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Abstract

We present genome assemblies for 18 snake species representing 18 families (Serpentes: Caenophidia): Acrochordus granulatus, Aparallactus
werneri, Boaedon fuliginosus, Calamaria suluensis, Cerberus rynchops, Grayia smithii, Imantodes cenchoa, Mimophis mahfalensis, Oxyrhabdium
leporinum, Pareas carinatus, Psammodynastes pulverulentus, Pseudoxenodon macrops, Pseudoxyrhopus heterurus, Sibynophis collaris,
Stegonotus admiraltiensis, Toxicocalamus goodenoughensis, Trimeresurus albolabris, and Tropidonophis doriae. From these new genome
assemblies, we extracted thousands of loci commonly used in systematic and phylogenomic studies on snakes, including target-capture datasets
composed of ultraconserved elements (UCEs) and anchored hybrid enriched loci (AHEs), as well as traditional Sanger loci. Phylogenies inferred
from the two target-capture loci datasets were identical with each other and strongly congruent with previously published snake phylogenies. To
show the additional utility of these non-model genomes for investigative evolutionary research, we mined the genome assemblies of two New
Guinea island endemics in our dataset (S. admiraltiensis and T. doriae) for the ATP71a3 gene, a thoroughly researched indicator of resistance to
toad toxin ingestion by squamates. We find that both these snakes possess the genotype for toad toxin resistance despite their endemism to
New Guinea, a region absent of any toads until the human-mediated introduction of Cane Toads in the 1930s. These species possess identical
substitutions that suggest the same bufotoxin resistance as their Australian congenerics (Stegonotus australis and Tropidonophis mairij) which
forage on invasive Cane Toads. Herein, we show the utility of short-read high-coverage genomes, as well as improving the deficit of available
squamate genomes with associated voucher specimens.
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Introduction evolutionary patterns and processes often implement a sys-
tematic approach using reduced representation datasets (e.g.
ultraconserved elements [UCEs], restriction site associated
DNA sequencing [RADseq]) due to affordability and high
success detecting phylogenetic signal between individuals
and populations (Davey and Blaxter 2010; Faircloth et al.

Improvements of DNA sequencing and bioinformatics
tools have increased scientists’ ability to use molecular
approaches to address a variety of evolutionary-related
questions regarding species discovery, species limits, gene-
flow analyses, gene expression, and selection (Lendemer et al. ) X
2020; Lum et al. 2022; Nachman et al. 2023). Squamates— 2012; Palaren. et al. 2016; Blair et al. 2019; Myers, et gl.
amphisbaenians, lizards, and snakes—have become model 20205 .Bernsten} et al. 2023). The use of whole genomes 1n
systems for investigating such biological phenomena due to evolutionary biology has enabled a better understanding

their high levels of intra- and intergroup variation (Gable of underlying mechanisms that lead to extant diversity and
et al. 2023; Meiri 2024; Title et al. 2024). Investigations of factors that set lineages on different evolutionary trajectories
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(Martin et al. 2018; Pasquesi et al. 2018; Bravo et al. 2021;
Del-Rio et al. 2022; Ludington et al. 2023). Despite their
utility, there is currently a lack of high-quality genomes for
squamates, and we are still very much in the infancy of wide-
spread sequencing and application of squamate genomes. The
increased sequencing of such genomes would provide valu-
able insight to comparative genomics, genome-phenotype
relationships, and phylogenomics (Card et al. 2023).

As whole genomes continue to become common practice
in evolutionary biology, it is increasingly important to uti-
lize datatypes that integrate with the associated molecular
data (e.g. natural history observations; Title et al. 2024).
Museum voucher specimens that are used for whole genome
sequencing also act as a valuable resource, linking the mo-
lecular data to the physical organism it came from and any
natural history, environmental, morphological, or behavioral
data associated with it. However, a large percentage of the cur-
rently available high-coverage genomes across vertebrates lack
corresponding voucher specimens. Recent examination of all
available (~1,300) vertebrate genomes with >30x sequencing
coverage found that only 11% of deposited genomes were
accompanied by a voucher specimen (Buckner et al. 2021),
and with only 15% and 12% of available avian and reptilian
genomes (>30x) having an associated voucher. This prac-
tice is problematic for many reasons: 1) genome sequencing
data and genome assemblies are assumed to be correctly
identified to species, leading to erroneous inferences in cases
of taxonomic misidentification, 2) some species with associ-
ated genome assemblies have undergone taxonomic revisions
subsequent to sequencing, rendering repeatability impossible
without a specimen to refer back to, and 3) a lack of phys-
ical voucher removes traceable evidence linking the deposited
genome to a legal collecting event, introducing possible legal
ramifications, or loss of data relevant to the specimen and ge-
nome. Additionally, GenBank entries rarely contain exhaustive
sampling data such as local collaborators; such information is
(or should always be) linked to deposited voucher specimens,
and the loss of these data is a disservice to local collectors
and collaborators who disproportionally are disconnected
from research and resources derived from their contributions
(Buckner et al. 2021). Properly deposited genomes with associ-
ated museum vouchers improve the quality of research in any
discipline that relies on open-access genomic data, whether
that is taxonomy, phylogenetics, or comparative genomics.

Linking genomes to voucher specimens increases the
robustness of evolutionary and ecological inference by
comparing newly collected/sequenced data with already-
published molecular datasets. This has been successfully em-
ployed in many evolutionary scenarios, that is, investigating
the genomic architecture for living at high altitudes (Lyu et
al. 2022), for adaptations against salinity (Rautsaw et al.
2021), and resistance to tetrodotoxins (TTX; Montana et
al. 2023). An example, which we further elaborate on in this
study, is analyzing open-access genomes of understudied taxa
and querying to see if species possess the genotype for im-
munity to the toxin of an introduced prey. One of the most
studied species for observing toxin resistance are the cane
toads of Australia (Phillips et al. 2003). South American Cane
Toads (Rhinella marinus [Linnaeus, 1758]) were introduced
to Australia and Papua New Guinea during the early 1930s
as an agricultural control measure for cane beetles, but in-
stead caused an ecological disaster (Zug 19735; Phillips et al.
2006) when Cane Toads caused severe population declines
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by both consuming and poisoning native Australian fauna
(Phillips et al. 2003; Phillips et al. 2004). They produce
powerfully toxic cardiotonic steroids, known as bufotoxins
(Akimova et al. 2005; Keenan et al. 2005; Bagrov et al.
2009) that kill non-resistant predators by blocking the
sodium-potassium ATPase channels (NKAs hereafter) in
cell membranes and causing cardiac-muscle immobilization
(Soliev et al. 2007). Cane Toads have been linked to severe
declines in Australian snakes, with two exceptions being the
Common Keelback, Tropidonophis mairii (Gray, 1841), and
the Australian Groundsnake, Stegonotus australis (Giinther,
1872), which appear resistant to toad ingestion (Phillips et
al. 2003; Phillips and Shine 2004). Cane Toad impacts on
New Guinea fauna and bufotoxin resistance have never been
investigated via genotyping. Sunda-Papuan Keelback snakes
(Natricidae: Tropidonophis) comprise 20 species ranging in
Australia, New Guinea, the Moluccas, and the Philippines—
where native Asian toads of Bufonidae are found (Ansonia
spp., Ingerophrynus philippinicus, Pelophryne spp.). The
groundsnakes (Colubridae: Stegonotus) have a similar distri-
bution, differing by a slightly further extension westward into
Wallacea (Ruane et al. 2018; Kaiser et al. 2021). Genomic in-
vestigation of the ATP1a3 paralog of the NKA a-subunit gene
family has shown that toxin-resistant reptiles that consume
bufotoxin-rich prey have glutamine-to-leucine and glycine-
to-arginine substitutions at positions 111 and 120 (Ujvari et
al. 2012). These residues comprise the H1-H2 extracellular
loop (amino acids 111 to 122 of ATP1a3), one of the pri-
mary bufotoxin-binding sites for NKA inhibition. Sequences
of the H1-H2 mRNA sequences for Australian T. mairii and
Australian S. australis confirm the presence of the resistant
H1-H2 phenotype (Ujvari et al. 2015). These bufotoxin-
resistant genotypes provide the genomic evidence for previous
laboratory-based experiments proving that both T. mairii and
S. australis in Australia are resistant to forced Cane Toad in-
gestion (Phillips et al. 2003). Despite years of investigating
bufotoxin resistance in many Australian snake lineages, that
is, colubrids, elapids, natricids, and pythonids, bufotoxin re-
sistance has never been investigated in New Guinean snakes
and resistance is not known at this time.

Here, we present 18 advanced snake genome assemblies
generated using recently collected high-quality tissue
samples that have associated museum vouchers:
Acrochordus granulatus (Schneider, 1799), Aparallactus
werneri Boulenger, 1895, Boaedon fuliginosus (Boie, 1827),
Calamaria suluensis Taylor, 1922, Cerberus rynchops
(Schneider, 1799), Grayia smithii (Leach, 1818), Immantodes
cenchoa  (Linnaeus, 1758), Mimophis mabfalensis
(Grandidier, 1867), Oxyrbabdium leporinum (Giinther,
1858), Pareas carinatus Wager, 1830, Psammodynastes
pulverulentus (Boie, 1827), Pseudoxenodon macrops
(Blyth, 1855), Pseudoxyrhopus heterurus (Jan, 1863),
Sibynopbhis collaris (Gray, 1853), Stegonotus admiraltiensis
Ruane, Richards, McVay, Tjaturadi, Krey,& Austin, 2017,
Toxicocalamus goodenoughensis Roberts and Austin 2020,
Trimeresurus albolabris Gray, 1842, and Tropidonophis
doriae (Boulenger, 1898). We use these genomes to show
their utility in systematics and provide them as a genomic
resource for the field of evolutionary biology. Additionally,
we use select genomes of New Guinea snakes to provide ev-
olutionary hypotheses on toxin resistance in New Guinea
snakes for downstream investigations, highlighting the
broader applicability of these resources outside systematics.
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Methods

Biological materials

All tissue samples were obtained from cataloged museum
specimens from the Field Museum of Natural History
(FMNH) or the Louisiana State University Museum of
Natural Science (LSUMZ), and a single individual was used
for each species.

Nucleic acid library preparation

DNA extraction was performed using the Qiagen DNAeasy
genomic extraction kit using the standard process following
the manufacturer’s protocol. Paired-end sequenced libraries
were constructed using the Illumina TruSeq kit also according
to the manufacturer’s instructions.

DNA sequencing, genome assembly, completeness
assessment

The libraries were sequenced on an Illumina Hi-Seq platform
in paired-end, 2 x 150 bp format. The resulting fastq files were
trimmed of adapter/primer sequence and low-quality regions
with Trimmomatic v0.33 (Bolger et al. 2014). The trimmed se-
quence was assembled by SPAdes v2.5 (Prjibelski et al. 2020)
followed by a finishing step using Zanfona (Kieras et al. 2021).
Final genome statistics are presented in Table 1. In order to as-
sess the completeness of the genome assemblies, we conducted
a Benchmarking Universal Single-Copy Orthologs (BUSCO) as-
sessment within the program compleasm (Huang and Li 2023).
compleasm uses a given BUSCO database and employs miniprot
(Li 2023) as the default protein-to-genome aligner. For a BUSCO
reference, compleasm benchmarked the 18 snake genomes
herein against the available Vertebrata Ortholog Database v10.

Reduced representation mining for phylogenetics

For in silica sequence capture of ultraconserved elements
(UCEs; Faircloth et al. 2012) and Squamate Conserved Loci
version 2 probeset (SqCL; Singhal et al. 2017), we used phyluce
v1.6 (Faircloth 2015). The SqCL probeset comprises a com-
bination of anchored hybrid enriched loci (AHEs; Lemmon
et al. 2012), UCEs, and traditional phylogenetic gene loci.
For simplicity, the UCE-only dataset is referred to herein as
simply UCEs, and the SqCL probeset as SqQCL instead of its
primary components: UCEs, AHEs, and traditional Sanger
loci. For UCE calling, we followed the UCE mining tutorial
III that instructs proper UCE mining for previously published
or assembled genomes. We first converted all final Zanfona
genome assemblies to 2bit format and then searched the 2bit
assemblies for UCEs within the Tetrapods SK UCE probeset.
For SqCL marker mining, the same approach was taken,
but the headers for each SqCL bait were modified to allow
phyluce to parse and select out the SqCL loci. We then aligned
all recovered UCE and SqCL loci with MAFFT (Katoh and
Standley 2013). For phylogenetic analyses, we filtered our
UCEs and SqCL with phyluce and created 75% completeness
concatenated alignments, one per probeset, selecting only loci
that include 75% or more of represented taxa in our dataset.

Concatenated alignments were input into IQ-TREE 2.0 (Minh
et al. 2020) for maximum likelihood tree inference to compare
to previous studies directly investigating snake familial phyloge-
netic relationships (Zaher et al. 2019; Burbrink et al. 2020). We
ran IQ-TREE with both alignments using the MFP (ModelFinder
Plus) option that performs an exhaustive ModelFinder (Lanfear
et al. 2012) search for the best-fit substitution model and then
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automatically begins inference with the best-fit model. We used
the default option of 7 = 1000 ultrafast bootstrap replications to
reconcile with the best tree found during the maximum likeli-
hood tree search (Hoang et al. 2018).

Toxin resistance gene mining

To show the utility of de novo short-read genomes from
non-model and rare taxa, we mined the genomes of two spe-
cies, S. admiraltiensis and T. doriae, for the genotype respon-
sible for either bufotoxin sensitivity or resistance. To date, the
Burmese Python genome (Python bivittatus—Accession No.
GCF_000186305.1) is one of the highest-quality annotated
genomes for any snake (Castoe et al. 2011). For mining our
two New Guinea snake genomes, we used the annotated
ATP1a3 protein sequence from P. bivittatus, a species that is
susceptible to bufotoxin poisoning (Mohammadi et al. 2016).
We used the tblastn function within NCBI’s BLAST. We set
the P. bivittatus ATP1a3 gene as the query and tblastn against
the deposited S. admiraltiensis and Tropidonophis doriae
genomes. We then compared the P. bivittatus query results
and found the highest coverage result overlapping with the
H1-H2 region. We then aligned this best-fit sequence from
the query with the GenBank ATP1a3 H1-H2 sequences for
S. australis (labeled in Genbank as S. cucullatus - KP238138.1)
and T. mairii (KP238142.1) from Australia.

Results

Genome sequencing

Raw sequence data and genome assemblies were deposited
into GenBank for public access. See Tables 1 and 2 for ac-
cession information and genome assembly statistics for the
dataset. BUSCO completeness via compleasm are available
in Table 2. The mean and standard deviation of single-copy
complete genes (S in compleasm output) recovered in the
assemblies was 2,468 = 229 loci. Out of the total 3,354 loci
available in the Vertebrata Ortholog Database v10 used as a
reference, this represents an average BUSCO score of 73.6%.

Phylogenetics

We successfully mined UCEs, AHEs, and traditional Sanger
loci from the new genome assemblies. We recovered a mean of
3,326 UCEs and 4,743 SqCLs per assembly (Supplementary
Table 1). IQ-TREE inferred 100% congruent phylogenies for
the UCE and SqCL alignments (Fig. 1). Compared to recent
family-level snake phylogenies (Zaher et al. 2019; Burbrink
et al. 2020), both phylogenies for Caenophidia inferred from
our genome assemblies are similar. Differences between our
phylogeny and those that were previously published differ
by missing taxa, so an exhaustive comparison between our
phylogenies and others is difficult. Despite this, we have
successfully shown the utility of short-read genomes for
phylogenomics using multiple probesets commonly used for
squamate systematics.

Toxin resistance

tblastn using the bufotoxin-susceptible P. bivittatus gen-
otype against the two Papua New Guinea snake genomes
recovered the targeted locus for both genomes. For S.
admiraltiensis, the exon coding the H1-H2 extracellular loop
was recovered on scaffold number 4,766, spanning bases
54,077 to 53,988 (3’=5" direction). For T. doriae, the exon was
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Fig. 1. A) Inferred phylogeny in IQ-TREE from UCE and SqCL mining of the new 18 snake genomes (Serpentes: Caenophidia). The topology

above represents the UCE phylogeny. All inferred nodes were strongly supported with ultrafast bootstrap support of 100. B) A photo in the life

of Tropidonophis doriae (LSUMZ 129280—Natricidae), a topotypic voucher collected near the type locality. C) A photo in the life of Stegonotus
admiraltiensis (LSUMZ 93597—Colubridae), a species endemic to Papua New Guinea and represented in our dataset by the whole-genome assembly
from the holotype of this species. D) Map of Papua New Guinea, the largest tropical island in the world. White hatching represents current Cane Toad,
Rhinella marinus, distribution according to Zug (1975) and VertNet query. The inset within the map shows a Cane Toad, R. marinus, collected from

the country capital, Port Moresby. The purple, pink, and skull-and-crossbones mark the localities of T. doriae (B—purple circle on Papua New Guinea
mainland), S. admitaltiensis (C—pink circle in Bismarck Sea), and the Cane Toad, respectively.
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A

Extracellular

python bivitatus LW I G AILCFLAYGI
stegonotus australis AUS) LW TG AILCFLAYGILAGTEDDPSIRDNILYLG
stegonotus agmiraltienss L\W TG AILCFLAYGILAGTEEDPSRDNVSFG
Tropidonophis mairii AU ) LW I GAILCFLTYGIILAGTEDDPSIRDNILYLG

rropidonophis doriee LW I G SILCFLTYGIILAGTEEDPSRRIDN|VSLG

AGTEDDPS|GDN|LYLG

Fig. 2. A) Structure of the eukaryotic NKA channel (modified after Bagrov et al. 2009) showing the three subunits: the o subunit (solid line) with 10
transmembrane proteins, the p subunit (dashed line) with one transmembrane protein, and the y subunit (dotted line) with one transmembrane protein.
Three extracellular bufotoxin-binding sites are known, but only the H1-H2 extracellular loop (denoted by circle) has been investigated in reptiles. B) The
protein alignment of the H1-H2 extracellular loop for Python bivittatus, Stegonotus australis from Australia, Stegonotus admiraltiensis, Tropidonophis
mairii from Australia, and Tropidonophis doriae showing the presence of either the bufotoxin-susceptible genotypes at amino acid 111 and 120
(orange—FR bivittatus only) or the resistant phenotype (yellow—Stegonotus spp. and Tropidonophis spp.).

found on scaffold 4,558 spanning bases 9,790 to 9,701 (3'-5"
direction). When translated and aligned with P. bivittatus and
the two bufotoxin-resistant sequences for S. australis and T.
mairii from Australia, the retrieved exons from both these
previously uninvestigated New Guinea taxa showed that they
both possess the genotype for bufotoxin resistance, specifi-
cally a leucine (L) at position 111 versus glutamine (Q), and
arginine (R) at position 120 versus a glycine (G) (Fig. 2; see
also Ujvari et al. 2015). This comprises the first evidence of
bufotoxin resistance in New Guinea snakes, despite evolving
allopatrically from any toad species until human-mediated in-
troduction in the early 20th century.

Discussion

Evolutionary biology research using non-model vertebrate
systems is becoming more and more common, and in parallel,
genomic resources are increasing at rapid rates with a decrease
in sequencing costs, paving the way to test new hypotheses
and investigate novel systems (Haussler et al. 2009; Meadows
and Lindblad-Toh 2017; Rhie et al. 2021). Here, we provide
18 new genomes which represent ~50% of all snake families,
and nearly 100% of caenophidian snake families (Zaher et al.
2019; Burbrink et al. 2020). These genomes can be used as
resources for a variety of disciplines in evolutionary biology,
such as broad-scale systematics, phylogenomics, biogeog-
raphy, and, as shown here, phenotype patterns and evolution.

The average BUSCO scores of these genomes is lower than
a Reference Sequence genome (RefSeq) assemblied using
a three-prong and expensive sequencing approach: long-
reads (PacBio or Oxford Nanopore), short-reads for genome
“polishing” (Illumina-based genome sequencing), followed

by a transcriptome-based annotation. The lower completion
scores (Table 2) are primarily because these 18 assemblies
are all solely Illumina short-read based. In addition, these
genomes are also currently published on Genbank as Draft
1 assemblies. Despite the absence of long-read sequencing
such as Oxford Nanopore or PacBio, these genomes will con-
tinue to improve in BUSCO completeness scores as sequential
drafts are updated to these accessions due to additional in
silica curation and read-merging by the genome depositors
(Stacy Pirro—TIridian Genomes). Despite their current BUSCO
score, we have shown herein the wide application that these
genomes already serve even in their current first-draft state.
Reduced representation datasets using probe sets have be-
come widely used in systematics, allowing for denser taxo-
nomic sampling, higher throughput, and lower sequencing
costs compared to long-read whole genomes. The use of probe
sets in systematics has become useful for balancing the costs
of sequencing with project sample number and the amount
of informative data received (Faircloth et al. 2012; Lemmon
et al. 2012; Singhal et al. 2017; Karin et al. 2020). While such
datasets are extremely useful for testing hypotheses in evolu-
tionary biology, such as species boundaries and diversifica-
tion scenarios (Skipwith and Oliver 2023), these targeted loci
are spread throughout the genome, often without reference
genomes to understand the physical location and respective
patterns of each locus in the genome. Sequencing more contin-
uous sections of the genome, or the entire genome itself, can
provide a better understanding of genome architecture and
the mechanisms that underpin genomic patterns and evolu-
tion, while still enabling researchers to target specific research
aims for systematic and population genomic studies in which
reduced representation data were used (Lou et al. 2021).
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Systematic studies aim to identify the evolutionary
relationships and draw inferences on biogeography, species
diversity, and conservation efforts, and, sometimes, identify
regions of the genome relevant for more in-depth evolutionary
studies (Singhal et al. 2021; Pavén-Vizquez et al. 2022; Shaffer
et al. 2022; Mochales-Riano et al. 2024). We emphasize the
use of whole genomes to broaden systematic studies towards
targeting finer-scaled biological aims of the study system, such
as what we show here with S. admiraltiensis and T. doriae. A
particular genotype of the ATP1a3 gene is needed for snakes
(and other squamates) to safely ingest toxic toads (Anura:
Bufonidae) due to endogenous bufotoxins produced in toads.
This has been observed in thamnophiines (Thamnophis;
Mohammadi et al. 2016, 2017a,2017b), and we now confirm
this for two other colubrids, S. admiraltiensis and T. doriae.
Interestingly, while evolutionarily naive to toads and their
toxins, S. admiraltiensis within the last 100 years has been
faced with the highly toxic introduced Cane Toads across
Manus Island (Fig. 1). The T. doriae specimen collected herein
(LSUMZ 129280) was collected from a mid-elevation (800
m asl) field site. This population currently exists in complete
allopatry with introduced Cane Toads due to the elevational
barrier for these invaders (~300 m asl; Zug 1975). Despite
differences in current sympatry-or-allopatry with Cane Toads
between these two New Guinea snake endemics, both S.
admiraltiensis and T. doriae possess the bufotoxin-resistant
genotype (Fig. 2). Our example here can be compared with
other systems that contain snake lineages that overlap with
toxic toads but lack genotypes that likely lead to toxin resist-
ance (e.g. boids, lamprophiids; Marshall 2017). Many other
snake taxa act as opportunistic models to investigate the ev-
olution of toxin resistance (or susceptibility to bufotoxins),
and morphological, behavioral, and physiological data exist
(Phillips et al. 2003, 2004; Pearson et al. 2014; Llewelyn et al.
2018), along with evidence of non-genotypic mechanisms re-
lated to toxin resistance (Mohammadi et al. 2017a) that can
be supplemented by whole-genome datasets.

Two of the species included in our dataset were described
within the last 10 years and their assemblies are sequenced from
contemporary tissues cryogenically stored in ethanol, being
removed from the holotype specimens at the time of preparation
(S. admiraltiensis and T. goodenoughensis; Ruane et al. 2018,
Roberts and Austin 2020). For museum scientists focusing their
collecting efforts in poorly explored areas with high potential
for new species discovery, we strongly recommend the incor-
poration of a whole-genome assembly voucher. Similar to how
the optimal whole specimen is chosen to represent the holotype
for a new species, museum scientists should consider submitting
a sample from the best representative for whole-genome
sequencing to further extend the utility of the specimen. This
recommendation would previously qualify as exclusive to only
large institutions due to whole-genome sequencing cost, but this
is no longer the case. The average cost for the sequencing of
these Illumina short-read high-coverage genomes was ~$300/
sample (Stacy Pirro, Iridian Genomes). Even if whole-genome
sequencing may be outside the research questions of the spec-
imen, deposition of whole genomes from type material, or even
topotypic voucher material, improves taxonomy and saves both
money and resources for future field collectors and researchers.
Tissue collections of museums are invaluable, but also nonre-
newable, resources (Sheldon and Dittmann 1997). As of 2024,
once freshly preserved tissue (ethanol, liquid nitrogen, etc.)
is exhausted from a specimen, whole-genome quality tissue
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samples cannot be retrieved from the specimen. Our techniques
and applications for targeted sequence capture of formalin-
fixed tissues are improving and broadening (Bernstein and
Ruane 2022; Bernstein et al. 2023), but the preferred sample
is still freshly preserved tissue. Incorporating whole-genome
sequencing as a part of the cataloging and processing pipeline
of new species and rare collections will expand our knowledge
and collaboration within this field, protect and extend the lon-
gevity of current tissue stocks in collections, and save collecting
resources. For example, during manuscript preparation, the
above data contributed to researchers studying genome evolu-
tion in Asian snakes which led to the recent description of a new
family, Psammodynastidae, based largely on in silica loci mining
of the P. pulverulentus genome assembly presented above (Das
et al. 2024).

We understand that whole genome sequencing is not al-
ways financially feasible and is not always necessary for
fine-scaled evolutionary questions such as determining tax-
onomic placement or reconstructing a well-resolved phy-
logeny. Indeed, it may be more cost-effective to sequence
from targeted probe sets for such projects. However, we
provide these genomes as resources for researchers aiming
to study related taxa in a systematic context or for compara-
tive purposes in broader investigations of snake evolution. A
wealth of evolutionary information is lost when using target-
capture approaches or select loci, leading to gaps in our
knowledge of what has led to extant diversity. The genomes
we provide will contain greater degrees of evolutionary his-
tory, which can still be used for finer-scaled questions, and
we hope researchers use the resources provided here for
both fine- and broad-scale squamate and evolutionary re-
search. In addition, we hope these new assemblies can per-
suade other laboratories and research institutes who are
field collecting to consider selecting the best-samples with
whole-specimen vouchers as potential genome vouchers for
all researchers to use.

Inference of congruent phylogenies with robust support
and coupled with fine-scale application towards toxin re-
sistance prove the utility towards broad applications of
these 18 newly deposited genome assemblies. These 18
assemblies have been sequenced from under-represented
snakes in distinct families that vary in their life history
traits. These assemblies increase the growing genomic re-
sources available for snakes and improve upon the dearth
of available snake genomes with associated museum
voucher material (Table 1). Buckner et al. (2021) presented
many reasons why genomes sans vouchers introduce more
problems than benefits to genomics and evolutionary sci-
ence. When depositing whole-genome assemblies (or even
single locus datasets on GenBank), the linking of vouchered
material to the sequence data broadens the application po-
tential, increasing the value of both assembly and vouchered
specimens.

Supplementary material

Supplementary material is available at Journal of Heredity
Journal online.
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