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Abstract—Lempel–Ziv (LZ77) factorization is a fundamental
problem in string processing: Greedily partition a given string
T from left to right into blocks (called phrases) so that each
phrase is either the leftmost occurrence of a single letter or
the longest prefix of the unprocessed suffix that has another
occurrence earlier in the text. This simple routine has numerous
applications. Most importantly, the LZ77 factorization is the
central component and the computational bottleneck of most
existing compression algorithms (utilized in formats like zip,
pdf, and png). LZ77 is also a widely used algorithmic tool for
the detection of repetitions and periodicities in strings, and the
centerpiece of many powerful compressed indexes that enable
computation directly over compressed data. LZ77 factorization
is one of the most studied problems in string processing. In the
47 years since its inception, numerous efficient algorithms were
developed for different models of computation, including parallel,
GPU, external-memory, and quantum. Remarkably, however, the
complexity of the most basic problem is still not settled: All
existing algorithms in the RAM model run in Ω(n) time, which
is a Θ(logn) factor away from the lower bound of Ω(n/ logn)
(following simply from the necessity to read the entire input, which
takes Θ(n/ logn) space for any T ∈ {0, 1}n). Sublinear-time
algorithms are known for nearly all other fundamental problems
on strings, but LZ77 seems resistant to all currently known
techniques.

We present the first o(n)-time algorithm for constructing
the LZ77 factorization, breaking the linear-time barrier present
for nearly 50 years. More precisely, we show that, in the
standard RAM model, it is possible to compute the LZ77
factorization of a given length-n string T ∈ {0, 1}n in
O(n/

√
logn) = o(n) time and using the optimal O(n/ logn)

working space. Our algorithm generalizes to larger alphabets
Σ = [0 . . σ), where σ = nO(1). The runtime and working
space then become O((n log σ)/

√
logn) and O(n/ logσ n),

respectively. To achieve this sublinear-time LZ77 algorithm, we
prove a more general result: We show that, for any constant
ϵ ∈ (0, 1) and string T ∈ [0 . . σ)n, in O((n log σ)/

√
logn)

time and using O(n/ logσ n) working space, we can construct
an index of optimal size O(n/ logσ n) that, given any substring
P = T [j . . j + ℓ) specified with a pair (j, ℓ), computes the
leftmost occurrence of P in T in O(logϵ n) time. In other words,
we solve the indexing/online variant of the LZ77 problem, where
we can efficiently query the phrase length starting at any position.
Our solution is based on a new type of queries that we call
prefix range minimum queries or prefix RMQ. After developing an
efficient solution for these queries, we provide a general reduction
showing that any new tradeoff for the prefix RMQ implies a new
tradeoff for an index finding leftmost occurrences (and hence a
new LZ77 factorization algorithm).
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I. INTRODUCTION

The Lempel–Ziv (LZ77) factorization [2], [3] is one of
the most fundamental concepts in data compression. In this
method, we partition the input string T into a sequence of
blocks T = f1f2 · · · fz . Each block, called a “phrase”, is either
(a) the first occurrence of a letter or (b) a substring that has an
earlier occurrence in T . We then encode each phrase fj either
explicitly (in case (a)) or as a pair (ℓ, i), where ℓ = |fj | and i is
the position of an earlier occurrence of fj (in case (b)). Such
representation needs O(z) space and the greedy approach,
where T is decomposed from left to right into the longest
possible phrases, has been shown to minimize the number of
phrases z [2, Theorem 1].

Due to its excellent practical performance, strong theoretical
guarantees, and numerous applications, the above algorithm
went on to become one of the most widely used compression
methods. In 2004, LZ77 was named the IEEE Milestone [4],
and in 2021 Jacob Ziv was awarded the IEEE Medal of
Honor [5] (the highest IEEE recognition) for his work on
LZ77 and its variant LZ78 [6]. Below, we list some of the
applications of LZ77.

• LZ77 is the most common compression method: 57
out of 207 compressors in the Large Text Compression
Benchmark [7] use it as their main algorithm. It is used
in png, pdf, zip, xz, 7z, gz, and arj formats (to name
a few), and in virtually all modern web browsers and web
servers [8].

• LZ77 underlies compressed text indexes supporting ran-
dom access [9]–[13], longest common extension (LCE)
queries [13]–[16], rank and select queries [12], [17], [18],
pattern matching [19]–[27], and suffix array functional-
ity [28];1 see [32], [33] for a recent survey.

• LZ77, together with the closely related grammar com-
pression [29], is the framework of algorithms operat-
ing directly on compressed data to solve many central
problems, including longest common subsequence and

1Some of the indexes use the closely related notion of grammars [29]
or string attractors [30], instead of building directly on LZ77. However,
since computing the smallest grammar and the smaller string attractor is
NP-complete [29], [30], the LZ77-based approximations, such as [9], [29],
[31], are used in most cases.
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edit distance [34]–[36], Hamming distance [37], [38],
exact [39]–[41] and approximate pattern matching [42]–
[45], and matrix-vector multiplication [46].

• LZ77 is one of the most widely used measures of repeti-
tiveness [32], [33], and it comes with solid mathematical
foundations: As shown in [9], [13], [29], [30], [47]–[49],
LZ77 is up to logarithmic factors equivalent to gram-
mar compression [29], LZ-End [50], run-length-encoded
Burrows–Wheeler Transform [51], macro schemes [52],
collage systems [53], string attractors [30], and substring
complexity [49]. However, whilst many of the those
measures are NP-hard to optimize [29], [30], [52], [53],
LZ77 can be constructed in linear time [54]. Moreover, it
is one of the smallest measures in practice [33], [50].

• LZ77 factorization is the central tool used for efficient
detection of regularities in strings: repetitions [55], runs
(maximal repeats) [56]–[59], repeats with a fixed gap [60],
approximate repetitions [61], tandem repeats [62], se-
quence alignments [63], local periods [64], and seeds [65].
These regularities, in turn, have applications in bioinfor-
matics, data mining, and combinatorics; see [66]–[68].

In nearly all applications above, finding the LZ77 factor-
ization is the computational bottleneck. This applies in data
compression [8], [69], detection of repetitions [58], [68], as well
as index construction: given the LZ77 factorization of the input
text, recent algorithms [28], [48] can construct text indexes in
compressed time (i.e., O(z polylog n), where n = |T |), which
for highly repetitive texts is orders of magnitude smaller than
the original (uncompressed) text [33]. Thus, LZ77 factorization
is the dominant step.

Algorithms for efficient LZ77 factorization are known in
nearly all models of computation, including parallel [70]–
[75], GPU [69], [76], [77], external memory [78], [79], and
quantum [80] models. LZ77 factorization has also been studied
in the dynamic setting [25] and for general (non-integer)
alphabets, where the known bounds for factorizing the length-
n string with σ distinct characters are Θ(n log σ) symbol
comparisons (for ordered alphabets) [81] or Θ(nσ) symbol
equality tests (for unordered alphabets) [82].

In this paper, we focus on the most fundamental and
most studied variant, i.e., LZ77 factorization in the static
setting in the standard RAM model [83] with the word size
w ≥ log n. In this model, the input text T ∈ [0 . . σ)n of
length n over integer alphabet Σ = [0 . . σ) is represented
using n log σ bits, or Θ(n/ logσ n) machine words.2 The trivial
lower bound for the runtime in this model, following from
the necessity to read the input, is Ω(n/ logσ n). Since the
number of LZ77 phrases satisfies z = O(n/ logσ n) for every
text T ∈ [0 . . σ)n [2, Theorem 2], an algorithm running in
O(n/ logσ n) is hypothetically plausible.

The first efficient algorithm for constructing the LZ77
factorization was proposed in 1981 [54]. The algorithm is
based on suffix trees [84] and achieves O(n log σ) time
and O(n) space. The first O(n)-time algorithm (independent

2Unless indicated otherwise, we measure the space in machine words.

of the alphabet size) was given in [59]. Numerous other
linear or near linear-time algorithms using Θ(n) space in
the worst case followed [85]–[92], aiming to reduce the
runtime or space usage in practice. The first algorithm
to reduce the space complexity achieved O(n log3 n) time
in the optimal O(n/ logσ n) space [93]. Subsequent works
lowered the time (while keeping the O(n/ logσ n) space) to
O(n log2 n) [94], O(n log n·(1+ log σ

(log logn)2 )) [20], O(n log n)

[95]–[97], O(n(log σ + log log n)) [98], O(n log σ) [85],
O(n log log σ) [99], randomized O(n) [99], and finally, by
combining [100] and [101], to deterministic O(n) time. There
also exist algorithms whose runtime depends on z: The
procedures in [102], [103] achieve the time complexity of
O(n/ logσ n+ z polylog n).3 For sufficiently small z, this is
O(n/ logσ n), but these algorithms still require Ω(n) time in
the worst case. Summing up, all prior algorithms to compute
the LZ77 factorization need Ω(n) time in the worst case.

Given the fundamental role of LZ77, we thus ask:

Can we compute the LZ77 factorization of a string
T ∈ [0 . . σ)n faster than in O(n) time?

a) Our Results: After nearly 50 years since the invention
of LZ77, we present the first algorithm to compute the LZ77
factorization in o(n) time. For a binary alphabet (σ = 2),
our algorithm runs in O(n/

√
log n) time and uses the optimal

O(n/ log n) space. For an integer alphabet Σ = [0 . . σ), it runs
in O((n log σ)/

√
log n) time and uses O(n/ logσ n) space. We

obtain the same complexities for a variant of LZ77 that prohibits
overlaps between phrases and their previous occurrences.4 (This
variant is sometimes preferred in practice since it simplifies the
usage of the factorization.) All our algorithms are deterministic.

Theorem I.1 (LZ77 factorization). Given the O(n/ logσ n)-
space representation of a text T ∈ [0 . . σ)n, the overlap-
ping and non-overlapping LZ77 factorization of T can be
constructed in O((n log σ)/

√
log n) time and O(n/ logσ n)

working space.

We achieve this result as a simple corollary of a much more
general tool that we develop. Namely, we propose the first
index with sublinear construction that can quickly locate the
leftmost occurrences of substrings of T . More precisely, we
show that, given any constant ϵ ∈ (0, 1) and the O(n/ logσ n)-
space representation of T ∈ [0 . . σ)n, where 2 ≤ σ < n1/7, in
O((n log σ)/

√
log n) time5 and O(n/ logσ n) working space,

we can construct an index that, for any position j ∈ [1 . . n]
and any length ℓ ∈ [1 . . n+ 1− j],6 in O(logϵ n) time returns

3The complexity of the algorithm in [102] is originally stated as
O(n/ logσ n+ z polylogn+ r polylogn), where r is the number of equal-
letter runs in the Burrows–Wheeler transform (BWT) [51] of T , but this can
be simplified to O(n/ logσ n+ z polylogn) due to the more recent upper
bound r = O(z log2 n) [48].

4The number of phrases zno in this variant satisfies zno = O(n/ logσ n),
as we prove for completeness is the full version [1].

5We actually achieve a slightly better time of O(nmin(1, log σ/
√
logn)),

but for simplicity we use the basic bound. If σ ≥ n1/7, Theorem I.1 follows
from standard linear-time solutions [59], [104] because log σ = Θ(logn).

6For i, j ∈ Z, denote [i . . j] = {k ∈ Z : i ≤ k ≤ j}, [i . . j) = {k ∈ Z :
i ≤ k < j}, and (i . . j] = {k ∈ Z : i < k ≤ j}.



the position minOcc(P, T ) for P = T [j . . j + ℓ), where

Occ(P, T ) =

{i ∈ [1 . . n] : i+ |P | ≤ n+ 1 and T [i . . i+ |P |) = P}

consists of the starting positions of the occurrences of P
in T . Our index also works for explicit patterns: given
the O(m/ logσ n)-space representation of any pattern P ∈
[0 . . σ)m satisfying Occ(P, T ) ̸= ∅, we can in O(logϵ n +
m/ logσ n) time compute minOcc(P, T ). Observe that, given
such data structure, it is easy to compute the overlapping and
non-overlapping versions of LZ77 simply by binary searching
the length of each phrase. More precisely, computing the
length ℓ and the position i of the previous occurrence of a
phrase starting at any position j in T takes O(log ℓ · logϵ n)
time. Across all z phrases of total length n, this sums up to
O(z log(n/z) · logϵ n) since logarithm is a concave function.
Due to z = O(n/ logσ n), it thus suffices to set ϵ < 1

2
to achieve the worst-case running time of O(n/ logσ n ·
log logσ n·log

ϵ n) = O((n log σ)/
√
log n). This method works

for both the overlapping and non-overlapping variants of LZ77.
However, rather than applying the above strategy directly, we
go one step further and generalize the above idea so that, after
additional sublinear preprocessing, the computation of the pair
(ℓ, i) in the above scenario takes O(logϵ n) time (rather than
O(log ℓ · logϵ n)). In other words, we obtain a data structure
that provides O(logϵ n)-time access to the so-called Longest
Previous Factor (LPF) [105] and the Longest Previous non-
overlapping Factor (LPnF) [104] arrays. The following result
applied with ϵ ≤ 1

2 thus yields Theorem I.1.

Theorem I.2 (LPF and LPnF Index). Given any constant
ϵ ∈ (0, 1) and the O(n/ logσ n)-space representation of
a text T ∈ [0 . . σ)n, where 2 ≤ σ < n1/7, we can in
O((n log σ)/

√
log n) time and O(n/ logσ n) working space

construct a data structure of size O(n/ logσ n) that, given any
j ∈ [1 . . n], in O(logϵ n) time returns LPFT [j], LPnFT [j],
LPFMinOccT [j], and LPnFMinOccT [j], which are defined
as the length ℓ and the leftmost occurrence of the longest
previous (non-overlapping) factor T [j . . j + ℓ).

As discussed above, the central technical result of our
paper is a space-efficient index that quickly locates leftmost
occurrences of substrings in the text and admits a sublinear-
time construction algorithm. The main obstacle to obtaining
such an index using prior techniques is that locating leftmost
occurrences is typically achieved using Range Minimum
Queries (RMQ) on top of the suffix array. Although RMQ
queries only add O(m) bits on top of the length-m array they
augment [106], their construction needs Ω(m) time, which
prevents achieving o(n)-time construction for a length-n text.
We instead exploit a sampling-based approach [107], where
the idea is to first carefully compute a sample S ⊆ [1 . . n]
of representative text positions within nonperiodic regions of
the text (periodic regions are handled separately) such that
|S| = O(n/ logσ n) [107], and then reduce the queries on the
text to orthogonal range queries on a set of points defined by

the set S. The natural query corresponding to finding leftmost
occurrences is then a 4-sided orthogonal RMQ query. Indeed,
a reduction to orthogonal range queries underlies some of the
fastest indexes of size O(z polylog n) [26]–[28], but it does
not lead to an efficient solution in our scenario because no
fast construction is known for efficient orthogonal RMQ data
structures (such as [108]). We instead propose to replace the
general RMQ queries on a plane with a new type of query
we call prefix RMQ. Given an array of integers A[1 . .m]
and sequence S of m strings over alphabet Σ, the prefix
RMQ query with arguments b, e ∈ [0 . .m] and X ∈ Σ∗

asks to compute the position that minimizes the value A[i]
among all indices i ∈ (b . . e] for which X is a prefix of
S[i]. This variant of a 4-sided RMQ query is precisely the
specialization that we need to support on S. We propose a space-
efficient data structure for prefix RMQ queries and describe its
fast construction. Furthermore, by carefully handling periodic
regions of the text, where we again prove that the orthogonal
RMQ queries have a special structure that supports faster
queries, we achieve the following very general reduction from
prefix RMQ queries. Plugging our specific tradeoff (discussed
in the full version [1]) to this reduction yields our main index.
Observe that this reduction is very efficient: aside from an extra
O(log log n) term in the query time, prefix RMQ dominate all
the complexities.

Theorem I.3 (Index for Leftmost Occurrences). Consider a
data structure answering prefix RMQ queries that, for any
sequence of k length-ℓ strings over alphabet [0 . . σ), achieves
the following complexities:

1) Space usage S(k, ℓ, σ),
2) Preprocessing time Pt(k, ℓ, σ),
3) Preprocessing space Ps(k, ℓ, σ), and
4) Query time Q(k, ℓ, σ).

For every text T ∈ [0 . . σ)n with 2 ≤ σ < n1/7, there
exists k = O(n/ logσ n) and ℓ = O(logσ n) such that,
given the O(n/ logσ n)-space representation of T , we can in
O(n/ logσ n+Pt(k, ℓ, σ)) time and O(n/ logσ n+Ps(k, ℓ, σ))
working space build a data structure of size O(n/ logσ n +
S(k, ℓ, σ)) that supports the following queries:

• Given any position j ∈ [1 . . n] and any ℓ ∈ [1 . . n+1−j],
in O(log log n + Q(k, ℓ, σ)) time compute the position
minOcc(P, T ), where P = T [j . . j + ℓ).

• Given the packed representation7 of any pattern P ∈
[0 . . σ)m that satisfies Occ(P, T ) ̸= ∅, in O(log log n +
Q(k, ℓ, σ) + m/ logσ n) time compute the position
minOcc(P, T ).

b) Related Work: Ellert [103] described an O(n/ logσ n)-
time algorithm that computes a 3-approximation of LZ77. Two
O(z)-working-space algorithms constructing a 2-approximation
and a (1 + ϵ)-approximation running in O(n log n) and

7By a “packed” representation of a string S ∈ [0 . . σ)m, we mean its
O(m/ logσ n)-space encoding in memory; see Section II.



O(n log2 n) time, respectively, were proposed in [109]. A
practical external-memory approximation was described in [79].

Rightmost LZ77 is a variant of LZ77 where the encoding of
every phrase refers to its rightmost previous occurrence. An
O(n log n)-time and O(n)-space algorithm for this problem
was given in [110], [111]. This has been improved to O(n+
(n log σ)/ log log n) time and O(n) space in [112], and further
to O(n log log σ+(n log σ)/

√
log n) (deterministic) or O(n+

(n log σ)/
√
log n) (randomized) time, while using the optimal

O(n/ logσ n) space, in [99]. An (1 + ϵ)-approximation of the
rightmost LZ77 can be constructed in O(n(log z + log log n))
time and O(n) space; see [113].

A variant of LZ77 that requires phrases to have earlier
occurrences ending at phrase boundaries is called LZ-End [50].
This variant was proved to achieve an approximation ratio
of O(log2(n/z)) in [13]. This was recently improved by a
factor Θ(log log(n/z)) [114]. Algorithms computing LZ-End
in O(nℓmax(log σ + log log n)) time and O(n) space, or in
O(nℓmax log

1+ϵ n) time and O(n/ logσ n) space (where ℓmax

is the length of the longest phrase and ϵ > 0 is any positive
constant) were given in [20]. A construction running in O(n)
time and space was then given in [115]. The same time and
space were achieved for the rightmost variant of LZ-End
in [116]. Lastly, an LZ-End factorization algorithm running
in O(n log ℓmax) expected time and O(zend + ℓmax) working
space (where zend is the number of phrases in the LZ-End
factorization) was given in [117].

II. PRELIMINARIES

a) Basic Definitions: A string is a finite sequence of
characters from a given alphabet Σ. The length of a string
S is denoted |S|. For i ∈ [1 . . |S|], the ith character of
S is denoted S[i]. A substring of S is a string of the
form S[i . . j) = S[i]S[i+ 1] · · ·S[j − 1] for some indices
1 ≤ i ≤ j ≤ |S| + 1. Substrings of the form S[1 . . j) and
S[i . . |S|+1) are called prefixes and suffixes, respectively. We
use S to denote the reverse of S, i.e., S[|S|] · · ·S[2]S[1]. We
denote the concatenation of two strings U and V , that is,
U [1] · · ·U [|U |]V [1] · · ·V [|V |], by UV or U · V . Furthermore,
Sk =

⨀︁k
i=1 S is the concatenation of k ∈ Z≥0 copies of S;

note that S0 = ε is the empty string. A nonempty string S
is said to be primitive if it cannot be written as S = Uk,
where k ≥ 2. An integer p ∈ [1 . . |S|] is a period of S if
S[i] = S[i+p] holds for every i ∈ [1 . . |S|−p]. We denote the
shortest period of S as per(S). For every S ∈ Σ+, we define
the infinite power S∞ so that S∞[i] = S[1+ (i− 1) mod |S|]
for i ∈ Z. In particular, S = S∞[1 . . |S|].

By lcp(U, V ) we denote the length of the longest common
prefix of strings U and V . For any string S ∈ Σ∗ and
any j1, j2 ∈ [1 . . |S| + 1], we denote LCES(j1, j2) =
lcp(S[j1 . . |S|], S[j2 . . |S|]). We use ⪯ to denote the order
on Σ, extended to the lexicographic order on Σ∗ so that
U, V ∈ Σ∗ satisfy U ⪯ V if and only if either (a) U is a
prefix of V , or (b) U [1 . . i) = V [1 . . i) and U [i] ≺ V [i] holds
for some i ∈ [1 . .min(|U |, |V |)].

a
aababa
aababababaababa
aba
abaababa
abaababababaababa
ababa
ababaababa
abababaababa
ababababaababa
ba
baababa
baababababaababa
baba
babaababa
babaababababaababa
bababaababa
babababaababa
bbabaababababaababa

T [SAT [i] . . n]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

i
19
14
5
17
12
3
15
10
8
6
18
13
4
16
11
2
9
7
1

SAT [i]

Fig. 1. A list of all sorted suffixes of T = bbabaababababaababa along
with the suffix array.

b) Suffix Array: For any string T ∈ Σn (of length
n ≥ 1), the suffix array SAT [1 . . n] of T is a permutation
of [1 . . n] such that T [SAT [1] . . n] ≺ T [SAT [2] . . n] ≺ · · · ≺
T [SAT [n] . . n], i.e., SAT [i] is the starting position of the
lexicographically ith suffix of T ; see Fig. 1 for an example. The
inverse suffix array ISAT [1 . . n] (also denoted SA−1

T [1 . . n])
is the inverse permutation of SAT , i.e., ISAT [j] = i holds
if and only if SAT [i] = j. Intuitively, ISAT [j] stores the
lexicographic rank of T [j . . n] among the suffixes of T .

Definition II.1. For any T ∈ Σn and P ∈ Σ∗, we define

Occ(P, T ) = {j ∈ [1 . . n] : j + |P | ≤ n+ 1 and
T [j . . j + |P |) = P},

RangeBeg(P, T ) = |{j ∈ [1 . . n] : T [j . . n] ≺ P}|,
RangeEnd(P, T ) = RangeBeg(P, T ) + |Occ(P, T )|.

In other words, Occ(P, T ) consists of the starting positions
of the (exact) occurrences of P in T , with the convention
that Occ(ε, T ) = [1 . . n] holds if n = |T | > 0. The two
values RangeBeg(P, T ) and RangeEnd(P, T ) are defined to
be endpoints of the so-called SA-interval representing the
occurrences of P in T . Formally, Occ(P, T ) = {SAT [i] : i ∈
(RangeBeg(P, T ) . .RangeEnd(P, T )]} holds for every pat-
tern P ∈ Σ∗, including when P = ε and when Occ(P, T ) = ∅.

c) Lempel–Ziv Compression: A fragment T [j . . j + ℓ) of
T is a previous factor if it has an earlier occurrence in T ,
i.e., LCET (i, j) ≥ ℓ holds for some i ∈ [1 . . j). An LZ77-
like factorization of T is a decomposition T = f1 · · · fz into
non-empty phrases such that each phrase fk with |fk| > 1 is
a previous factor. In the underlying LZ77-like representation,
every phrase fk = T [j . . j + ℓ) that is a previous factor is
encoded as (i, ℓ), where i ∈ [1 . . j) satisfies LCET (i, j) ≥ ℓ
(and is chosen arbitrarily in case of multiple options); if fk =
T [j] is not a previous factor, we encode it as (T [j], 0).

The LZ77 factorization [3] of a string T is then just an LZ77-
like factorization constructed by greedily factorizing T from
left to right into the longest possible phrases. More precisely,



the kth phrase fk is the longest previous factor starting at
position 1 + |f1 · · · fk−1|; if no previous factor starts there,
then fk consists of a single character. This greedy construction
yields the smallest LZ77-like factorization of T [2, Theorem 1].
We denote the number of phrases in the LZ77 factorization of
T by z(T ).

For example, the text of Fig. 1 has LZ77 factoriza-
tion T = b · b · a · ba · aba · bababa · ababa with
z(T ) = 7 phrases, and the underlying LZ77 representation
is (b, 0), (1, 1), (a, 0), (2, 2), (3, 3), (7, 6), (10, 5).

A variant of LZ77 factorization in which we additionally
require that the earlier occurrence of every phrase does not
overlap the phrase itself is called the non-overlapping LZ77.
We denote the number of phrases in this variant by zno(T ).
The non-overlapping LZ77 factorization of the text of Fig. 1
is T = b ·b ·a ·ba ·aba ·baba ·baababa with zno(T ) = 7
phrases.

d) String Synchronizing Sets: String synchronizing
sets [107] allow for a locally-consistent selection of positions
in a given text T . The underlying parameter τ governs the
context size (with respect to which the selection is consistent)
and the achievable size of the synchronizing set.

Definition II.2 (τ -synchronizing set [107]). Let T ∈ Σn be
a string and let τ ∈ [1 . . ⌊n

2 ⌋] be a parameter. A set S ⊆
[1 . . n − 2τ + 1] is called a τ -synchronizing set of T if it
satisfies the following consistency and density conditions:

1) If T [i . . i+ 2τ) = T [j . . j + 2τ), then i ∈ S holds if and
only if j ∈ S (for i, j ∈ [1 . . n− 2τ + 1]),

2) S ∩ [i . . i + τ) = ∅ if and only if i ∈ R(τ, T ) (for i ∈
[1 . . n− 3τ + 2]), where

R(τ, T ) := {i ∈ [1 . . n−3τ+2] : per(T [i . . i+3τ−2]) ≤ 1
3τ}.

Remark II.3. In most applications, we want to minimize |S|.
Note, however, that the density condition imposes a lower
bound |S| = Ω(nτ ) for strings of length n ≥ 3τ −1 that do not
contain substrings of length 3τ − 1 with period at most 1

3τ .
Thus, we cannot hope to achieve an upper bound improving
in the worst case upon the following ones.

Theorem II.4 ([107, Proposition 8.10]). For every string T
of length n and parameter τ ∈ [1 . . ⌊n

2 ⌋], there exists a τ -
synchronizing set S of size |S| = O

(︁
n
τ

)︁
. Moreover, if T ∈

[0 . . σ)n, where σ = nO(1), such S can be deterministically
constructed in O(n) time.

Theorem II.5 ([107, Theorem 8.11]). For every constant µ < 1
5 ,

given the packed representation of a string T ∈ [0 . . σ)n and
a positive integer τ ≤ µ logσ n, one can deterministically
construct in O(nτ ) time a τ -synchronizing set of size O(nτ ).

e) Rank and Selection Queries:

Definition II.6. For a string S ∈ Σn, we define:

Rank query rankS,a(j): Given a symbol a ∈ Σ and a
position j ∈ [0 . . n], compute |{i ∈ [1 . . j] : S[i] = a}|.

Selection query selectS,a(r): Given a symbol a ∈ Σ and an
integer r ∈ [1 . . rankS,a(n)], find the rth smallest element
of {i ∈ [1 . . n] : S[i] = a}.

Theorem II.7 (Rank and selection queries in bitvec-
tors [118]–[121]). For every string S ∈ {0, 1}∗, there exists
a data structure of O(|S|) bits answering rank and selection
queries in O(1) time. Moreover, given the packed representa-
tions of m binary strings of total length n, the data structures
for all these strings can be constructed in O(m + n/ log n)
time.

f) Model of Computation: We use the standard word
RAM model of computation [83] with w-bit machine words,
where w ≥ log n, and all standard bit-wise and arithmetic
operations taking O(1) time. Unless explicitly stated otherwise,
we measure the space complexity in machine words.

In the RAM model, strings are usually represented as arrays,
with each character occupying one memory cell (or a constant
number of memory cells if σ > n). A single character, however,
only needs ⌈log σ⌉ bits, which might be much less than w.
We can therefore store (the packed representation of) a string
S ∈ [0 . . σ)m using O(⌈m log σ

w ⌉) words.

III. TECHNICAL OVERVIEW

Consider a text T ∈ [0 . . σ)n. We assume that 2 ≤ σ < n1/7;
larger alphabet sizes σ satisfy log σ = Θ(log n), and, in
that case, most of the problems considered in this paper
can be solved using standard large-alphabet techniques. For
example, whenever σ = nΘ(1), the LZ77 factorization al-
gorithm from [59] runs in O(n) = O(n/ logσ n) time and
O(n) = O(n/ logσ n) space.

A. Index for Leftmost Occurrences

We now outline how, given any constant ϵ ∈ (0, 1) along
with the O(n/ logσ n)-space representation of T ∈ [0 . . σ)n,
in O(n log σ/

√
log n) time and O(n/ logσ n) working space,

we can construct an index of size O(n/ logσ n) that, given
any position j ∈ [1 . . n] and any length ℓ ∈ [1 . . n − j + 1],
in O(logϵ n) time returns the position minOcc(P, T ) (see
Definition II.1) for P = T [j . . j + ℓ). Our index can also
compute minOcc(P, T ) in O(logϵ n+m/ logσ n) time given
the O(m/ logσ n)-space representation of any P ∈ [0 . . σ)m

satisfying Occ(P, T ) ̸= ∅, which is of independent interest.
a) The Index Core: Let µ ∈ (0, 1

6 ) be a positive constant
such that τ := µ logσ n is a positive integer. Such µ exists
because logσ n > 7 follows from σ < n1/7. Consider integers
j ∈ [1 . . n] and ℓ ∈ [1 . . n+1−j], and a pattern P ∈ [0 . . σ)m

of length m > 0 given in O(1 +m/ logσ n) space.
We begin by observing that the number of strings X ∈

[0 . . σ)∗ satisfying |X| < 3τ − 1 is bounded by σ3τ ≤ n1/2.
Thus, we can precompute and store minOcc(X,T ) for all
of them. This computation is easily done in O(n/ logσ n)
exploiting the packed representation of T . Using this lookup
table, we can answer queries when ℓ < 3τ−1 and m < 3τ−1.

Let us now assume that ℓ ≥ 3τ − 1 and m ≥ 3τ − 1. The
computation of minOcc(T [j . . j + ℓ), T ) works differently,



depending on whether per(T [j . . j+ ℓ)) ≤ 1
3τ (or equivalently

j ∈ R(τ, T ); see Definition II.2). For explicit patterns P , we
also proceed depending on whether per(P ) ≤ 1

3τ , in which
case we call P τ -periodic. To distinguish these cases, we store
the packed representation of T (to retrieve T [j . . j + ℓ)) and a
lookup table keeping per(X) for every X ∈ [0 . . σ)3τ−1. Such
table takes O(σ3τ ) = O(n1/2) space and is easily computed
in O(n/ logσ n) time.

b) The Nonperiodic Patterns and Positions: Assume that
j ̸∈ R(τ, T ) and P is τ -nonperiodic. Assume that we computed
(using Theorem II.5 in O(n/ logσ n) time) a τ -synchronizing
set S of T satisfying |S| = O(nτ ) = O(n/ logσ n). By
the density condition of S (Definition II.2(2)), the successor
succS(j) in S of every position j ∈ [1 . . n− 3τ + 2] \ R(τ, T )
satisfies succS(j) − j < τ . This implies that the substring
D := T [j . . succS(j) + 2τ) (called the distinguishing prefix
of T [j . . j + ℓ)) satisfies |D| ≤ 3τ − 1. Moreover, by the
consistency condition of S (Definition II.2(1)), every occurrence
j′ ∈ Occ(D,T ) satisfies j′+δtext ∈ S, where δtext = |D|−2τ .

Observation: Computation of minOcc(T [j . . j + ℓ), T ) and
minOcc(P, T ) can be efficiently reduced to a 4-sided
RMQ query. By the discussion above, we can characterize
Occ(T [j . . j + ℓ), T ) as a set of all positions of the form
s− δtext, where s ∈ S satisfies

(1) T∞[s−δtext . . s+2τ) = D (or equivalently, s−δtext ∈
Occ(D,T )), and

(2) s ∈ Occ(T [j + δtext . . j + ℓ), T ).

Analogous characterization holds for P . Consider now
a sequence (si)i∈[1. .|S|] containing positions in S sorted
according to the lexicographical order of the corresponding
suffixes. This sequence can be constructed in O(n/ logσ n)
time (see the full version [1]). Given a pair (j, ℓ) (resp.
O(m/ logσ n)-space representation of P ), we can in
O(log log n) (resp. O(log log n+m/ logσ n)) time com-
pute the boundaries of a range (b . . e] such that (si)i∈(b. .e]

consists of all positions in the set S∩Occ(T [j+δtext . . j+
ℓ), T ) (resp. S∩Occ(P [1+ δtext . .m], T )). This is easily
achieved using weighted ancestor queries on a compact trie
of suffixes starting in S. Then, {si}i∈(b. .e] is the set of all
s ∈ S satisfying condition (2). To satisfy condition (1), we
need to select all s ∈ S for which s− δtext ∈ Occ(D,T ).
If each position si ∈ S is represented as a point (i,Di),
where Di = T∞[s− τ . . s+ 2τ), then the sought subset
consists of all si ∈ S such that D is a prefix of Di, which
is equivalent to D ⪯ Di ≺ Dc∞, where c = σ− 1. Thus,
finding minOcc(T [j . . j + ℓ), T ) (resp. minOcc(P, T ))
reduces to the 4-sided range RMQ query in a rectangle
obtained by intersecting ranges (b . . e] and [D,Dc∞).

The bottleneck of the above reduction is answering the
orthogonal RMQ queries because it would require a data
structure supporting 4-sided RMQ in O(logϵ n) time. The
only such structure [108] is not known to admit a sufficiently
fast construction algorithm. Thus, we take a different ap-
proach by directly answering the query characterizing the

set Occ(T [j . . j + ℓ), T ) and Occ(P, T ). As noted above,
T∞[si − δtext . . si + 2τ) = D holds if and only if D is a
prefix of Di. Taking into account the constraint i ∈ (b . . e]
on the other axis, we obtain a prefix range minimum query,
formally defined as follows:

Definition III.1 (Prefix RMQ). Let A ∈ Zm
≥0 be a sequence of

m nonnegative integers and S ∈ (Σ∗)m be a sequence of m
strings over alphabet Σ. For every b, e ∈ [0 . .m] and X ∈ Σ∗

we define

prefix-rmqA,S(b, e,X) :=

argmin{A[i] : i ∈ (b . . e] and X is a prefix of S[i]}.

We assume that prefix-rmqA,S(b, e,X) = argmin ∅ = ∞ if
there is no i ∈ (b . . e] for which X is a prefix of S[i].

Thus, with AS[1 . . n
′] and Astr[1 . . n

′] defined as arrays of
length n′ = |S| such that AS[i] = si and Astr[i] = Di, it holds
minOcc(P, T ) = AS[prefix-rmqAS,Astr

(b, e,D)]− δtext.
To our knowledge, prefix range minimum queries have

not been studied before. We develop a solution that not
only answers these queries in O(logϵ n) time but also admits
efficient construction, as described in the following theorem
proved in the full version [1] of this paper. In addition to
solving a novel type of query, this requires improvements of
existing structures for standard RMQ.

Theorem III.2. For all integers h,m, ℓ, σ ∈ Z>0 satisfying
h ≥ 2 and m ≥ σℓ ≥ 2, and for all equal-length sequences
A ∈ [0 . .m)≤m and S ∈ ([0 . . σ)ℓ)≤m, there exists a data
structure of size O(m logh(hℓ)) that answers prefix RMQ
queries in O(h log logm logh(hℓ)) time. Moreover, it can
be constructed in O(mmin(ℓ,

√
logm) logh(hℓ)) time using

O(m logh(hℓ)) space assuming that S is given in the packed
representation.

Applied to arrays AS[1 . . n
′] and Astr[1 . . n

′], Theorem III.2
yields a data structure of size O(n/ logσ n) that answers
prefix RMQ in O(logϵ n) time, and can be constructed in
O((n log σ)/

√
log n) time and O(n/ logσ n) working space.

We remark, however, that other tradeoffs for prefix RMQ
will automatically yield new tradeoffs for indexes for leftmost
occurrences, and hence also new LPF/LPnF indexes and LZ77
factorization algorithms.

c) The Periodic Patterns and Positions: Let us now
assume that j ∈ R(τ, T ) and P is τ -periodic. First, ob-
serve that T [j . . j + ℓ) and P are both prefixed with a
string X ∈ [0 . . σ)3τ−1 satisfying per(X) ≤ 1

3τ . Thus,
Occ(T [j . . j + ℓ), T ),Occ(P, T ) ⊆ R(τ, T ) holds by Defini-
tion II.2. The central property of R(τ, T ) is that every maximal
block of positions in R(τ, T ) corresponds to a τ -run, i.e.,
a maximal fragment Y of T satisfying |Y | ≥ 3τ − 1 and
per(Y ) ≤ 1

3τ . The gap between |Y | and per(Y ) ensures that
τ -runs overlap by fewer than 2

3τ symbols, so the number of
τ -runs is O(nτ ) = O(n/ logσ n).

To efficiently process τ -runs, we introduce the following
definitions. Let x ∈ R(τ, T ), and let T [y] be the position



immediately following of the τ -run containing T [x . . x+3τ−1).
By y − x ≥ 3τ − 1 and p := per(T [x . . y)) ≤ 1

3τ , we can
uniquely write T [x . . y) = H ′HkH ′′, where H = min{T [x+
δ . . x+ δ + p) : δ ∈ [0 . . p)} is the so-called Lyndon root of
the run and H ′ (resp. H ′′) is a proper suffix (resp. prefix)
of H . We denote e(x, τ, T ) = y, root(x, τ, T ) = H , and
efull(x, τ, T ) = y − |H ′′|. We also let type(x, τ, T ) = −1 if
T [y] ≺ T [y−p] and type(x, τ, T ) = +1 otherwise. The above
definitions naturally generalize to τ -periodic patterns. Let us
focus on the computation of minOcc(P, T ) (the computation
of minOcc(T [j . . j + ℓ), T ) proceeds similarly). The query
algorithm differs depending on whether the periodic prefix of
P ends before |P |, i.e., e(P, τ) ≤ |P |. In that case, we call
P partially periodic. Otherwise, i.e., when e(P, τ) = |P |+ 1,
we call P fully periodic.

Observation 1: Computation of minOcc(P, T ) in the partially
periodic case can be efficiently reduced to a 3-sided RMQ
query. Observe that if e(P, τ) ≤ |P |, then the end of
the periodic prefix of P has to align with the end of
a periodic τ -run in T with the same root, i.e., if j ∈
Occ(P, T ), then j ∈ R(τ, T ), root(j, τ, T ) = root(P, τ),
and e(j, τ, T ) − j = e(P, τ) − 1. At the same time, the
remaining suffix of P must follow the run in the text,
i.e., we need to have j + δtext ∈ Occ(P ′, T ), where
δtext = e(P, τ)−1 and P ′ = P (δtext . . |P |]. If we sorted
every τ -run T [x . . y) first according to its root and then
according to T [y . . n], then runs satisfying the second
criterion would form a range. This, however, would make
it difficult to make sure the end of the periodic substring
in the text is properly aligned with the periodic prefix
of P solely based on the length of the τ -run. Sorting
every τ -run T [x . . y) first according to root(x, τ, T ) and
then according to the suffix T [efull(x, τ, T ) . . n] solves the
alignment problem. Identifying the range in the resulting
sorted sequence of τ -runs then again reduces to a weighted
ancestor query. To simultaneously also align according to
the root, we slightly back away in both the pattern and the
text by a multiple of |root(P, τ)|. After identifying the
range containing τ -runs with the right-context matching P ,
it remains to only select runs T [x . . y) whose length is
at least the length of the periodic prefix of P . Then,
minOcc(P, T ) is located in the leftmost selected τ -run.
This corresponds to a 3-sided RMQ query. To answer it
efficiently, we exploit the fact that both the maximum
and the sum of the y-coordinates of the corresponding
point-set are bounded by n.

Observation 2: Computation of minOcc(P, T ) in the fully
periodic case can be efficiently reduced to a rank query
on a bitvector. Let us denote

R−(τ, T ) := {j ∈ R(τ, T ) : type(j, τ, T ) = −1}

and focus on computing minOcc(P, T ) ∩ R−(τ, T )
(the other minimum is computed analogously). Let
R−
min(τ, T ) be the set of all j ∈ R−(τ, T ) satisfying

j = minOcc(T [j . . e(j, τ, T )), T ) ∩ R−(τ, T ). The key

idea is to store a bitvector marking all i ∈ [1 . . n] such that
SAT [i] ∈ R−

min(τ, T ). Because the values e(j, τ, T ) − j
increase within every block of SAT entries containing
all j ∈ R−(τ, T ) ∩Occ(P [1 . . 3τ−1], T ), it follows that,
given the SAT -range corresponding to P , the computation
of minOcc(P, T ) reduces to a rank/select query on the
above bitvector. The main challenge is thus computing
the bitvector. This step is one of the most technically
challenging parts of our data structure. The construction
is a complex algorithm that first prepares the set of
“events” and then computes partial bitvectors using the
sweeping technique. This requires developing numerous
new combinatorial results and efficient solutions for offline
range counting and dynamic one-sided RMQ; see the full
version for details [1]. Combining all these ingredients,
we achieve the optimal O(n/ logσ n)-time construction.

d) Summary of New Techniques: Our key technical
contributions can be summarized as follows:

• We define a new query called prefix RMQ and develop
an efficient solution, improving the construction of small-
alphabet RMQ on the way to this result.

• We show how to use the above to find leftmost occurrences
of nonperiodic patterns.

• To efficiently handle periodic patterns, we prove numerous
new combinatorial results characterizing leftmost occur-
rences of substrings, and we develop efficient solutions
for offline range counting, three-sided RMQ, and dynamic
one-sided RMQ.

• Using the above queries, we show how to compute leftmost
occurrences of periodic patterns; combined with the
above result, this gives an optimal-size index constructible
in O((n log σ)/

√
log n) time and O(n/ logσ n) working

space. This reduction is very efficient and depends almost
entirely on the tradeoff for prefix RMQ queries.

• Using the above index, we design a structure that pro-
vides random access to the LPF and LPnF arrays (see
Section III-B).

Putting everything together, we get the first o(n)-time LZ77
factorization after nearly 50 years.

B. Index for Longest Previous Factors

We outline how, given any constant ϵ ∈ (0, 1) along with
the O(n/ logσ n)-space representation of T ∈ [0 . . σ)n, in
O(n log σ/

√
log n) time and O(n/ logσ n) working space,

we can construct an index of size O(n/ logσ n) that, given
i ∈ [1 . . n], returns LPFT [i] and LPFMinOccT [i]. For sim-
plicity, we focus on the LPF array allowing self-overlaps; the
computations for the non-overlapping variant are similar.

The arrays LPFT [1 . . n] and LPFMinOccT [1 . . n] are
formally defined as follows. First, we let LPFT [1] = 0.
For every i ∈ [2 . . n], the value LPFT [i] is the maximal
ℓ ≥ 0 such that minOcc(T [i . . i + ℓ), T ) < i. The entry
LPFMinOccT [i] contains either T [i] (if LPFT [i] = 0) or
minOcc(T [i . . i+ LPFT [i]), T ) (otherwise).



We begin by observing that LPFT [i] ≥ LPFT [i − 1] − 1
holds for every i ∈ [2 . . n]. This implies that, given any indexes
i, k ∈ [1 . . n] satisfying i ≤ k, we can use the values LPFT [i]
and LPFT [k] to compute a common lower and upper bound
for LPFT [j] with j ∈ [i . . k]. More precisely, we can then
compute ℓmin and ℓmax such that LPFT [j] ∈ [ℓmin . . ℓmax]
and ℓmax − ℓmin = O((LPFT [k]− LPFT [i]) + (k − i)).

Let b = Θ(log3 n) and b′ = Θ(log6 n) be integers. We
partition LPFT into blocks of size b and store the LPFT [·]
values at all block boundaries. Additionally, every block
LPFT ((i− 1)b . . ib] satisfying LPFT [ib]−LPFT [(i− 1)b] ≥
b′ − b has all the LPFT [·] values explicitly stored in our data
structure, and the index i of the block is marked in a bitvector.
At query time, we first check if the queried position x is in
one of the stored blocks. If so, we have the answer. Otherwise,
utilizing the above observation, we compute ℓmin and ℓmax,
and then determine LPFT [j] using binary search and the index
for leftmost occurrences (constructed for ϵ′ = ϵ/2). Due to our
choice of b and b′, this takes O(logϵ

′
n·log(ℓmax−ℓmin+1)) =

O(logϵ/2 n · log b′) = O(logϵ/2 n · log(log6 n)) = O(logϵ n)
time. Once the value LPFT [x] is computed, we obtain
LPFMinOccT [x] in O(logϵ

′
n) time.

Once the index for leftmost occurrences is constructed,
computing the LPFT [·] values at all block boundaries costs
O(n/b · log1+ϵ′ n) = o(n/ logσ n) time. It remains to bound
the number of blocks LPFT ((i − 1)b . . ib] with LPFT [ib] −
LPFT [(i − 1)b] ≥ b′ − b and the total time to process them.
For this, observe that the function f(i) = i + LPFT [i] is
nondecreasing and does not exceed n+ 1. This way, we can
bound the number of above blocks by O(n/b′) = O(n/ log6 n).
Computing all the LPFT [·] values in these blocks takes
O((n/b′) · b · log1+ϵ′ n) = O(n/ log3 n · log1+ϵ′ n) =
o(n/ logσ n) time. The index construction is thus dominated
by the time to build the index for leftmost occurrences.
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P. Sankowski, “Optimal dynamic strings,” in 29th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2018, A. Czumaj,
Ed. SIAM, 2018, pp. 1509–1528. [Online]. Available: https:
//doi.org/10.1137/1.9781611975031.99

[17] A. O. Pereira, G. Navarro, and N. R. Brisaboa, “Grammar
compressed sequences with rank/select support,” Journal of Discrete
Algorithms, vol. 43, pp. 54–71, 2017. [Online]. Available: https:
//doi.org/10.1016/j.jda.2016.10.001

[18] N. Prezza, “Optimal rank and select queries on dictionary-compressed
text,” in 30th Annual Symposium on Combinatorial Pattern Matching,
CPM 2019, ser. LIPIcs, N. Pisanti and S. P. Pissis, Eds., vol. 128.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2019, pp. 4:1–4:12.
[Online]. Available: https://doi.org/10.4230/LIPIcs.CPM.2019.4

[19] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J.
Puglisi, “A faster grammar-based self-index,” in 6th International
Conference on Language and Automata Theory and Applications,
LATA 2012, ser. LNCS, A. Dediu and C. Martín-Vide, Eds.,
vol. 7183. Springer, 2012, pp. 240–251. [Online]. Available:
https://doi.org/10.1007/978-3-642-28332-1_21

[20] S. Kreft and G. Navarro, “On compressing and indexing repetitive
sequences,” Theoretical Computer Science, vol. 483, pp. 115–133,
2013. [Online]. Available: https://doi.org/10.1016/J.TCS.2012.02.006

[21] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J. Puglisi,
“LZ77-based self-indexing with faster pattern matching,” in 11th Latin
American Symposium on Theoretical Informatics, LATIN 2014, ser.
LNCS, A. Pardo and A. Viola, Eds., vol. 8392. Springer, 2014, pp. 731–
742. [Online]. Available: https://doi.org/10.1007/978-3-642-54423-1_63

[22] H. Ferrada, T. Gagie, T. Hirvola, and S. J. Puglisi, “Hybrid
indexes for repetitive datasets,” Philosophical Transactions of
the Royal Society A, vol. 372, 2014. [Online]. Available: https:
//doi.org/10.1098/rsta.2013.0137

[23] D. Valenzuela, “CHICO: A compressed hybrid index for repetitive
collections,” in 15th International Symposium on Experimental
Algorithms, SEA 2016, ser. LNCS, A. V. Goldberg and A. S. Kulikov,
Eds., vol. 9685. Springer, 2016, pp. 326–338. [Online]. Available:
https://doi.org/10.1007/978-3-319-38851-9_22

[24] P. Bille, M. B. Ettienne, I. L. Gørtz, and H. W. Vildhøj, “Time-
space trade-offs for Lempel-Ziv compressed indexing,” Theoretical
Computer Science, vol. 713, pp. 66–77, 2018. [Online]. Available:
https://doi.org/10.1016/J.TCS.2017.12.021

https://arxiv.org/abs/2409.12146
https://arxiv.org/abs/2409.12146
https://doi.org/10.1109/TIT.1976.1055501
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1977.1055714
https://ethw.org/Milestones:Lempel-Ziv_Data_Compression_Algorithm,_1977
https://ethw.org/Milestones:Lempel-Ziv_Data_Compression_Algorithm,_1977
https://corporate-awards.ieee.org/recipients/ieee-medal-of-honor-recipients/
https://corporate-awards.ieee.org/recipients/ieee-medal-of-honor-recipients/
https://doi.org/10.1109/TIT.1978.1055934
http://mattmahoney.net/dc/text.html
https://doi.org/10.1145/3231935
https://doi.org/10.1016/S0304-3975(02)00777-6
https://doi.org/10.1137/130936889
https://doi.org/10.1145/3457389
https://doi.org/10.1016/j.jcss.2020.11.002
https://doi.org/10.1137/1.9781611977073.111
https://doi.org/10.4230/LIPIcs.MFCS.2016.72
https://doi.org/10.4230/LIPIcs.CPM.2017.18
https://doi.org/10.1137/1.9781611975031.99
https://doi.org/10.1137/1.9781611975031.99
https://doi.org/10.1016/j.jda.2016.10.001
https://doi.org/10.1016/j.jda.2016.10.001
https://doi.org/10.4230/LIPIcs.CPM.2019.4
https://doi.org/10.1007/978-3-642-28332-1_21
https://doi.org/10.1016/J.TCS.2012.02.006
https://doi.org/10.1007/978-3-642-54423-1_63
https://doi.org/10.1098/rsta.2013.0137
https://doi.org/10.1098/rsta.2013.0137
https://doi.org/10.1007/978-3-319-38851-9_22
https://doi.org/10.1016/J.TCS.2017.12.021


[25] T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda, “Dynamic
index and LZ factorization in compressed space,” Discrete Applied
Mathematics, vol. 274, pp. 116–129, 2020. [Online]. Available:
https://doi.org/10.1016/J.DAM.2019.01.014

[26] A. R. Christiansen, M. B. Ettienne, T. Kociumaka, G. Navarro,
and N. Prezza, “Optimal-time dictionary-compressed indexes,” ACM
Transactions on Algorithms, vol. 17, no. 1, pp. 8:1–8:39, 2021.
[Online]. Available: https://doi.org/10.1145/3426473

[27] T. Kociumaka, G. Navarro, and F. Olivares, “Near-optimal search
time in δ-optimal space, and vice versa,” Algorithmica, vol.
13568, no. 4, pp. 1031–1056, 2022. [Online]. Available: https:
//doi.org/10.1007/S00453-023-01186-0

[28] D. Kempa and T. Kociumaka, “Collapsing the hierarchy of compressed
data structures: Suffix arrays in optimal compressed space,” in
64th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2023. IEEE, 2023, pp. 1877–1886. [Online]. Available:
https://doi.org/10.1109/FOCS57990.2023.00114

[29] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran,
A. Sahai, and A. Shelat, “The smallest grammar problem,” IEEE
Transactions on Information Theory, vol. 51, no. 7, pp. 2554–2576,
2005. [Online]. Available: https://doi.org/10.1109/TIT.2005.850116

[30] D. Kempa and N. Prezza, “At the roots of dictionary compression:
String attractors,” in 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, I. Diakonikolas, D. Kempe, and
M. Henzinger, Eds. ACM, 2018, pp. 827–840. [Online]. Available:
https://doi.org/10.1145/3188745.3188814
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