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ARTICLE INFO ABSTRACT

Keywords: One of the most significant drawbacks of metal oxide (MOS) based chemiresistive gas sensors is the requirement
Chemiresistive of high operating temperature (250-450 °C), which results in significant power consumption and shorter life-
MOS time. To develop room temperature (21+2 °C) MOS chemiresistive gas sensors, the sensing performance of
Semiconductors

different MOS nanostructures (i.e., tin (IV) oxide (SnO3) nanoparticles (NPs), indium (III) oxide (IngO3) NPs, zinc
oxide (ZnO) NPs, tungsten trioxide (WO3) NPs, copper oxide (CuO) nanotubes (NTs), and indium tin oxide
(IngpSn1003 (ITO)) NPs) were systematically investigated toward different toxic industrial chemicals (TICs) (i.e.,
nitrogen dioxide (NO3), ammonia (NHgz), hydrogen sulfide (H2S), carbon monoxide (CO), sulfur dioxide (SO2)
and volatile organic compounds (VOCs) (i.e., acetone (C3HgO), toluene (C¢HsCHs), ethylbenzene (C¢HsCH2CH3),
and p-xylene (C¢H4(CH3)s)) in the presence and absence of 400 nm UV light illumination.

Sensing performance enhancement through photoexcitation is strongly dependent on the target analytes.
Under 400 nm UV photoexcitation at 76.0 mWwW/cm? intensity, room temperature (21+2 °C) NO; sensing was
readily achieved where SnO, NPs exhibited the highest sensor response (S = 474.4 toward 10 ppmy, (parts per
million by mass)) with good recovery followed by ZnO NPs > In,O3 NPs > ITO NPs. Meanwhile, indirect
bandgap n-type WO3 NPs showed limited NO; sensing performance under illumination, whereas p-type CuO NTs
showed relatively good sensing response. The most significant improvements in SnO, compared to other MOS
nanoparticles might be attributed to the highest number of photogeneration electrons, which rapidly reacted
with adsorbed NO; species to enhance the reaction kinetics. WO3 NPs showed a unique sensing response toward
aromatic compounds (e.g., ethylbenzene and p-xylene) under UV illumination, where maximum sensitivity was
achieved under 36 mW/cm? irradiation. Changing light intensity from 0.0 to 36.4 mW/cm?, WO3 showed 15.4-
fold and 6.3-fold enhancement in sensing response toward 25 ppmy, ethylbenzene and 100 ppmy, p-xylene,
respectively. 400 nm optical excitation has a limited effect on the sensing performance toward CO, SO, toluene,
and acetone.

UV photoexcitation
Toxic industrial chemicals

1. Introduction

Environmental pollution has become a severe problem due to the rise
of industrial activity, urbanization, the release of exhaust fumes from
vehicles, burning fossil fuels, and wildfires [1-3]. Therefore, air quality
monitoring has become an essential part of our daily life to increase
awareness of the presence of hazardous gases such as NOy, NH3, H5S,
CO, SO,, and volatile organic compounds (VOCs) (i.e., toluene, acetone,
xylene, and ethylbenzene). All these hazardous chemicals can cause
severe health problems in humans, animals, and the ecosystem [4]. For
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example, NOs is suspected to cause acid rain, ozone formation at ground
level, and hazy air, all of which are harmful to the ecosystem and
humans [5]. Additionally, it is assessed that breathing at higher levels of
NO; may cause damage to the respiratory tract [5]. Furthermore, CO
poisoning may lead to permanent heart damage, brain damage, and
death [6]. Similarly, HoS exposure at low levels may cause eye, nose, and
throat irritation; exposure to high-level HyS (100 ppmy,) holds the
possibility of causing fatal toxicity [7,8]. Additionally, inhalation of
toxic aromatic VOCs can lead to critical damage to the central nervous
system and may cause cancer and mutagenesis [9].
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Various MOS (i.e., n-type: ferric oxide (Fe;O3), titanium dioxide
(TiO2), WO3, ZnO, and SnO, [10,11], p-type MOS: CuO, nickel oxide
(NiO), cobalt(ll, III) oxide (Co304), and chromium(IIl) oxide (CryO3)
[12,13]) nanostructures have been applied as chemiresistive gas sensing
materials because of high sensitivity [10,14,15], fast response times
[16], rapid recovery rates [14], high repeatability [13], wide range of
analytes detection within varied chemical functional groups [15], and
low-cost [12]. However, the requirement of elevated operating tem-
perature [14,17] resulted in high power consumption [18-20] and
limited the lifetime. Room temperature gas sensors that can detect
various analytes with high sensing performance will be a game changer,
especially devices with limited power sources (i.e., wearable devices).
Unfortunately, lower electron density at the MOS conduction band at
room temperature could result in lower sensing performance, affecting
its utilization in practical applications [21]. Several research works
included UV photoexcitation to demonstrate low-temperature (<100
°C) analyte detection through porous ZnO thin films (1 ppm; NO,
detection at 25 °C) [22], SnO, nanowires (100 ppby, (parts per billion by
mass)NO, detection at 25 °C) [23], mesoporous InyO3 (5 ppmy, NOy
detection at room temperature) [24], InoO3 (2 ppmy, NO detection at 25
°C) [25], SnO; thin films (1ppm;, NO, detection at 20 °C) [26], ZnO
microspheres (10 ppmy, ethanol detection at 25 °C) [27], etc.

Here, various MOS nanostructures (SnO,, InO3, ZnO, WO3, CuO,
and ITO) based chemiresistive gas sensors were fabricated and exposed
to multiple target analytes to understand the effect of light illumination
toward analyte detection at room temperature. In short, SnOs, In20s3,
ZnO, and WOj3 are n-type semiconductors where the majority of charge
carriers are electrons. Among these MOS materials, SnO», Iny03, and
ZnO are direct band gap materials, and WOs is an indirect band gap
semiconductor. The band is defined as the energy difference between the
valence band’s top and the conduction band’s bottom. In a direct band
gap semiconductor, the valence band’s highest energy level aligns with
the conduction band’s lowest level at a similar momentum value. As a
result, under light excitation, electrons could be excited and travel
directly from the valence band to the conduction band without changing
their momentum. However, in an indirect band gap semiconductor, the
valence band’s highest energy level and the conduction band’s lowest
energy level occur at a different momentum value.

In detail, SnO, has a wide direct band gap of 3.6 eV [28]. Due to its
superior optical and electrical properties, it has been employed in ap-
plications such as solar cells, gas sensors, catalytic support materials,
and light-emitting-diodes [29,30]. Additionally, In,O3 has a direct band
gap of 3.6 eV and has been used in catalysis, solar cells, energy storage,
and gas sensing [31]. Another wide band gap material is ZnO, with a
direct band gap of 3.37 eV [32], binding energy of 60 meV, and high
electron mobility (~200 cm?/Vs) [33,34]. In addition, ZnO is biocom-
patible, cost-effective, and thermally stable, enabling its application in a
wide range of applications, such as photovoltaic devices, gas sensors,
solar cells, and light-emitting diodes [35,36]. WOg3 has an indirect band
gap of ~2.6-3.0 eV. Due to its non-toxic, chemical, thermal stability,
and cost-effective nature, it has applications in photocatalysis and gas
sensors [37,38]. CuO is an indirect band gap p-type semiconductor with
aband gap of 1.2-1.9 eV in bulk materials [39], and the majority charge
carrier is holes. It is also non-poisonous, cost-effective, and abundant in
nature [39]. Moreover, ITO is a well-known n-type degenerate semi-
conductor [40,41]. ITO is composed of Iny0O3 and SnO, with a variation
in mass or weight percentage ratio. It is called a degenerate semi-
conductor due to the high level of Sn doping. The carrier concentration
of ITO depends on Sn doping and can also improve by increasing oxygen
vacancies [42]. The energy band gap of ITO ranges from 3.5 to 4.3 eV
[43]. ITO possessed a weight percentage (wt.%) ratio of Inp03:Sn0O> of
90:10 in this study.

In this work, six different MOS sensing materials (SnOs, In,O3, ZnO,
WO3, CuO, and ITO) were investigated toward eight different toxic in-
dustrial chemicals under 400 nm UV light illumination intensities from
0 (dark) to 76.0 mW/cm? at room temperature (21+2 °C). Each analyte
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was exposed at a broad concentration range to comprehensively study
the gas sensing performance of the MOS chemiresistive sensors. The
effect of UV light exposure on the sensitivity of the MOS materials was
discussed. The novelty of this work is to advance the research field of
room temperature gas sensor arrays by fabricating chemiresistive gas
sensors with low energy consumption and using inexpensive commer-
cially available MOS materials as the sensing materials. Additionally,
this work indicates that the gas sensor arrays are highly sensitive toward
various toxic gases under UV light exposure and demonstrate faster
response-recovery times at ambient operating temperature (2142 °C).

2. Experimental section

The experimental sections are divided into four sub-sections. Sub-
Sections 2.1 and 2.2 provide detailed descriptions of the sensing mate-
rials solution preparation and sensing material characterization tech-
niques, respectively. Sub-Sections 2.3 and 2.4 consecutively describe the
high throughput testing systems and sensing property measurement
details.

2.1. Sensing materials solution preparation

All chemicals and MOS nanomaterials were used without any further
purification. The sensing material solvent was prepared by mixing N, N-
dimethylformamide (DMF, ACS reagent, Fisher Scientific), and nano-
pure deionized water (resistivity of 18.17 MQ.cm at 20 °C) in 50:50
volume% (vol. %) ratio. 10 mg of sensing materials (i.e., SnO, nano-
particles (NPs) (99.9 % purity, the average primary particle size of 15.2
+ 7.0 nm, Skyspring Nanomaterials Inc., USA), InoO3 NPs (99.999 %
purity 5 N Powder, the average primary particle size of 44.7 + 14.5 nm,
MSE Supplies, USA), ZnO NPs (99.8 % purity, the average primary NP
size of 17.6 + 8.0 nm, AliExpress, China), WO3 NPs (99.5 % purity, the
average primary particle size of 88.1 + 42.9 nm, ROC/RIC Corp., USA),
CuO nanotubes (NTs) (The average diameter of 8.8 + 1.8 nm, length =
75-100 nm, Sigma Aldrich, USA) and ITO NPs (Particle size 20-70 nm,
99.99 % purity, MSE Supplies, USA)) were dispersed in 1 ml of DMF/
H,0 solvent and sonicated to form colloidal sensing material solutions at
room temperature.

2.2. Material characterization

The morphology, lattice spacing, and compositional analysis were
performed using high-resolution transmission electron microscopy
(HRTEM, Spectra 30-300 (S)TEM). The phase structure and crystallinity
of the materials were investigated using powder X-ray diffraction (XRD,
Bruker D8 Advance, Cu-Ka radiation, A=1.5405 A). XRD data were
collected at a 0.01-degree increment from 5 to 80°. The average grain
size was calculated by taking the full width at half maximum (FWHM-
20) of the reflection plane and applying the Scherrer formula (Eq. (1)),

D = 0.91/fcos0 m

where D = crystallite size, 4 = incident X-ray wavelength, CuK, radia-
tion, # = FWHM in radians, and 6 is the diffraction angle of the corre-
sponding peak. Additionally, the UV-vis reflectance spectra were
measured using a UV-Vis-NIR spectrophotometer (Ocean Optics, USA)
for energy band gap calculation. A 6-channel LED light was included in
the custom-made sensing chamber to investigate the optoelectrical
property and effect of optical exposure on gas sensing performance.

2.3. Sensor fabrication and testing

Gas sensors were fabricated similar to the previously reported
method [44]. In short, sensing materials were drop-casted on an indi-
vidually addressable 60 sensors array (Fig. 1b). Custom-designed sensor
system which consisted of 1) light illumination sub-system with
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Fig. 1. Custom-designed high-throughput 60 sensors system consisted with flexible sensor array (b) with precise light (a) cnd temperature (c) controller. Drop-

casting technique was used to fabricate sensor.

controllable light wavelength (i.e., 400 to 730 nm) and intensity (up to
76 mW/cmz), as shown in Fig. 1a, 2) temperature control sub-system (20
to 125 °C), as shown in Fig. 1c, 3) flow chamber, 4) electronic boards
were used to measure the sensing response, and 5) LabVIEW controlled
vapor generation to expose target analytes with known concentration to
the gas sensor.

2.4. Electrical and sensing properties measurement conditions

Transient photoresponse and gas sensing experiments were con-
ducted at room temperature (21+2 °C). Photocurrent response (Rp) was
defined as R,=(R,/Ry), where R, is the sensor’s electrical baseline
resistance under dark, and R; is the sensor’s resistance under light
illumination. Photo-response time (Tpg0,) and recovery time (t,70) were
defined as the time required for the sensor to reach 90 % of the
maximum change in resistance under light exposure and the time
needed for the sensor to recover back to the 70 % baseline resistance
under dark, respectively.

The sensor response was defined as S = Ry/R, for reducing and
oxidizing analytes, where Ry is the sensor’s electrical resistance when
exposed to the analyte, and R, is the electrical baseline resistance of the
sensor in the carrier gas (i.e., dry air). Sensor response time (Ts99) and
recovery time (t;7p) were defined as the time required for the sensor to
reach 90 % of the maximum change in resistance under analyte exposure
and the time needed for the sensor to recover back to the 70 % baseline
resistance under air. If the baseline drift during the test, response and
recovery time were calculated using local resistance values before and
after analyte exposure at a specific concentration.

3. Results and discussion
3.1. Material properties
XRD analysis was conducted to study the crystalline and phase

structure of the MOS nanostructure, as shown in Fig. 2. For SnO3 NPs, a
tetragonal rutile structure is observed (JCPDS Card No. 06-0416) [45]

with the average grain size of ~14.8 nm (Fig. 2a). In,O3 NPs has a cubic
phase (JCPDS Card No. 06-0416) [46] with the average grain size of
~24.5 nm (Fig. 2b). ZnO NP has a hexagonal structure (JCPDS Card No.
89-0510) [47] with the average grain size of ~17.2 nm (Fig. 2c). Both
WO3 NPs and CuO NTs have a monoclinic structure with the average
grain size of ~39.1 nm and ~9.6 nm, respectively (Fig. 2d and e). ITO
NPs consist of a 90:10 wt.% ratio between In: Sn where the XRD pattern
matches with InpO3 (JCPDS Card No. 06-0416) with the average grain
size of ~18.4 nm [46] (Fig. 2f). Overall, no other characteristic peaks
from impurities are detected confirming that the materials were pure.

Additionally, MOS morphology and lattice spacing were investigated
using HRTEM. Typical HRTEM images of SnO2 NPs, InpO3 NPs, ZnO NPs,
WOj3 NPs, CuO NTs, and ITO NPs nanomaterials are shown in Figs. 3-5.
SnO; NPs consist of aggregated particles with cubic morphology with an
average nanoparticle size of 15.2 4+ 7.0 nm (Fig. 3a). The average SnO,
particle size is similar to the average grain size, which might indicate
that individual SnO2 NP is a single crystal. Higher magnification analysis
(Fig. 3b) shows the lattice planar spacing of ~3.42 A (Fig. 3¢) and ~2.71
A (Fig. 3d), corresponding to the (110) and (101) planes of rutile SnO5
structure. Similarly, the average nanoparticle size for InpO3 NPs shows
less facets with an average NP size of 44.7 + 14.5 nm, which might
indicate that NPs are polycrystal (Fig. 3e). The calculated lattice planar
spacing are ~4.28 A (Fig. 3g) and ~2.31 A (Fig. 3h), corresponding to
the (211) and (411) planes of cubic InyO3 structure. ZnO NPs show
irregular shape with an average NPs size of 17.6 + 8.0 nm (Fig. 4a). An
interplanar distance of ~2.59 A (Fig. 4c), ~1.73 A (Fig. 4c), and ~2.92
A (Fig. 4d) are observed, which corresponds to the (002), (103), and
(100) planes to the hexagonal ZnO structure, respectively.

WOs3 NPs are much larger in particle size than other MOS NPs with an
average particle size of 88.1 + 42.9 nm (Fig. 4e). The lattice planar
spacing are ~3.92 10\, ~3.76 A, and ~2.70 f\, which corresponds to the
(002), (020), and (022) planes of the monoclinic WO3 structure
(Fig. 4g). CuO NTs show nanorod morphology (Fig. 5a) with an average
diameter of 8.8 + 1.8 nm. The length varies significantly from 8.0 to
110.0 nm. The clear lattice planner spacing is calculated to be 2.41 A,
corresponding to the (111) plane to the monoclinic CuO structure
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Fig. 2. XRD patterns of (a) SnO, NPs, (b) InO3 NPs, (c) ZnO NPs, and (d) WO3 NPs, (e) CuO NTs, and (f) ITO NPs.

(Fig. 5¢). ITO NPs show irregular shape with an average size of 25.9 +
13.6 nm (Fig. 5d). Higher magnification analysis shows the lattice
planner spacing of ~2.95 A (Fig. 5f) and ~4.25 A (Fig. 5g), corre-
sponding to the (222) and (211) planes of cubic InyOs3 structure.

Furthermore, UV-Vis diffuse reflection spectra were collected from
200 to1100 nm to determine the band gap energy of the MOS nano-
structure using the Tauc method (Eq. (2)) [48,49].

ahw = B(hv—E,)

(2)

Where h = Planck constant, v = photon’s frequency, E, = estimated band
gap energy, and B = constant. y factor represents the nature of electron
transition, which equals 2 and 0.5 for indirect and direct optical tran-
sition, respectively. Fig. 6a shows the plotting of (a¢hv)? vs. hv for the
direct band gap semiconductors, whereas Fig. 6b shows the plotting of
(ahv)”2 vs. hy for the indirect band gap semiconductors. In these plots,
the x-axis intersection point is taken through the extrapolation of the
linear portion of the Tauc plot, which gives the estimated band gap
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Fig. 3. HR-TEM images of (a,b) SnO, NPs and (e,f) In,O3 NPs. Magnified lattice fringes and corresponding lattice plane of (c,d) SnO, NP and (g,h) In,O3 NP.

energy for the MOS nanomaterials (Table 1).

3.2. Light intensity dependent transient optoelectrical response under 400
nm uy illumination

Fig. 7 shows light intensity dependent transient optoelectrical
response at room temperature (21+2 °C). The optoelectrical response is
strongly dependent on the light intensity, where all MOS sensing ma-
terials have shown more significant optoelectrical response with an in-
crease in the incident light intensity from 1.1 to 76.0 mW/cm,2 as shown
in Fig. 7a-f. In general, n-type MOS materials show a higher optoelec-
trical response than p-type MOS materials. Among these n-type MOS
materials, direct band gap semiconductor materials demonstrate a
higher optoelectrical response (Fig. 7a—c) than indirect band gap semi-
conductors (Fig. 7d and e). Under the highest optical excitation (i.e.,
76.0 mW/cm?), ZnO NPs have exhibited the highest optoelectrical
response (R, = 1442.4 £ 149.3), followed by SnO2 NPs (R, = 500.4 +
72.6), Inp03 NPs (R, = 20.3 + 1.3). WO3, an indirect band gap n-type

semiconductor, has shown a R, of 10.3 & 2.4. ITO, a n-type degenerate
semiconductor, has indicated a R, of 7.0 & 0.6. CuO, a p-type indirect
band gap semiconductor, shows almost no response under light expo-
sure (Fig. 7e). The higher optoelectrical response of direct band-gap
semiconductors may be attributed to the direct absorption of photons
occurring in these materials compared to indirect band gap semi-
conductors. As a result, rapid electron transport can occur compared to
in-direct band gap semiconductors [55]. Additionally, among the direct
band gap materials, SnO; and ZnO have exhibited higher optoelectrical
response, which could be related to their higher surface-to-volume ratio.
According to the XRD and HRTEM analysis, SnO3 and ZnO have shown
smaller grain sizes (Fig 2a and c) and smaller average NPs size (Figs. 3a
and 4a), which might have led to higher light excitation response.

The optoelectrical response also depended on the light intensity
(Fig. 7g). Direct band gap n-type semiconductors show higher response
with increasing light intensity. Altering light intensity from 1.1 to 76.0
mW/cm?, SnO,, exhibits about 83-fold higher photo response, followed
by ZnO (~60-fold) and In,O3 (~5-fold). WOs, ITO, and CuO
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Fig. 4. HR-TEM images of (a,b) ZnO NPs and (e,f) WO3 NPs. Magnified lattice fringes and corresponding lattice plane of (c,d) ZnO NPs and (g) WO3 NP.

demonstrate about ~4, ~4.3, and ~1.2-fold enhancement, respectively.

3.3. Optoelectrical response mechanism

Under dark conditions, oxygen molecules from the air capture the
free electrons from the MOS conduction band and lower the carrier
concentration (Eq. (3)), which leads to higher baseline resistance [56].
As a result, a depletion layer forms near the MOS surface. Under light
exposure, the generation of photogenerated electron-hole pairs takes
place. Photogenerated holes can move toward the depletion zone and
discharge the negatively charged oxygen molecules from the MOS sur-
face (Eq. (4)) [56,57]. In contrast, the photogenerated electrons

accumulated in the MOS conduction band and increased carrier con-
centration on the MOS surface, which leads to increased MOS conduc-
tivity. This is observed in Fig. 7a-f when the baseline resistance
reduction has occurred under light exposure. Moreover, the
time-dependent optoelectrical response plots were not saturated,
possibly due to the presence of sensing materials’ surface states [58].

0,(g) + e —0* (ads) 3

I+ 0% (ads)—0,(g) 4

Additionally, the combination of bulk-related and surface-related
processes could explain the overall photoconduction process. When
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Fig. 5. HR-TEM images of (a, b) CuO NTs and (d, e) ITO NPs. Magnified lattice fringes and corresponding lattice plane of (c) CuO NT and (f, g) ITO NP.

the generation of electron-hole pairs occurs through the photoexcitation
of electrons from the valence band to the conduction band, it is known as
the bulk-related process [59]. In contrast, the adsorption and desorption
of oxygen molecules into defect sites on a material surface is known as
the surface-related photoconduction process [59]. Bulk-related pro-
cesses are faster than surface-related processes [60]. The chemisorption
of oxygen occurs at the crystallite’s grain boundary under the dark,
forming a barrier in the bulk-related process. Upon light excitation, the
photoconductivity increases, the height of the barrier reduces, and rapid
photo-desorption of oxygen occurs at the grain boundaries [61]. Overall,
the chemisorption and photo-desorption process takes place in the bulk
of the materials, which leads to a faster response [60,61]. Fig. 7a-f in-
dicates a rapid rise and decay of photoconductance of the MOS mate-
rials. Therefore, the photoconduction process could have been majorly
dominated by the bulk-related process.

3.4. Gas sensing performance

3.4.1. Sensing performance toward inorganic gases

Real-time sensor responses and normalized sensor responses (S) to-
ward different NO, concentrations (i.e., 0.05 to 10 ppmy,) are shown in
Fig. 8a-f and g-1, respectively. ZnO NPs, WO3 NPs, and CuO NTs showed
no notable NO; sensing response under dark conditions, whereas SnO2
NPs, Iny03 NPs, ITO NPs showed some response with limited recovery.
Under 400 nm UV illumination, all MOS sensors show significantly
improved NO; sensing with improved sensor performance (i.e., sensor
response, response time, and recovery time). Additionally, stable base-
line resistances were observed from all sensors at higher UV illumination
(i.e., 36.4 and 76.0 mW/crnz). Since NO; is an oxidizing gas, sensor
resistance increased for the n-type MOS, whereas the p-type MOS
reduced. In general, direct band gap n-type MOS materials show higher



S. Paul et al.

(a) 1000 4
800 4

600 ~

(ahvy(a.u.)

400 +

200 ~

Sensors and Actuators Reports 7 (2024) 100194

(b)

— WO3
‘ CuO

(ahv)"(a.u.)

Fig. 6. Tauc’s plots for the energy band gap of (a) direct band gap materials, SnO5 NPs, In;O3 NPs, ZnO NPs, and ITO NPs, and (b) indirect band gap materials, WO3

NPs and CuO NTs.

Table 1
Comparison table of calculated band gap energy of MOS nanomaterials using
Tauc’s plots in this work and reported in the literature.

MOS Band gap energy (eV) Band gap energy (eV) (reported in
Nanomaterials (this work) literature)

SnO, 3.7 .70 [50]

Iny03 3.5 3.45 [51]

ZnO 3.3 3.23 [52]

WO3 2.9 2.90 [53]

CuO 1.4 1.20-1.40 [54]

ITO 3.9 3.50-4.30 [43]

NO; sensor response than indirect band gap n-type semiconductors
under UV illumination. Under 76.0 rnW/crn,2 the highest 10 ppmp NO2
sensing response is observed from SnOy NPs (S = ~470), followed by
ZnO NPs (S = ~290) > Iny03 NPs (S = ~5.6) > ITO NPs (S = ~4.6) >
WO3 NPs (S =~2.1). CuO NTs, p-type indirect band gap semiconductor,
shows S of 0.23. ITO NPs show lower response than SnO5 NPs and In,03
NPs, indicating that degenerate semiconductors respond less to NO2
compared to their pristine counterparts.

Response (Ts99) and recovery time (t;79) toward 5 ppmy, NO;y are
shown in (Fig. 8m and n). Under 76.0 mW/cm?, CuO NTs shows the best
response time (T;99 = ~288 s) followed by SnOy NPs (T;99 = ~295 s) <

ITO NPs (Tygp = ~407 5) < InyO3 NPs (Tsop = ~625's) < ZnO NPs (Tsgp =
~662 s5) < WO3 NPs (Ts99 = ~782 s). For recovery time, ZnO NPs shows
ts70 of ~71 s < SnOy NPs (t5790 = ~83 s) < InO3 NPs (t;70 = ~356 s) <
WOs3 NPs (79 = ~447 s) ITO NPs (t;70 = ~560 s) < CuO NTs (g =
~3443 s). Although Iny0O3 NPs show higher sensing response in the
absence of UV light compared to 400 nm UV illumination, the sensor
does not recover back to baseline resistance when the sensor is purged
with dry air. Ilin et al. also observed a similar result, and the author
hypothesized that the NO, desorption kinetic is slow in the absence of
UV light [62].

Additionally, these sensors were tested toward other toxic inorganic
gases, including NHs, HS, CO, and SO under 400 nm UV illumination
at room temperature. As shown in Fig. S1, SnO5 NPs show an ~2.2-fold
improved sensing response toward 100 ppmy, NHgs, followed by ZnO NPs
(~1.3-fold). WO3 NPs and CuO NTs show ~1.6 and ~1.2-fold
improvement, respectively. A lower sensor response toward HaS gas
under UV illumination was also observed from these MOS sensors
(Fig. S2). For example, WO3 NPs and In,O3 NPs show S of ~0.81 and
~0.94, respectively, toward 40 ppmp, H>S. Additionally, MOS sensors
show a minimum response to CO (Fig. S4) and SO (data not shown).

3.4.2. Sensing performance toward the volatile organic compounds (VOCs)
Fig. 9 shows the sensor response toward ethylbenzene under 400 nm
UV illumination at room temperature including dark conditions. In the
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Fig. 7. (continued).

absence of UV illumination, none of the sensors showed any notable
response. Upon UV illumination, some of MOS sensors (i.e., WO3 NPs,
SnO, NPs, and InyO3 NPs) have shown a noticeable improvement in
sensor response and faster recovery time, whereas ZnO NPs, CuO NTs,
and ITO NPs have demonstrated limited or no effect (Fig. 9a-f). As it
relates to WO3 NPs and InyO3 NPs, the optimum ethylbenzene sensing
response and response time were observed at 36.4 mW/cm?, while SnO,
NPs shows best sensing performance at 76.0 mW/cm?. Changing light
intensity from 0.0 to 36.4 mW/cm?, WO3 NPs have shown ~15.4-fold
improvement, and InpyO3 NPs have shown ~2.2-fold improvement in
sensing response toward 25 ppmy, ethylbenzene. Calculated Tg9o for

WO3 NPs are about 303 s followed by InyO3 NPs (Ts9p of 769 s). SnOz
NPs show ~3.6-fold improvement when light intensity increased from
0.0 to 76.0 mW/cm?, respectively. Tggp for SnOz NPs is ~760 s. The
recovery time (tgyg) for WO3 NPs, In,O3 NPs, and SnOy NPs are calcu-
lated to be 1881s, 3288 s, and 3414 s, respectively, toward 25 ppmy,
ethylbenzene for under 76.0 mW/cm?2.

Similar to ethylbenzene, WO3 NPs, SnO, NPs, and In;O3 NPs have
improved sensing performance toward p-xylene, whereas ZnO NPs, CuO
NTs, and ITO NPs have shown limited or no effect (Fig. S3). These MOS
sensors were also tested toward acetone and toluene. No notable sensing
response was observed from all MOS sensors in the presence or absence
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of UV illumination (data not shown).

3.4.3. Sensing mechanisms

According to the ionosorption model, the generation of ionized ox-
ygen species (03, O, 0%7) [10,31,63] could differ in MOS-based
chemiresistive gas sensors depending on the operating temperature.
Oxygen molecules from the air interact with the MOS surface under the

10

dark, capture electrons from the conduction band, and form O; species
at room temperature. Upon light irradiation with enough energy,
electron-hole pairs are generated (Eq. (5)) [64]. According to Espid
et al., [65] the formation of different atomic oxygen species (0, 02%7)
can also be possible under light illumination (Egs. 6-9). As a result, a
depletion layer forms near the MOS material’s surface due to the ab-
sorption of oxygen molecules, which leads to an increase in the
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resistance of n-type semiconductor materials. Moreover, optical illumi-
nation increases the carrier density in the MOS conduction band and
leads to a lower sensor resistance for n-type semiconductors. Addition-
ally, photo-desorption of oxygen species is plausible due to the inter-
action between the oxygen ions and photo-induced holes; as a result, the
resistance of the sensing layer changes over time due to the return of the
adsorbed electrons in the conduction band. For example, the resistance
decreases for n-type semiconductor materials since electrons are the
majority charge carrier (Eq. (9))

hy kG, + e (5)
Os(gas) + €y < Oiaas) (6)
Oty T €y < 200y @]
2004 + €y < 2004 (8)
Osaasy T Ny < O2(eas) (C)]

Under NO; exposure, n-type semiconductors’ resistance increased,
whereas p-type semiconductors decreased with increasing NOy con-
centrations, as shown in Fig. 5a-f. Ilin et al., [66] state that NO,

11

molecules are electron-withdrawing in nature and possess higher elec-
trophilicity (2.30 eV [67]) toward electrons than oxygen molecules
(0.44 eV [67]). Therefore, NO, could easily bind to the sensing mate-
rials’ surface and capture the electrons from the conduction band (Egs.
10 and 11) [66]. As a result, the depletion layer width increased, leading
to a higher resistance value in the n-type sensing materials.

NOy(gas) <> NOy(aay) (10)

NOZ(K‘”) + e(;w) - NO;(ad:) (11)

Furthermore, real-time NO5 sensing data indicated shorter response
and recovery time under UV light illumination than dark. The presence
of additional photoinduced electrons could have remarkably accelerated
the reaction of NO3 molecules on the MOS surface. Similarly, shorter
recovery time could be attributed to the recombination of photoinduced
holes and NO; species under light irradiation, which results in a rapid
return of trapped electrons to the MOS conduction band [66]. Therefore,
the baseline resistance returns to the initial resistance after the NO,
exposure under light irradiation.

Among all these MOS materials, SnO, NPs has shown the highest
sensing response toward NO, gas under 76 mW/cm? The deeper
acceptor level formation on the SnO, surface [68] might be a probable



S. Paul et al.

’(a) Ethylbenzene concentration (ppm)
ye
/ 25

>
[1d
\m
e 10
Q
7}
5
8 5
n
@
e
Q
N
g ol
[
5 1 " Ll h].&y]u] o Hlxj il “2 0.0
z 500 600 700 800 900 1000
Time (min)
‘(C) Ethylbenzene concentration (ppm) 5 ‘
>
x
ml\!
— 10
(0]
®»
5
8 5
@
S
°
(5]
N /
© /
g 1 bbb b L b
o T T T T T
z 500 600 700 800 900
Time (min)

[(e)Ethylbenzene concentration (ppm)

> §
= e — s/ 36.4 3
4 / S
=10 / L
o N§
IS 5 3
o i e At bbbl g
@ / 1.1
< | g
g £
N
g N
E 1 o— T wasspiastans /| () o
b4 500 600 700 800 900 1000

Time (min)

Sensors and Actuators Reports 7 (2024) 100194

/ }(b)Ethylbenzene concentration (ppm)

>
o
\(ﬂ
E\t/ 10
(0]
2]
c
8 5
7]
o
el
@
N
© /
€ 144
S T T T T T T 0.0
b4 500 600 700 800 900 1000
Time (min)
\ (d) Ethylbenzene concentration (ppm)
)
x
&
~ 10
©
(2]
]
8 5
7]
<t
°
(5}
N
©
€ 1
£ : : : : pessnd 0.0
z 500 600 700 800 900 1000
Time (min)
/
>
14 4
< y
(LT /,/
c
2 8 L ]
7]
g .
el
@
N
E
1
5 T T f T T =~ 0.0
=z 500 600 700 800 900 1000
Time (min)

Fig. 9. Real-time transient (a-f) and normalized (g-1) sensing response toward different ethylbenzene concentration (i.e., 3 to 25ppm,,) for (a, g) SnO., (b, h) In,03,
(c, i) ZnO, (d, j) WOs3, (e, k) CuO, and (f, 1) ITO under 400 nm UV illumination with different light intensity (0.0, 1.1, 36.4, 76.0 mW/cm?). 25 ppmy, ethylbenzene
response time, Tsg0, (M) and recovery time, tg;, (n) as a function of light intensity. Symbol X marked no response.

cause for this remarkable NO, sensing performance. This phenomenon
could have led to the transfer of electrons from the oxygen species to the
adsorbed NO; molecules, resulting in the formation of a higher number
NO; species and a higher sensor resistance. Moreover, SnO, NPs consist

of aggregated particles with an average nanoparticle size of 15 nm ac-
cording to the HRTEM analysis (Fig. 3a). Compared to the other sensing
materials employed in this study, SnOz Nps are relatively small in size,
which results in higher specific surface area. As a result, this higher

12
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specific surface area could have provided more effective active
adsorption sites for NO; gas molecules and increased contact in-
teractions between the sensing surface and the analytes. Additionally,
the presence of a higher number of photoinduced electron densities
under 76.0 mW/cm? could have resulted in the formation of more NO;
species and led to an overall better sensing response compared to other
MOS sensing materials.

Similarly, a significant sensing performance was observed from n-
type MOS semiconductors toward ethylbenzene and p-xylene aromatic
compounds at room temperature. The baseline resistance of the sensors
decreases upon introducing these aromatic compounds, as shown in
Figs. 9a-f and S3. This change in resistance could be attributed to the fact
that these aromatic compounds interacted with the adsorbed oxygen
species on the MOS surface, formed additional other species in the re-
action process, and returned the electron to the conduction band of the
MOS. Therefore, we observed the lowering of the baseline resistance.
Additionally, these aromatic compounds might not fully dissociate at
room temperature and instead could create other more reactive species.
Egs. (12 and 13) show the possible reaction between adsorbed oxygen
species and p-xylene [69].

C6H4(CH3)2 (8) + zo(udl‘)_)CGHACH:iCHO(adS) + HzO(g) + 2e” (12)

CsHyCH3CHO o + 1904y ~8COsq) + 4H, 0y + 19¢” (13)

13

Moreover, WO3 NPs show higher sensitivity toward ethylbenzene and p-
xylene than SnO, NPs, In,O3 NPs, ZnO NPs, and ITO NPs. The optimum
sensing performance was observed at 36.4 mW/cm? Based on this
limited study, increased displacements and reactions of adsorbed oxy-
gen species on the WO3 surface could have led to higher sensing per-
formance. Furthermore, it could have been attributed to employing a
specific light wavelength, which improved the photochemical activity
between the WO3 surface and aromatic molecules. According to Gong et
al., irradiation wavelength plays an important role in detecting organic
compounds [70]. In his work, upon changing the light wavelength from
365 nm to 254 nm, ZnO exhibited significant enhancement in the
detection of benzene and toluene, which might be due to the increase in
photochemical activity [70]. Additionally, these VOCs possess a highly
mobile character, leading to better diffusion ability and further possible
reformation into more reactive species by fractional oxidation. This
process could undergo additional chemical reactions to fully oxidize on
the WO3 surface, resulting in more electrons being returned to the WO3
conduction band (Eq. (13)).

3.5. Conclusions

Different n-type (i.e., SnO3 NPs, In,O3 NPs, ZnO NPs, WO3 NPs, ITO
NPs) and p-type (i.e., CuO NTs) metal oxide semiconductors were tested
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toward several toxic chemicals at room temperature under different 400
nm UV illumination. These materials’ electrical and gas sensing prop-
erties were systematically analyzed under 400 nm UV illumination with
different light intensities (i.e., 0.0-76.0 mW/cm?). A direct correlation
was observed between the optoelectrical and NO, sensing responses.
SnO, NPs showed the highest improvement in sensor response toward
NO; (~2.7-fold) and optical response (~83-fold) with an increase in UV
light intensity from 1.1 to 76.0 mW/cm?. In general, higher NO, sensing
performance was observed from direct band gap n-type MOS than in-
direct band gap or degenerated n-type MOS. Unlike NO,, indirect band
gap n-type WO3 NPs showed the best sensing performance of ethyl-
benzene and p-xylene with an optimum light intensity at 36.4 mW/cm?>.
This work path is a way for research to develop room-temperature MOS-
based chemiresistive gas sensors where the sensing performance can be
optimized by adjusting the sensing materials and tuning the optical
excitation.
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