
pure signal in Fig. 3(b). Details of the fARMAs model and
associated fitting procedure—including our predictor-corrector
method—are given in the supplementary material.

From here on, we use the LS (predictor)—fARMAs (cor-
rector) procedure (which we call fARMAs-PC) to estimate
the diffusion parameters. The resulting fractional-diffusion
MSD classifier, (α, Dα), is estimated per tracked bead, then
converted to be nondimensional or have comparable units
[using (7) or Eq. (10) below] for quantitative analysis, in par-
ticular homogeneity testing and clustering.

FIG. 3. (a) Empirical and fitted MSDs to simulated time series of fBm plus noise in the low signal-to-noise range. Fitted MSDs are from LS and fARMAs.
N.B. fARMAs estimate the pure fBm signal plus high and low frequency noise, which together produce empirical MSD estimates. (b) LS and denoised
fARMAs pure signal MSD estimates plus the pure signal MSD.
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III. A LITERATURE OVERVIEW OF
HETEROGENEITY ANALYSIS

There is a considerable body of work in the microrheology
literature on describing heterogeneity in fluids, much of which
is reviewed in [47]. Qualitatively, heterogeneity is often mea-
sured via van Hove correlations (e.g., [12,48,49]). For given lag
time Δt ¼ nτ, where τ is the minimum lagtime between particle
position measurements, van Hove correlations compare the his-
togram of displacements ΔX(nτ) ¼ X(t þ nτ)# X(t) within
and across particle trajectories to the Gaussian distribution theo-
retically expected for homogeneous fluids. A common finding
is that the van Hove correlation in heterogeneous fluids is better
fit by an exponential distribution than by a Gaussian (e.g.,
[12,48,49]), considered in [50] for viscous fluids with location-
dependent diffusivity (e.g., [46–48]). However, the shape of the
van Hove correlation function must be interpreted with extreme
care at short timescales in our experiments and reconstituted
HRM samples since the increments of low-mobility beads in
flakes are strongly contaminated by the noise floor as shown in
Fig. 3. Moreover, there is overwhelming evidence in our data
that particles within flakes locally exhibit not viscous diffusion
but strongly subdiffusive, viscoelastic dynamics (Fig. 4).

Quantitatively, heterogeneity is commonly measured
using the excess kurtosis of the van Hove distribution at the
given lagtime, or equivalently, the “non-Gaussianity” param-
eter (e.g., [51–53]),

NG(nτ) ¼ hΔX(nτ)4i
h3ΔX(nτ)3i

# 1:

Another metric is the heterogeneity ratio [54]

HR(nτ) ¼ var(MSDi(nτ))
mean(MSDi(nτ)2)

,

where MSDi(nτ) is the MSD statistic (1) computed for parti-
cle i, for which efficient estimators of the ensemble mean
and variance under the local homogeneity assumption are
developed in [43]. Again, we remark that these calculations
would need to be adjusted in the presence of noise floor con-
tamination exhibited in Fig. 3.

For clustering of heterogeneous particle trajectories into
homogeneous groups, Valentine et al. [48] develop a pair-
wise similarity metric between particle trajectories using the
F-statistic

Fi,j ¼
σ2
i /Ni

σ2
j /Nj

,

where σ i and Ni are the standard deviation and number of the
position increments ΔXi(τ) for particle i, and σ j and Nj are
defined analogously for particle j. Assuming that the incre-
ments are independently and identically normally distributed,
Fi,j follows an F distribution with (Ni, Nj) degrees of freedom
if the dynamics of particles i and j are statistically indistin-
guishable [48]. uses the F-test to determine for each pair of
particles whether or not they are statistically distinguishable at
the 95% confidence level, which is then used to group the par-
ticles into clusters of indistinguishable members. However, the
F-test assumes locally viscous dynamics. Moreover, it is not
clear how to cluster particles when particle pairs (i, j) and
( j, k) are both deemed indistinguishable, but pair (i, k) is not.

In light of these issues, Mellnik et al. [55], propose to cluster
tracked particles via Gaussian mixture modeling, the approach
we adopt here. Let θ̂i denote the estimate for bead trajectory i
of its true classifier value θi. A simple choice of classifier is
θ ¼ (α, logΔ), where Δ ¼ MSDfBm(t ¼ 1 s) via (7), with an
in-depth discussion of various classifiers to follow. Given the
classifiers of M trajectories, clustering is performed using the R

FIG. 4. (a, ~Dα) (left) and (a, Δ) (right) classifier data for individual, 1 μm (top) and 200 nm (bottom) diameter beads in three different mucin mixtures.
Classifier data are visually clustered into waterlike (circles), flakelike (squares), and noise floor (triangles) signals.
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package MCLUST [42] using finite normal mixture models.
That is, the classifier estimates θ̂1, . . . , θ̂M are clustered, in the
most general case, according to the multivariate normal mixture
model

Ji !
iid
Categorical(π1, . . . , πK),

θ̂i j Ji !
iid
Normal(μJi , ΣJi ),

where K is the number of clusters and Ji [ {1, . . . , K} is
the cluster to which particle i belongs. MCLUST estimates
the posterior membership probability,

Ĵi ¼ max
1%k%K

Pr(Ji ¼ kjθ̂i, Ω̂),

where Ω̂ is the maximum likelihood estimate (MLE) of the clus-
tering model parameters Ω ¼ {(πk, μk, Σk):k ¼ 1, . . . , K}.
MCLUST chooses K by fitting all models with
K [ {1, . . . , Kmax} for user-specified Kmax, and selects the
one with the lowest value of the Bayesian information criterion
(BIC). It can also impose various constraints on the variance
matrices, e.g., proportional variances Σk ¼ τk " Σ0 or diagonal
variances Σk ¼ diag(σ2

k,1, . . . , σ
2
k,K) (there are 14 possible vari-

ance restrictions in total, see Table 3 of [42]). This is particu-
larly useful when some of the clusters are expected to consist of
only a few particles, in which case the corresponding uncon-
strained variance matrices can be very poorly estimated. Once
again, MCLUST estimates the posterior membership probabili-
ties Ĵi, i ¼ 1, . . . , M from the best-fitting model (in terms of
BIC) among all combinations of cluster sizes K and variance
matrix constraints.

While the Gaussian mixture modeling algorithm of [55] is
similar to ours, it differs in two key respects. For one, the
algorithm of [55], determines the number of clusters using
agglomerative clustering [56,57] with cutoff determined by
the “gap statistic” method of [58], which is somewhat more
involved than the BIC method described above. More impor-
tantly though, the algorithm of [55], clusters on standard
deviation of the particle increments ΔX(n*τ) for a single (but
optimally chosen) lagtime Δt* ¼ n*τ. In contrast, our cluster-
ing on the (denoised) classifier θ ¼ (α, logΔ) leverages
information from all experimental lagtimes. This advantage
was realized in [34,59], who employed the fBM classifier for
heterogeneity assessment but did not pursue clustering of the
classifier data.

IV. HOMOGENEITY TESTING

Now suppose that in addition to θ̂i, for each trajectory i
we have an estimate of the variance of the classifier,
Vi & var(θ̂i). Such a variance estimator is obtained as a direct
by-product of the fARMAs-PC denoising procedure. In order
to test whether the θ̂1, . . . , θ̂M are obtained from a homoge-

neous cluster, let Zi ¼ V#1/2
i θ̂i and !Z ¼ 1

M

PM

i ¼ 1
Zi. Then under

the null hypothesis of homogeneity

H0: θ1 ¼ " " " ¼ θM :

The so-called Cochran’s Q statistic [22,38,39]

Q ¼
XM

i ¼ 1

(Zi # !Z)T (Zi # !Z)

has a χ2p(M#1) distribution under H0, where p is the common

number of elements of each θ̂i, i.e., in our case we have
p ¼ 2. The assumption of homogeneity is then rejected at the
ϵ level when Q . Cϵ, and Cϵ is such that

Pr
(
χ2p(M#1) . Cϵ

)
¼ ϵ.

V. TRACKED PARTICLE CLASSIFIERS

A natural choice for the classifier of subdiffusive particle
trajectories is θ ¼ (α, logDα), where use of logDα reflects
the empirical finding that Dα tends to vary by an order of
magnitude within a given experimental setting, i.e., errors
in fitting the slope extrapolate to fitting the y-intercept.
However, the units of Dα are α-dependent, which precludes
direct comparisons across beads. There are multiple ways to
address this, e.g., one can simply evaluate the MSD at a
chosen lag time nτ, recall the discussion surrounding
Eq. (7) above, which gives units of μm2 for all beads, and
thus admits inter-bead comparisons. A downside of this
classifier is that the choice of MSD lag-time nτ is arbitrary,
and one could have chosen any nτ to evaluate the MSD.
Any clustering based on these arbitrary choices would have
to be tested for robustness of the chosen timescale. We
note, however, that if the ensemble data (α, logDα) has
been estimated by the fARMAs-PC method, then it has
already used all of the denoised experimental data to
produce the denoised classifier (α, Dα) for each bead, which
produces a denoised power-law MSD estimate, and there-
fore the clustering outcome will be relatively robust for all
choices of MSD(nτ).

This is not the case for standard LS-estimates of (α, Dα),
illustrated in Fig. 3; namely, the LS estimates of MSD have
different errors from the true signal MSD at every lag-time
nτ! An alternative approach to evaluation of MSD at lag-time
nτ for some n is to nondimensionalize Dα, labelled ~Dα. Once
again, we emphasize that we use the fARMAs-PC method on
the experimental data to produce the denoised classifier
(α, Dα) for each bead. Using only experimental scales and a
reference fluid relevant to mucus, we define a power law α-,
spatial dimension d-, and bead radius r-dependent rescaling
of Dα normalized with respect to the diffusivity of a bead of
the same radius in water,

~Dα ¼ d2(α#1)Dα

(Dw)α
, (10)

where Dw is the viscous diffusivity of water for particles of
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radius r. Note that,

~Dα ¼ 1
(4r)2

"MSD(t ¼ t*),

where t* ¼ (2r)2/Dw. In other words, ~Dα can be inter-
preted as a multiple of the MSD at a time t* which depends
on the particle radius r, instead of an experimental lag time
nτ. For 1 μm beads, t* ¼ 2:33 s, in the middle of the experi-
mental lag times, and for 200 nm beads t* ¼ 0:01 s, just
above the minimum experimental lag time τ. Of note, the
homogeneity test produces identical results when applied to
(α, logΔ) or (α, log ~Dα) since they are linear transforma-
tions of each other. The same is true for the MCLUST clus-
tering algorithm with unconstrained variances.

The loss tangent as a scalar classifier:
For viscoelastic media, a fundamental property is that,

instead of a scalar metric (viscosity for purely viscous, elas-
ticity for purely solid, materials), the viscous and elastic
moduli are functions of frequency. In this respect, a standard
viscoelasticity metric is the loss tangent

tan (δ) ¼ G00(ω)/G0(ω),

which in general is frequency-dependent. When δ . π/4:
tan (δ) . 1 and the material is sol-like (i.e., loss or viscosity
dominated), whereas when δ , π/4: tan (δ) , 1 and the
material is gel-like (i.e., storage or elasticity dominated).

For pure power-law viscoelastic materials, tan (δ) collapses
to a scalar function of the MSD power law exponent α,

independent of both frequency ω and the MSD pre-factor Dα.
From the GSER (3) and the power-law moduli formulas (9),

tan (δ) ¼ G00(ω)
G0(ω)

¼ tan
πα
2

( )
, (11)

giving δ ¼ πα
2 . Thus, gel-like phases correspond to

0 , α , :5 and sol-like phases correspond to :5 , α % 1.
This scalar classifier, see Fig. 5 below, is not as accurate as
the two-parameter fBm classifier, (α, ~Dα):

VI. RESULTS ON EXPERIMENTAL DATASETS

A. Coarse clustering: Beads within vs. outside
flakes

Figure 4 gives the two-parameter classifier estimates for 1 μm
and 200 nm diameter beads in three mucus mixtures:
HBE+Calu3 60, 80, and 90 as described in the Materials and
Data Collection. Two different scales are used for comparison:
(α, ~Dα) and (α, Δ ¼ MSDX(t ¼ 1 s)). Recall that after taking
logarithms of ~Dα and Δ, the two scales are linear transformations
of each other. An advantage of using Δ ¼ MSDX(t ¼ 1 s) is
that it allows for comparison between 1 μm and 200 nm beads,
which cannot be done with ~Dα since it depends on bead diame-
ter. All datasets are visually divided into three clusters: waterlike
or outside flakes, within flakes but entangled in the noise floor,
and flakelike with recoverable signal. The designation of tracked
beads that are indistinguishable from the “noise floor” is based
on a stuck bead analysis provided in the “Choosing a noise
floor” section of the supplementary material with cutoff

FIG. 5. log10(tan(δ)) = log10[tan(α/2)] plots for 1 μm (left) and 200 nm (right) beads in HBE + Calu3 mucus samples 60, 80, and 90. Symbols (square, circle,
triangle) correspond to the scalar loss tangent metric per bead, the solid curve is a plot of the function log10(tan (α/2)), and the dashed horizontal line signals
the sol–gel boundary. Circles, squares, and triangles are from flakelike, waterlike, and noise floor clusters, respectively.
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α , 0:1. The flakelike data with recoverable pure signal exhibits
significantly subdiffusive behavior yet above the noise floor. In
[60], this classifier-based coarse clustering is shown, by compar-
ison with visual data from all experimental datasets as in Fig. 1,
to have extremely high accuracy in predicting beads within or at
the periphery of flakes vs. outside flakes.

Figure 5 gives a visual equivalent of the α ¼ 0:5 cutoff in
Fig. 4 as the separation between sol-like and gel-like local
sample properties surrounding each bead. For easier graphi-
cal visibility, we plot log10 (tan δ), shifting the gel/sol cutoff
in .. to 0, so that positive values of log10 (tan δ) are sol-like
and negative values gel-like. All waterlike data is sol-like, all
noise-floor data is gel-like, and all flakelike data lies between
these extremes. We are interested especially in the percentage
of sol-like and gel-like signals in flakelike data as a coarse
scalar metric of heterogeneity. Use of tan δ ¼ 1, equivalently
α ¼ 0:5, as the sol-gel boundary is a fairly accurate predictor
for waterlike vs. flakelike classification of tracked beads. It
agrees with our two-parameter classifier for six of the eight
samples. As could be expected in a phase separation process,
two samples have overlapping α values above 0.5, and their
cluster separation is only captured by using the two-
parameter classifier as evidenced in Fig. 6 below. Formula
(11) shows that using α as a scalar metric is equivalent to the
loss tangent for power law fluids. Furthermore, our predictor-
corrector method to infer (α, Dα) is extremely robust in esti-
mation of α. Using only α as a classifier does a remarkably
good job of predicting the clusters of beads within each
sample, whereas Dα (upon converting to comparable units Δ

or ~Dα) basically plays the role of a corrector in singling out
the few flakelike beads with values of α that could have been
classified as waterlike. This coarse scalar metric does not, of
course, convey the dynamic moduli surrounding each bead,
and the reason to estimate (α, Dα) as accurately as possible.
We now proceed to two-parameter clustering and estimates
of dynamic moduli, focusing on within-flake beads at 200 nm
and 1 μm diameter scales and tracking data distinguishable
from the noise floor.

B. Clustering analysis

Figure 6 displays the algorithmic clustering results
obtained from MCLUST for beads above the noise floor
(α . 0:1) and with a flakelike signal for each of the two-
dimensional classifiers: (i) (α, logΔ) and (ii) (α, log ~Dα). In
both cases, the plotting axes are α vs. logΔ.

The top panel of Fig. 6 presents results for which the
maximum number of clusters is set to Kmax ¼ 2, where both
(α, logΔ) and (α, log ~Dα) classifiers return identical clus-
tering. The bottom panel of Fig. 6 presents results for which
the maximum number of clusters is set to Kmax ¼ 4, surmis-
ing there may be more than one or two distinguishable
signals for flakelike beads.

The experiments with 1 μm diameter beads in 90% con-
centration and 200 nm diameter beads in 60% concentration
contain too few beads above the noise floor to draw mean-
ingful conclusions. The following observations apply to the
remaining experiments.

FIG. 6. Clustering results for classifiers (α, logΔ) and (α, log ~Dα) applied to all beads per sample above the noise floor with a flakelike signal, assuming a
maximum of 2 clusters (top) and 4 clusters (bottom). The four samples with multiple beads are clustered using MCLUST. For each sample, the clustering
results for each classifier are superimposed on the same set of particles, using the estimate of α on the vertical axis and the estimate of Δ ¼ MSD(t ¼ 1 s) on
the horizontal axis, in order to compare results for each sample and bead probe.
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Overall, the two classifiers, (α, logΔ) and (α, log ~Dα),
give similar results for distinguishing the highest and lowest
mobility clusters, but differ in how they cluster the intermedi-
ate range data. This is because MCLUST has selected a con-
strained variance matrix, which is typically not invariant to the
linear transformation between (α, logΔ) and (α, log ~Dα).

The BIC-based selection of the number of clusters
employed by MCLUST picks more than two clusters for all
four experiments. However, the MCLUST mixture-normal
clustering approach struggles with nonelliptical clusters. That
is, each of the K MCLUST clusters can be identified with an
ellipse, and the data points belonging to it are those for
which the “natural” distance to the ellipse centroid—i.e.,
along its principal axes and inversely proportional to the
length of these axes—is smaller than for any other cluster’s
ellipse. This is why, e.g., the results with Kmax ¼ 2 for the
1 μm beads at 60% concentration may seem unexpected:
while a visual clustering might separate the data points
between left and right, MCLUST separates them between top
and bottom because the small elliptical cluster at the top and
large elliptical cluster at the bottom resulted in the smallest
within-ellipse natural distance between data points and
ellipse centroids.

The extent to which the visual clusters are not elliptical
also explains why MCLUST typically selects more than two
clusters, i.e., preferring to split highly nonelliptical clusters
into several more elliptical ones. That being said, clusters
corresponding to perfectly homogeneous particles according
to the setup in the Homogeneity Testing section are indeed
perfectly elliptical.

Taking all visual and algorithmic clustering results into
account, we select a single clustering per experiment from
the two panels of Fig. 6 summarized in Table I.

It should be noted that while (α, logΔ) is the chosen clas-
sifier for each of the five samples, for four out of the five
samples, the (α, log ~Dα) classifier returns the same clusters.

C. Homogeneity testing within clusters

In order to assess within-cluster homogeneity, Table II
presents the results of Cochran’s Q test applied to each of the
clusters of each experiment described in Table I, along with
the cluster of beads with a waterlike signal.

All but five p-values are extremely small so that Cochran’s
Q test strongly rejects cluster homogeneity. The lack of homo-
geneity is expected for flakelike clusters as the data come from
different flakes, each with pore structures arising from the

stochastic phase separation process of flake formation.
Furthermore, only one waterlike/outside-flake cluster passes a
homogeneity test, and this is a weak conclusion since it is
based on three beads. The outside-flake heterogeneity is also
consistent with the stochastic dilution outside of phase-
separated flakes, creating dilute phases that vary with relative
proximity to flakes and degrees of dilution, with signals
ranging from pure waterlike to varying mucin concentrations.

This determination of heterogeneity, both between and
within the coarse within-flake and outside-flake bead signals,
strongly supports the following data-analysis protocol: (1)
for each batch sample, separately for subsamples with
200 nm and 1 μm beads, we use coarse clustering on the
(α, logΔ) or (α, log ~Dα) classifier per bead to cluster beads
within and outside of flakes; (2) when (here, both) clusters
fail the homogeneity test, we further apply clustering to the
within-flake and outside-flake ensembles; (3) for each cluster
within and outside flakes, we apply the GSER with the
denoised MSD for each bead; (4) for homogeneous clusters,
either of the three methods illustrated in Fig. 2 can be used,
while for heterogeneous clusters, we average the dynamic
moduli from all beads within each cluster; (5) we assess
cluster to cluster heterogeneity at the coarse scale of the
within and outside-flake ensembles, and then at the finer
scale of clusters within flakes and outside flakes. We refer to
this data-analysis protocol for heterogeneous clusters as
GSER average. These steps yield the within-flake and
outside-flake dynamic moduli as revealed by 200 nm and
1 μm diameter probes, for each of the three reconstituted
HBE samples, in Fig. 7. For comparison, Fig. 8 shows
results using GSER average and the two alternative applica-
tions of the GSER, always applying the methods post cluster-
ing, namely, averaging within-cluster MSDs and then
applying GSER, and averaging within-cluster classifiers and
then applying GSER. As shown in the synthetic datasets in
Fig. 2, the three methods yield equivalent results for homo-
geneous clusters but not for heterogeneous clusters.

TABLE I. Selected cluster assignment based on visual clustering and the
algorithmic clustering results of Fig. 6. Kmax refers to the max number of
clusters, and K refers to the optimal number of clusters.

Diameter HBE (%) Kmax K Classifier

1 μm 60 2 2 α : logΔ
1 μm 80 4 4 α : logΔ
1 μm 90 2 2 α : logΔ
200 nm 60 2 2 α : logΔ
200 nm 80 4 4 α : logΔ

TABLE II. Cochran’s homogeneity test results for the clusters reported in
Table I.

Diameter HBE (%) K Group No. beads Q P-value

1 μm 60 2 2 10 2688.6 0.0 × 100

2 3 5 2.4 9.7 × 10−01

Waterlike Waterlike 38 676.3 4.6 × 10−98

80 4 1 2 2.3 3.2 × 10−01

4 2 2 1.6 4.63 × 10−01

4 3 2 6.1 4.7 × 10−02

4 4 6 449.1 3.2 × 10−90

Waterlike Waterlike 52 430.3 6.7 × 10−42

90 Waterlike Waterlike 7 144.7 6.7 × 10−25

200 nm 60 2 1 3 47.6 1.1 × 10−09

2 2 1 — —

80 4 1 3 5.6 2.3 × 10−01

4 2 4 58.0 1.1 × 10−10

4 3 14 1037.6 3.9 × 10−202

4 4 3 116.5 3.0 × 10−24

Waterlike Waterlike 3 8.8 8.8 × 10−02
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FIG. 7. Mean storage and loss moduli for each cluster in Table I using the “GSER Average” data-analysis protocol. Mean ± 2 s.d. intervals are included for all
clusters consisting of at least two beads. Groups 1–4 are defined in Table II.

FIG. 8. Comparison of G0 (elastic) and G00 (viscous) moduli from 1 μm (gray) and 200 nm (black) tracked beads in the “flakelike” cluster for 60% (Row 1) and
80% (Row 2) samples, using the classifier average (Col. 1), the GSER average (Col. 2), and the MSD average (Col. 3). Only the GSER average (Col 2) results
are justified due to inhomogeneity of the clusters.
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D. Analysis of dynamic moduli

The storage and loss moduli for each cluster reported in
Table I is displayed in Fig. 7, using the data-analysis protocol
above. Since this involves weighted averages over power law
functions ωα, there is a potential for within-flake and
outside-flake sol–gel frequency transitions. Due to evidence
of heterogeneity in each cluster, we also display the mean ±
two standard deviations of G0 and G00 for each cluster in
which there was more than one bead.

We find that for the 1 μm 60% reconstituted HRM
sample, one within-flake cluster reflects a sol rheology and
the other a gel rheology over all frequencies. The 200 nm
60% sample has clusters at the transition between gel-like
and sol-like; one “cluster” contains a single bead and thus,
there are no intervals around the moduli curves. These results
comport with the stochastic phase separation process that pro-
duces flakes.

The 1 μm 80% reconstituted HRM sample shows two clus-
ters with a sol rheology, one with a gel rheology once again
hovering around the sol–gel transition. However, unlike the
previously discussed sample, the cluster at the gel-sol boun-
dary reflects a slight sol–gel transition as frequency increases.
This cluster is the only one to reflect a sol–gel frequency tran-
sition. If one averages over the entire within-flake bead ensem-
ble, again averaging in frequency space as the only justifiable
average, Fig. 8, then a sol–gel transition arises due to a spec-
trum of beads conveying α above and below 0.5.

Figure 8 shows the dynamic moduli curves from all beads
in the “flakelike” clusters for the 60% and 80% reconstituted
HRM samples. Due to nonhomogeneity of the clusters, only
(unjustifiable) ensemble averaging of classifiers gives a
power law with linear scaling in log-linear coordinates, while
both the ( justifiable) GSER average and (unjustifiable) MSD
average each display a departure from power-law scaling. An
important result of the justifiable GSER average method is
the evidence of a sol–gel transition from the ensemble of
probes within flakes. While one can focus on details revealed
in Fig. 8, it is difficult to make strong conclusions due to low
tracked bead sample sizes and the underlying stochasticity of
the phase separation process of flake formation.

VII. CONCLUDING REMARKS

Experiments and statistical methods are developed and
applied to analyze particle-tracking data from reconstituted
human respiratory mucus samples that replicate changes in
the MUC5B/MUC5AC ratio characteristic of healthy and CF
progression. This task of particle tracking to infer equilibrium
rheological properties is challenging in highly heterogenous
soft materials in general, and especially so with flake-
burdened HRM where within-flake and outside-flake
domains are a result of a stochastic, phase-separation process
that has only recently received scientific attention and under-
standing (cf [20,61–63].). In our analysis, three levels of het-
erogeneity are identified and characterized from the tracked
bead data: (1) a coarse binary scale of dense, phase-
separated, mucus flakes and dilute solution of remaining
mucins; (2) within flakes, a binary separation of dense
domains where bead signals can vs. cannot be confidently

disentangled from the experimental noise floor; and (3) in
light of failed tests for homogeneity at both of the above
levels, a more refined cluster analysis is applied to the
ensembles of 200 nm and 1 μm diameter beads for all three
reconstituted HRM samples.

For each tracked bead, we develop a two-parameter classi-
fier metric (α, Dα), where α is the power law and Dα is the pre-
factor of the mean-squared-displacement (MSD), of the entire
denoised experimental time series. This fractional Brownian
motion (fBm) classifier of the pure medium-induced signal for
each tracked bead has been shown to be a robust statistical
metric for passive particle tracking in HBE mucus (cf.
[6,9–12,15–18]). For beads in flakes, however, previous statisti-
cal metrics for fitting fBm to increment time series data are
inaccurate, illustrated herein with synthetic data of noisy bead
time series representative of tracked beads in dense flakes.

The fBm classifier metric involves two steps, each utiliz-
ing the full bead time series. The first predictor step is based
on a least-squares fit to the mean-squared-displacement of
fBm, MSDX(nτ) ¼ 2dDα(nτ)α, where nτ are all experimental
lag times and τ is the minimum lag time between recorded
bead positions of the microscope. This yields an initial
(α, Dα) predictor estimate, which stabilizes the corrector step
using the fARMAs method initially developed in [18] and
extended for this study in [28]. Our predictor-corrector
method (fARMAs-PC) is shown to accurately recover the
truth in synthetic data mimicking beads in flakes for which
previous metrics fail, as well as all beads in dilute solution,
i.e., outside flakes.

We next apply cluster analysis to assess heterogeneity in
each of the three reconstituted samples of HRM reflected by
each bead diameter. While the power law α is dimensionless,
the MSD pre-factor Dα has fractional, α-dependent time
units. We transform Dα for each bead to have either the same
physical units or a common nondimensionalization. We show
multiple ways to do this, each giving similar clustering
results using a standard clustering algorithm. We emphasize
that clustering is implemented on the denoised time series
classifier of the data, i.e., on the primitive measured data.
After each of the two stages of clustering is performed, the
coarse in-flake vs. outside-flake scale and then within each
of the coarse clusters, we test the homogeneity of the clus-
ters. This test justifies use of either the single bead or
ensemble-averaged GSER to infer dynamic moduli of all
cluster scales and for each bead diameter. Clusters within
and outside flakes invariably fail a homogeneity test, strongly
supporting the rheology protocol for each identified cluster:
application of GSER for each single bead, and then
frequency-space averaging of G0 and G00 over all beads in the
cluster. This protocol gives the dynamic moduli of inside-
flake and outside-flake clusters for each of the three samples
from both bead diameters. We find that flakes possess both
sol and gel domains while the remaining dilute mucin solu-
tion is sol-like, both nonhomogeneous, consistent with the
stochastic phase-separation process generating the flake-
burdened mucus samples.

The fBm classifier (α, Dα) has an additional advantage.
For each individual tracked bead, the fBm classifier yields an
exact power law for the mean-squared-displacement (MSD)
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over the full range of experimental timescales. Furthermore,
the Fourier transform of a power law function is also exact
and a power law function, so the GSER applied to the classi-
fier of each bead yields an exact power-law formula for the
complex modulus, G*(ω) of the medium surrounding each
denoised, tracked bead, avoiding numerical approximation.
Since all within-flake and outside-flake experimental clusters
fail the test for homogeneity, within-cluster averaging is per-
formed in the frequency-domain postapplication of the
GSER to the denoised MSD for individual beads in each
cluster. This results in a nonpower law rheology for each
cluster either within dense mucin flakes or in the mucin-
depleted dilute solvent. The within-flake data with both
200 nm and 1 μm diameter beads in samples from the same
reconstituted batch also reveals probe size-dependent hetero-
geneity. Finally, we use the relative number of 200 nm vs.
1 μm diameter beads that enter and reside in flakes to roughly
estimate flake pore-size distributions to reside predominantly
between 200 nm and 1 μm, with an unknown, nonzero per-
centage of pores above 1 μm. Further experiments and analy-
sis are necessary to more quantitatively estimate pore-size
distributions.

Novel contributions in this paper
Our goal in this paper is a treatment of heterogeneous

soft materials through the use of particle-tracking micro-
rheology that theorists and experimentalists may adopt in
their work. We describe novel experimental results by
Papanikolas and Freeman on synthetic replication of
flake-endowed mucus that will be the focus of an upcom-
ing separate submission, whereas the primary focus and
novelty of this paper are our analysis of the experimental
particle-tracking data to characterize heterogeneity of the
reconstituted mucus samples. The analytical methods
clarify what is possible to infer about rheological heteroge-
neity of the samples from the data, and, therefore, the
methods are adaptable to other materials and data. We
demonstrate the ability to replicate empirical MSDs with
the method presented herein, fARMAs-PC. To do so, we
simulate homogeneous flakelike datasets and dilute-
solutionlike datasets and recover the known truth with our
methods applied to the simulated datasets. We then show
all averaging GSER methods are quantitatively equivalent.
It is well known that ensemble-averaging of tracked bead
MSDs is the proper approach for a homogeneous complex
fluid. In our samples and analyses, the data are heteroge-
neous (determined by homogeneity tests and clustering
with MCLUST). Therefore, ensemble-averaging MSDs in
the GSER is patently a violation of the theory. Further, we
show each tracked bead trajectory that can be distin-
guished from the experimental noise floor robustly obeys a
unique fBm stochastic process. The data, therefore,
strongly supports that every successfully denoised tracked
bead resides in a locally homogeneous medium over the
full timescales and lengthscale of every tracked bead, sup-
ported by 1800 position observations, and the medium is
conveying a memory spectrum consistent with a unique
fBm process as uniquely determined by our classifier.
These results support application of the single-particle
GSER formula to infer the loss and storage moduli of the

medium surrounding each tracked bead. From the ensem-
bles of tracked and denoised beads per sample and bead
size, we determine whether the ensembles are drawn from
a homogeneous distribution of fBm processes or not.

If the ensemble is not homogeneous, averaging in fre-
quency space is the only justifiable analysis of the data, as
ensemble-averaging of MSDs violates the original GSER
theory. If the ensemble is homogeneous, all GSER methods
are equivalent, which we show quite demonstrably with sim-
ulated data consistent with the experimental datasets.

SUPPLEMENTARY MATERIAL

See the supplementary material for (1) explanation of our
denoising method, fARMAs-PC, that is applied to all tracked
bead position time series. (2) Explanation of our parameter
estimation method that provides the fractional Brownian
motion classifier consisting of two parameters, (α, Dα). (3)
Explanation of how we measured the noise floor threshold in
the 2-parameter space (α, Dα) derived from beads stuck to
the glass plate, with results from stuck bead data in Fig. S1.
(4) Illustration of convergence results from our predictor-
corrector method to estimate the classifier, noise, and drift
parameters in Fig. S2. (5) Comparison of our predictor-
corrector method vs. the LS method for estimating the classi-
fier parameters (α, Dα), where the methods are applied to
simulated truth sets where the correct parameters are known,
Fig. S3. (6) Discussion of data cleaning methods and the
results of filtered data for each reconstituted mucus sample
and each tracked bead diameter. (7) Illustration of how our
methods applied to experimental and synthetic datasets
provide an accurate reconstruction of the empirical MSDs of
tracked beads, Figs. S4 and S5.
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