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ABSTRACT: One-dimensional  metal  halide  perovskite  (MHP)
nanowires  (NWs)  have  recently  emerged  as  highly  promising
optoelectronic  materials  due  to  their  high  aspect  ratio,  anisotropic
quantum confinement, nonlinear optical response, unique mechanical
flexibility,  in  addition  to  the  well-known  advantageous  properties
inherent  to  MHPs.  In  this  review,  we  discuss  the  recent
advancements  in  the  synthesis,  characterization,  and  properties  of
MHP  NWs,  particularly  with  their  diameters  below  the  Bohr  radius
(referred  as  ultrathin  MHP  NWs).  Key  future  directions  are
highlighted,  including  refining  synthesis  methods  for  atomic-level
control,  understanding  the  growth  mechanisms,  improving  stability
through  surface  passivation,  exploring  lead-free  alternatives  to
mitigate toxicity concerns, and achieving novel and unique properties.
These advancements will enable ultrathin MHP NWs to play a pivotal
role  in  advanced  applications  in  various  optical,  optoelectronic,  and
photonic technologies.

KEYWORDS: metal  halide  perovskites,  ultrathin  nanowires,  anisotropic  quantum  confinement,  synthesis,  optical  and
optoelectronic properties 

 
 

1    Introduction
Metal  halide  perovskite  (MHP)  nanocrystals  (NCs)  with  a  general
formula  of  ABX3 (A:  monovalent  cation;  B:  divalent  metal  cation;
X: halide anion) have gained significant interest in recent years due
to their  unique crystal  structure,  ionic bonding nature,  high defect
tolerance,  and  exceptional  optoelectronic  properties  [1−4].  These
materials  exhibit  near-unity  photoluminescence  quantum  yields
(PLQYs),  tunable  bandgaps,  and  strong  light  absorption  over  a
broad  spectral  range  [5−8].  Moreover,  their  facile  and  low-cost
synthesis, coupled with their high PL efficiency and sharp emission
lines,  make  MHP  NCs  ideal  candidates  for  various  applications
such  as  solar  cells,  light-emitting  diodes  (LEDs),  lasers,
photodetectors,  and  photocatalysts,  [9−16]  etc.  The  tunability  of
their optical properties by altering composition, and size, along with
their  capability  to  form  diverse  morphologies  of  nanostructures
including  zero-dimensional  (0D)  quantum  dots  (QDs),  one-

dimensional (1D) nanorods (NRs) and nanowires (NWs), and two-
dimensional  (2D)  nanoplatelets  (NPLs)  and  nanosheets,  further
import their versatility for implementation and integration into the
above-mentioned applications [1, 17−24].

Among  these  different  morphologies  of  MHP  NCs,  1D  NWs
have garnered special  attention due to their  high aspect  ratios and
anisotropic  quantum  confinement,  leading  to  distinct  and  unique
electronic  and  optical  properties  [25−29].  In  particular,  when  the
thickness of these NWs is reduced below the Bohr diameter of the
material,  referred  as  ultrathin  perovskite  NWs  or  quantum  wires
(QWs),  their  optical  and  optoelectronic  characteristics  become
highly tunable due to the presence of strong quantum confinement
along  their  short  radial  dimensions  [30−32].  In  this  case,  the
reduced  dimensionality  in  ultrathin  perovskite  NWs  enhances
charge separation and transport along the long axial direction, while
maintaining  strong  quantum  confinement  in  the  short  radial
direction [33−35]. This combination results in efficient anisotropic
charge  transport,  which  is  advantageous  for  applications  such  as
field-effect  transistors,  LEDs,  and  photodetectors  [36−41].
Moreover,  the  high  surface-to-volume  ratio,  high  flexibility,  and
mechanical  strength  of  ultrathin  NWs  makes  them  an  excellent
candidate  for  applications  in  sensors  and  catalysis,  where  largely
exposed NW surfaces play a critical role [42−46].
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While  much  progress  has  been  made  in  the  synthesis  and
modifications  of  0D  MHP  NCs,  controlling  the  diameter  and
uniformity  of  ultrathin  NWs  still  remains  a  significant  challenge.
Traditional approaches, such as hot-injection and solvent-mediated
reprecipitation methods,  have been used to synthesize MHP NWs
[30, 47, 48],  but  achieving  uniform  and  controllable  ultrathin
diameters  with high aspect  ratios  is  still  difficult.  Furthermore,  the
stability  of  ultrathin  perovskite  NWs,  especially  under
environmental  stress  (e.g.,  moisture,  oxygen,  and  light  exposure),
remains a significant concern [48, 49], posing a major limitation for
the  practical  implementation  of  such  materials  in  real-world
applications.

This  review  aims  to  provide  a  timely  overview  of  the  progress
made  in  the  synthesis,  characterization,  and  applications  of
ultrathin perovskite NWs. Herein, we discuss the various methods
applied  to  produce  these  structures,  and  highlight  the  critical
challenges  in  achieving  controlled  nucleation  and  growth  of
ultrathin  NWs  with  high  morphological  anisotropy.  Additionally,
we  summarize  the  physical  and  chemical  properties  of  ultrathin
MHP  NWs,  with  a  focus  on  their  optical  behavior,  structural
stability,  and  potential  for  integration  into  advanced  devices.
Finally, we outline some key areas for future research, emphasizing
the  need  for  improved  stability  and  tunability  of  these  promising
materials  to  fully  realize  their  potential  in  optical,  optoelectronic,
photonic and many other applications. 

2    Synthesis of ultrathin MHP NWs
 

2.1    Hot-injection method
In  2015,  Protesescu  et  al.  reported  a  reliable  colloidal  synthesis
approach to firstly synthesize colloidal MHP particles in nanoscale
with  tunable  sizes  [31].  The  synthetic  approach  is  based  on  an
injection  process  of  preprepared  A-site  monovalent  cation-
carboxylic acid complex (such as Cs-oleate) into a mixture of B-site

metal  salt  and  organic  ligands.  MHP  NCs  start  to  grow  instantly
after the injection occurs at elevated temperature and stop growing
by  rapid  temperature  cooling  using  an  ice-water  bath.  In  2016,
Manna  group  modified  the  synthesis  by  replacing  oleic  acid  with
octanoic  acid  or  hexanoic  acid  with  shorter  carbon  chains,  and
decreasing  the  reaction  temperature  to  below  70  °C  [47].  They
successfully  prepared  ultrathin  CsPbBr3 NWs  with  tunable
thickness (NW diameter of 2.8, 3.4, 4.1, and 5.1 nm) by varying the
concentration of the involved short acid over that of alkyl amines as
shown  in Figs.  1(a)–1(c).  However,  both  the  absorption  and  PL
spectra  of  these  NWs  exhibited  a  lower  energy  shoulder/tail  at  ~
500 nm indicating partial NW aggregation (Fig. 1(b)), revealing the
instable  nature  of  the  produced  ultrathin  NWs.  Differently,  Yang
group  applied  a  hot  injection  method  with  typical  long  chain
ligands  (i.e.,  1-dodecylamine,  oleylamine,  oleic  acid)  and  a  high
reaction temperature (160 °C) to synthesize ultrathin CsPbBr3 NWs
along with other side products [30].  They further applied stepwise
purifications  to  improve  the  NW purity,  where  ethyl  acetate  (EA)
was  used  as  the  anti-solvent  (Figs.  1(d)−1(f)).  In  each  round  of
purification,  the  supernatant  solution  was  collected  and  the
precipitate was discarded after centrifugation. After three rounds of
purifications,  they  obtained  a  relatively  pure  ultrathin  CsPbBr3
NWs  (>  70%  purity).  However,  the  resulting  ultrathin  CsPbBr3
NWs  possessed  a  large  amount  of  surface  defects  and  thus  a  low
emission  efficiency  due  to  significant  ligand  loss  caused  by  the
repeated purification processes using anti-solvent [7, 30]. 

2.2    Solution-based direct crystallization method
The ease of fabrication and processing at low temperatures is one of
the  most  attractive  features  of  MHPs,  which  not  only  reduces  the
fabrication  costs  and  simplifies  manufacturing  processes,  but  also
opens  up  new  possibilities  for  large-area,  flexible  electronics
[50−52].  The  ligand-assisted  reprecipitation  (LARP)  approach,
typically  carried  out  at  room  temperature  (RT),  has  therefore
attracted  significant  attention  [53−55].  In  this  method,  A- and  B-

 

Figure 1    (a)  Representative  bright  field  transmission  electron  microscopy  (BF-TEM)  and  high-angle  angular  dark  field  scanning  TEM  (HAADF-STEM)  images  of
CsPbBr3 NWs with varying thicknesses: (i) and (iv) 10 nm, (ii) and (v) 5.1 nm, and (iii) and (vi) 3.4 nm. Scale bars represent 200 nm. Corresponding size distributions are
shown. Short chain carboxylic acid to alkyl amine ratios are (i) and (iv) 0, (ii) and (v) 0.1, and (iii) and (vi) 0.3, respectively. (b) Optical absorption (solid line) and PL
spectra (dashed line) for CsPbBr3 NWs with different thicknesses.  (c) Time-resolved PL decay profiles of CsPbBr3 NWs excited at 405 nm, with an arrow indicating a
thickness decrease from 20 to 3.4 nm. Reproduced with permission from Ref. [47], © American Chemical Society 2016. (d) TEM images illustrating stepwise purifications
to obtain ultrathin CsPbBr3 NWs, with scale bars of 50 nm. The ratio of EA to supernatant increases progressively from left to right. (e) Optical absorption (solid line) and
PL spectra (dashed line) of CsPbBr3 samples, ultrathin NWs, 10 nm thick NWs, nanoparticles and NPLs. (f) Corresponding transmission electron microscopy (TEM) and
aberration-corrected high-resolution TEM (AC-HRTEM) images. Reproduced with permission from Ref. [30], © American Chemical Society 2016.
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site cation salts are firstly dissolved in a good solvent, such as N,N-
dimethylformamide  (DMF)  or  dimethylsulfoxide  (DMSO),  along
with  ligands  (e.g.,  oleylamine,  oleic  acid).  Then,  the  resulting
precursor solution is mixed with a poor solvent, such as toluene or
hexane,  to  decrease  the  precursor  solubility  and  trigger  MHP
crystallization  to  form  NCs.  In  2017,  Amgar  et  al.  employed  this
LARP  technique  to  obtain  ultrathin  CsPbX3 (X  =  Cl,  Br,  I)  NWs
[56]. The reaction was performed by adding hot Cs-oleate solution
to  a  vial  filled  with  oleic  acid  and  oleylamine  serving  as  organic
ligands,  followed  by  the  addition  of  a  PbBr2 precursor  solution  in
DMF. After 10 s of reaction, acetone was swiftly added as the anti-
solvent to trigger NW crystallization. In addition, different amounts
of  hydrohalic  acids  (HX,  X  =  Cl,  Br,  I)  from  0–10  µL  were
introduced  into  the  reaction  system  to  tune  the  optical  features
through  halide  exchange  reactions  (Fig.  2(a))  [56].  The  authors
found that the length of obtained NWs was significantly shortened
by increasing the added amount of HX acid,  which was attributed
to  that  the  positively  charged  oleylammonia  (i.e.,  protonated
oleylamine)  can  perform  similarly  as  Cs+ cations  to  block  the
growth of MHP into long NWs [57, 58]. Unfortunately, the halide
composition  of  obtained  CsPbX3 NWs  was  not  homogeneous  as
reflected  by  the  multiple  emission  peaks  emerged  in  their  PL
spectra,  indicating  incomplete  halide  exchange.  Around  the  same
time,  Kostopoulou  et  al.  also  applied  the  LARP  method  to
synthesize  CsPbBr3 NWs  and  used  anhydrous  toluene  to  quench
the reaction, resulting in a mixture of nonuniform NWs and NPLs
[59]. The reaction solution was then kept under ambient conditions
for one day without stirring. The NPLs were precipitated out of the
solution while ultrathin CsPbBr3 NWs were gradually formed in the
supernatant.  After  one  week,  however,  the  NW  thickness
progressively increased from 2.6 to 6.1 nm with a broader thickness

distribution  [59].  In  2019,  while  utilizing  the  LARP  method  to
synthesize  ultrathin  NWs,  Peng  group  added  acetonitrile  (ACN)
into  toluene  with  different  proportions  to  act  together  as  the
antisolvent  [60].  The  synthesized  MHP  NCs  exhibited  a
morphological transition from nanocubes (with no added ACN) to
NWs  (with  toluene/ACN  =  90:10)  and  further  to  NW  bundles
(with  toluene/ACN  =  80:20)  (Fig.  2(b)).  Further  increasing  the
ACN amount led to broader and weaker absorption peaks together
with the formation of large perovskite crystals that precipitated out
of  the  reaction  solution  [60].  The  authors  attributed  the  results  to
the addition of the polar solvent ACN, which promoted oleylamine
protonation and acted as a Lewis base, forming dative N→Pb bonds
on  the  NW  surfaces,  thereby  restricting  isotropic  growth  of
CsPbBr3 (Fig.  2(c))  [61].  However,  they  did  not  conduct  further
research to identify the specific facets where growth was inhibited.
In 2022,  Hu et  al.  applied a  modified LARP method to  synthesize
ultrathin CsPbI3 perovskite  NWs (Figs.  2(d)−2(g))  [62].  Instead of
traditional  polar  solvents  (DMF,  DMSO),  they  used  a  low-polar
organic  medium  (toluene)  to  dissolve  precursor-ligand  complexes
(Cs-oleate,  PbI2-oleylamine).  Different  from  the  red  emission
(peaked  at  ~  700  nm)  from  CsPbI3 NCs,  they  obtained  ultrathin
CsPbI3 NWs with single-halide component, which presented a blue-
shifted  emission  peaked  at  599  nm.  A  further  blue-shifted  yellow
emission  (at  558  nm)  with  a  record  high  PLQY  of  94%  was
obtained by adding ZnI2 precursor into the reaction system [62].

In addition, Huang and his co-workers reported another room-
temperature  colloidal  synthesis  of  ultrathin  CsPbBr3 NWs in  2017
[63].  In  their  reaction  system,  the  precursor  solutions  were  stirred
continuously  under  RT,  followed  by  direct  centrifugation.  They
further  applied  a  post-synthetic  heat  treatment  process  (at  120  °C
for 2 min) to the as-synthesized NWs, which enhanced the PLQY

 

Figure 2    (a)  Optical  absorption (solid  line)  and PL spectra  (dashed line)  of  CsPbX3 NWs synthesized with  varying amounts  of  HI,  HBr,  and HCl.  Reproduced with
permission from Ref. [56], © American Chemical Society 2017. (b) Optical absorption (solid line) and PL spectra (dashed line) of CsPbBr3 NCs synthesized at different
volume  ratios  of  toluene/ACN.  (c)  Schematic  diagram  illustrating  the  formation  processes  of  CsPbBr3 nanocubes  in  toluene  and  ultrathin  NWs  in  toluene/ACN.
Reproduced with permission from Ref. [60], © American Chemical Society 2019. (d) Thickness distribution (top) and corresponding absorption and PL spectra (bottom)
of ultrathin CsPbI3 NWs. (e) Thickness distribution (top) and corresponding absorption and PL spectra (bottom) of ZnI2-treated ultrathin CsPbI3 NWs. Pseudo-color
femtosecond transient absorption (TA) measurements for the ultrathin CsPbI3 NWs before (f) and after (g) ZnI2 treatment. Reproduced with permission from Ref. [62],
© Elsevier Ltd. 2022.
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of the NWs from less than 1% to over 20% [63]. This process was
accompanied by red-shifted absorption and PL peaks, indicating an
increase of NW thickness. 

2.3    Post-synthetic transformations
Post-synthetic chemical and/or particle shape transformations have
been  widely  employed  in  MHP  NCs  to  enhance  their
compositional  and  morphological  tunability  [5, 64−66].  This
versatile approach enables precise modifications of pre-synthesized
NCs, offering access to a broader range of colloidal nanostructures
that  may  be  challenging  or  even  impossible  to  achieve  through
direct  synthesis  [67, 68].  Taking  advantage  of  this  post-synthetic
transformation  approach,  researchers  can  fine-tune  the  properties
of  NCs,  such  as  their  optical  and  electronic  behavior,  and  gain
valuable  insights  into  the  mechanisms  underlying  their  growth
[69−72].

In  2018,  Li  et  al.  applied  a  thiourea-assisted  post-synthetic
treatment  to  convert  CsPbBr3 nanocubes  into  ultrathin  CsPbBr3
NWs  [73].  A  thiourea  aqueous  solution  was  directly  introduced
into  the  crude  organic  solution  of  CsPbBr3 nanocubes  to  extract
Pb2+ cations by forming stable Pb2+-thiourea complexes. Under mild
heating  at  35  °C,  the  CsPbBr3 nanocubes  firstly  transformed  into
Cs4PbBr6 NCs  with  a  zero-dimensional  perovskite  structure  (Fig.
3(a)). And CsBr was subsequently removed by water due to its high
water solubility, further transforming Cs4PbBr6 into small CsPbBr3
NCs, which evolve into ultrathin CsPbBr3 NWs [73]. The resulting
NWs  showed  good  colloidal  stability  and  a  high  PLQY  of  60%,
albeit  with  a  PL  shoulder  peak  at  around  500  nm  attributed  to

nanocube impurities.  The high PLQY was explained by the  PbBr2
rich surface of the obtained ultrathin CsPbBr3 NWs evidenced by X-
ray photoelectron spectroscopy (XPS) measurements [73, 74].

In  2021,  Chen  group  reported  a  synthesis  of  ultrathin  CsPbBr3
NWs via a post-synthetic transformation process starting from 0D
Cs4PbBr6 perovskite  NCs,  using  short  alkyl  chain  organic  ligands
(Figs.  3(b) and 3(c))  [75].  In  the  transformation  reaction,  PbBr2
precursor  together  with  different  organic  ligands  (i.e.,  oleic  acid,
hexanoic  acid  and  octylamine)  were  added  under  mild  heating
condition at  50 °C.  After  two hours,  ultrathin CsPbBr3 NWs were
produced  with  high  purity.  Mechanism  studies  showed  that  the
PbBr2-ligand  intermediates,  which  exhibited  lamellar  structures,
served  as  anisotropic  templates  directing  the  growth  of  CsPbBr3
NWs [75].  Consistent with the proposed NW growth mechanism,
the authors showed that the PbBr2-ligand intermediates with larger
d-spacings  tended  to  produce  CsPbBr3 nanocubes,  while
intermediates  with  smaller d-spacings  favored  the  formation  of
ultrathin NWs [75].

Besides  synthesizing  ultrathin  CsPbBr3 NWs  through  post-
synthetic  transformation  processes,  post-synthetic  halide  exchange
reactions were commonly used to produce ultrathin CsPbX3 NWs
containing Cl− or I− ions by introducing HX or MX2 (M = Pb or Zn,
X  =  Cl  or  I)  precursors  to  the  pre-synthesized  CsPbBr3 NWs
solution [30, 56, 60]. In these cases, continuous blue-shifted and red-
shifted  emission  peaks  can  be  observed  in  Br-to-Cl  and  Br-to-I
anion-exchange  reactions,  respectively  (Fig.  3(d)),  demonstrating
higher  emission  tunability  by  successful  inclusion  of  Cl- and  I-
component to the ultrathin CsPbX3 NWs. 

 

Figure 3    (a)  Schematic  illustration  of  the  evolution  from  CsPbBr3 nanocubes  to  ultrathin  NWs  induced  by  post-synthetic  addition  of  thiourea  aqueous  solution.
Reproduced with permission from Ref. [73], © American Chemical Society 2018. (b) Schematic diagram illustrating the conversion from 0D Cs4PbBr6 perovskite NCs to
either  ultrathin  CsPbBr3 NWs  or  CsPbBr3 nanocubes  through  selective  reaction  pathways.  (c)  Evolution  of  structure,  morphology,  and  optical  properties  during  the
reaction illustrated by: (i) optical absorption and PL spectra depicting the transition from Cs4PbBr6 NCs to ultrathin CsPbBr3 NWs over time; Corresponding TEM images
showing the  evolution from (iv)  Cs4PbBr6 NCs  to  (iii)  a  mixture  of  Cs4PbBr6 NCs  and newly  formed CsPbBr3 NWs,  and then (ii)  ultrathin  CsPbBr3 NWs;  (v)  Low-
magnification TEM image of NW bundles; (vi) X-ray diffraction (XRD) patterns of starting material and final product. Reproduced with permission from Ref. [75], ©
American Chemical Society 2021. (d) Photographs of ultrathin CsPbX3 (X = Cl, Br, I) NW solutions produced via anion exchange (top) and their respective normalized
PL spectra (bottom). Reproduced with permission from Ref. [60], © American Chemical Society 2019.
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2.4    Template-assisted method
Template-based  space-confined  growth  method  has  garnered
significant  attention  as  an  effective  strategy  for  fabricating  NWs
with  high  crystallinity  and  precisely  controlled  thickness  [76−78].
By utilizing templates with desired nanoscale channels,  researchers
can  precisely  control  the  NC  growth  process,  leading  to  uniform
and high-quality nanostructures [79−81].  This method enables the
formation  of  NWs with  precisely  defined  dimensions,  resulting  in
ligand-free MHP NWs that typically exhibit superior structural and
property stabilities compared to colloidally synthesized MHP NWs
[82, 83].

In 2016, the Kovalenko group utilized mesoporous silica (meso-
SiO2) matrices as templates to synthesize elongated perovskite NCs
with  sizes  falling  within  the  strongly  quantum-confined  regime
[84].  High-concentration  CsX  and  PbX2 precursor  salt  solutions
were  infiltrated  into  the  pores  of  meso-SiO2 templates,  which
featured  hexagonally  ordered  1D  channels  with  varying  pore
diameters  (2.5–7  nm),  followed  by  vacuum  drying.  The  resulting
ultrathin,  elongated  MHP  NCs,  confined  within  the  meso-SiO2
matrix,  exhibited  an  ordered  mesoporous  structure  composed  of
1D  channels  resembling  NW  structures.  The  bright  emissions  of
these template-synthesized NCs could be finely tuned by pore-size-
dependent  quantum  size  effects  as  well  as  chemical  compositions
[84].  In  2019,  Zhang  et  al.  developed  a  self-assembled  templating
process  to  fabricate  ultrathin  CsPbBr3 NWs  [85].  Confined
nanochannels  were  formed  by  well  aligned  polymethyl
methacrylate (PMMA) fibers through an electrospinning process as
shown in Fig.  4(a).  These nanochannels  acted as  templates  for  the
formation  of  NWs  from  the  infiltrated  precursor  solutions  [85].
After the solvent (DMF) evaporated, ultrathin CsPbBr3 NWs with a
diameter of  ~ 2 nm were obtained within the electrospun PMMA
fibers.  In  addition,  CsPbBr3 nanobelts  and  nanocubes  can  also  be
produced  by  extending  the  stirring  time  of  the  initial  DMF
precursor  solution  (Figs.  4(b)−4(e)).  In  2022,  Fan  group  used
nanoporous  anodic  aluminum  oxide  (AAO)  as  templates  to
fabricate  ultrathin  CsPbBr3 NWs  [86].  AAO  templates  with  an
initial pore diameter size of around 6.6 nm, were fabricated through
an anodic  anodization  process  at  a  low voltage.  Subsequent  Al2O3

coating  via  atomic  layer  deposition  (ALD)  reduced  the  pore  size
from  ~  6  to  2.8  nm  (Fig.  4(f))  [86].  Using  this  AAO  template,
ultrathin  CsPbBr3 NWs  were  fabricated  by  filling  the  nanopores
through  a  low-pressure  closed  space  sublimation  process.  More
recently, Yang group in 2023 developed a system that utilized single-
walled  carbon  nanotubes  (with  a  diameter  of  1.2–1.4  nm)  as
templates to produce single-unit-cell thick Cs-Pb-I NWs, which can
be suspended on monolayer graphene TEM grids [87]. Due to the
stability of  graphene and carbon nanotubes against  heat  and polar
solvents,  they  were  able  to  remove  the  perovskite  crystals  formed
outside  the  templates  using  polar  solvents  and  prevent  carbon
contaminations  by  annealing  at  high  temperatures  [87].  This
approach  enabled  direct in  situ observation  of  atomic  activities
inside  the  MHP  framework,  which  had  only  been  accessible
through theoretical calculations prior to the work [88, 89]. 

2.5    Solvothermal method
Solvothermal  method has  also  been  employed  for  the  synthesis  of
perovskite  NWs  with  high  crystallinity  and  morphological
uniformity  [90−93].  This  technique  involves  dissolving  precursor
materials  in  a  solvent  at  elevated  temperatures  and  pressures,
creating  an  environment  conducive  to  controlled  crystal  growth
[94−96].  In  2017,  Chen  et  al.  applied  this  method  to  successfully
obtain  ultrathin  CsPbBr3 NWs  with  a  morphological  purity  [91].
Specifically,  the  synthesis  of  ultrathin  NWs  was  realized  by  pre-
dissolving the Cs and Pb precursors with ligands (i.e., oleic acid and
oleylamine)  inside  a  glovebox  and  then  transferred  into  the
autoclave. The reaction was carried out at 160 °C and the resultant
CsPbBr3 NWs  exhibited  a  thin  diameter  of  2.6  nm  with  an
absorption peak at 445 nm [91]. 

3    Current  understanding  of  formation
mechanisms for ultrathin MHP NWs
MHP NCs possess highly ionic nature with relatively low formation
energies,  which  leads  to  rapid  nucleation  and  growth  kinetics
typically within a timescale of sub-second to a few seconds [97, 98].
This makes in situ monitoring of the nucleation and growth events

 

Figure 4    (a)  Schematic illustration of  the setup for fabrication of  ultrathin CsPbBr3 NWs by electrospinning.  (b) Synthesis  of  CsPbBr3 nanostructures within the self-
assembled nanoscale templates of electrospun PMMA fibers using the DMF solutions stirred for different times. (c) Optical absorption (dashed line) and PL spectra (solid
line) of CsPbBr3 products prepared. (d) and (e) TEM images of ultrathin CsPbBr3 NWs after removing PMMA. Reproduced with permission from Ref. [85], © Elsevier
Ltd. 2019. (f) Schematic process flow of the AAO template-assisted synthesis of ultrathin CsPbBr3 NWs array. Reproduced with permission from Ref. [86], © American
Chemical Society 2022.
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to  understand  the  formation  mechanism  of  ultrathin  MHP  NWs
quite  challenging  [97, 99].  Despite  this  challenge,  researchers  have
made  some  important  progresses  in  uncovering  key  factors  that
influence the synthesis of ultrathin MHP NWs to help understand
their formation mechanisms. 

3.1    Seed-mediated growth
Chen et al. discovered that pre-dissolving the precursors was crucial
for  successful  preparations  of  MHP  NWs,  otherwise,  MHP
nanocubes  would  form  instead  [91].  They  employed  a  seed-
mediated  growth  mechanism  to  explain  this  phenomenon
(Fig.  5(a)).  When  the  Cs  and  Pb  precursors  are  directly  heated
without  pre-dissolution,  the  gradual  dissolving  process  limits  the
concentration  of  effective  monomers  in  solution  at  any  given
reaction  stage.  Consequently,  a  relatively  low  number  of  small
nuclei seeds formed in solution, which then grow into nanocubes, a

morphology  driven  by  thermodynamic  stability  with  a  limited
monomer  supply  rate  during  the  course  of  the  particle  formation
reaction [91]. In contrast,  when the precursors are pre-dissolved, a
high  concentration  of  active  monomer  ions  becomes  instantly
available  upon  mixing  the  Cs  and  Pb  precursors,  leading  to  the
rapid formation of a large number of small nuclei seeds [91]. Under
this  condition,  ultrathin  NWs  merge  through  a  seed-mediated
anisotropic  growth  process  caused  by  assembly  and  orientate
attachment  of  the  initial  seed  nuclei,  yielding  MHP  NWs  with
enlarged aspect ratios [91, 100]. 

3.2    Oriented attachment
Besides the ripening process described by the LaMer growth model
[101], oriented attachment has emerged as another key mechanism
for NW growth [102−104].  In this  process,  smaller  NCs align and
fuse  along  specific  crystallographic  orientations  to  form  larger
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Figure 5    (a) The proposed seed-mediated growth process of CsPbBr3 nanocubes and ultrathin NWs formation without and with precursor predissolving. Reproduced
with permission from Ref. [91], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2017. (b) TEM/HRTEM images of CsPbBr3 ultrathin NRs and NWs: (i) and (iii)
the NRs formed by dispersing NWs in cyclohexane with increasing concentrations,  (ii)  and (iv) the NWs formed by aging from NRs. (c) Schematic illustration of the
transformations between CsPbBr3 NRs and NWs. Reproduced with permission from Ref. [49], © Wiley-VCH GmbH 2021.(d) Small-angle XRD patterns of the PbBr2-
ligand intermediates (left). The correlation between d-spacing of the PbBr2-ligand intermediates and the morphology of the transformation product from Cs4PbBr6 NCs.
(e) Schematic illustration of the template-based formation mechanism of CsPbBr3 NWs or nanocubes. Reproduced with permission from Ref. [75], © American Chemical
Society 2021.
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nanostructures like NWs to minimize the exposure of high-energy
crystal  facets  [105−107].  Previous  reports  have  demonstrated  the
transformation of  MHP materials  from 0D NCs to  1D NWs over
time [102]. Kostopoulou et al. observed short, bullet-like MHP NRs
from  the  quenched  aliquots  in  the  LARP  synthesis,  sharing  the
same  growth  direction  with  the  longer,  ultrathin  perovskite  NWs
finally produced [59]. They attributed the formation and thickening
of  ultrathin  NWs  to  the  oriented  attachment  mechanism  [59].
Specifically,  individual  ultrathin NRs align and fuse together along
anisotropic  directions,  e.g.,  [ ]  crystal  direction,  forming  longer,
single-crystalline  ultrathin  NWs  [59].  Supporting  this  mechanism,
Wang  et  al.  examined  the  transformation  between  ultrathin  NWs
and NRs [49]. They found that ultrathin CsPbBr3 NWs prepared in
cyclohexane  became  unstable  upon  dilution,  which  would
decompose  and  transform into  NRs.  The  resulting  NRs  possessed
higher aspect ratios when the initial NW concentration was higher
[49].  They  explained  this  wire-to-rod  transformation  by  the
desorption of ligands and extra precursor ions, which stabilized the
NWs. This departure of stabilizing agents led to the breakdown of
the NW structure post-dilution [49, 108]. The subsequent increases
in  the  length  and  thickness  of  produced  NRs  over  time  can  be
explained by the Ostwald ripening mechanism [101]. Interestingly,
when the collected precipitates of CsPbBr3 NRs were redispersed in
the  supernatant  solution,  they  transformed  back  into  NWs  after
aging for four days. The resultant NW thickness matched the initial
NR  diameter  (Fig.  5(b)).  The  authors  showed  that  the  NRs  that
were  either  too  thick  or  too  thin  failed  to  connect  with  others,
supporting their hypothesis that NW formation occurs through end-
to-end  self-assembly  and  oriented  attachment  of  NRs  (Fig.  5(c))
[49]. 

3.3    Ligand regulated formation
It  is  widely  recognized  that  ligands  are  crucial  in  directing  the
morphology  of  perovskite  NCs,  as  they  strongly  influence
interactions  among  the  precursors  and  intermediate  structures
during  synthesis  [109−112].  Given  the  limited  solubility  of  PbBr2
precursor  in  nonpolar  solvents  (e.g.,  hexane  and  toluene),  Chen
group  hypothesized  that  the  formation  of  ultrathin  NWs  can  be
regulated by ligands that  govern the configuration of  PbBr2-ligand
intermediates  [75].  To  explore  this,  they  applied  various  ligand
combinations  to  form  different  PbBr2-ligand  intermediates  in
toluene, each displaying a lamellar structure as evidenced by a set of
{00l}  diffraction  peaks  in  their  XRD  patterns  (Fig.  5(d)).  They
discovered  that  ligand  combinations  producing  PbBr2-ligand
intermediates  with  smaller d-spacings  promoted  the  exclusive
formation  of  ultrathin  CsPbBr3 NWs  [75].  They  further  proposed
that  these  lamellar  PbBr2-ligand  intermediates  not  only  serve  as  a
source of precursor, but also act as an anisotropic template guiding
the  NW  growth.  Supporting  this  hypothesis,  they  replaced  the
linear  alkyl-amine  ligands  with  a  branched  trioctylamine  ligand,
which  did  not  form layered  intermediate  configurations,  and  only
CsPbBr3 nanocubes  emerged  as  the  sole  final  product  (Fig.  5(e))
[75]. 

4    Characterizations,  properties,  and applications
of ultrathin MHP NWs
 

4.1    Morphological and crystal structure determinations
Due  to  their  small  diameter,  low  image  contrast,  and  instability

11̄0

under electron beam illumination,  it  could be quite  challenging to
directly image ultrathin MHP NWs using conventional TEM [113].
To overcome the challenge, Imran et al. in 2016 employed a direct-
electron  detection  camera  to  replace  the  conventional  charge-
coupled device  (CCD) camera in their  high resolution (HR)-TEM
measurements  [47].  They  found  that  the  ultrathin  CsPbBr3 NWs
they synthesized were confined along the [110] crystal direction and
elongated  along  the  [ ]  direction  (Fig.  6(a)).  Differently,  thicker
CsPbBr3 NWs (thickness of ~ 10 nm) grew along the [001] crystal
axis  while  being  constricted  along  the  [110]  crystal  direction  (Fig.
6(a))  [47, 114].  They  explained  this  difference  by  the  inhibited
growth along the [001] direction after addition of short chain acids
during  NW  synthesis  [25, 114].  Besides  TEM,  the  authors  also
applied atomic force microscopy (AFM) technique to visualize their
ultrathin  MHP  NWs  [47].  By  tracing  the  cross-section  profile,
Imran  et  al.  found  that  the  ultrathin  CsPbBr3 NWs  exhibited  a
rectangular cross-section, rather than a cylindrical one [47].

In  the  same  year,  Zhang  et  al.  used  aberration-corrected  HR-
TEM  (AC-HR-TEM)  to  enhance  the  image  resolution  and
minimize the beam damage by limiting the applied electron doses
[30]. In this way, the spherical aberration, chromatic aberration and
astigmatism  caused  by  electric  lens  can  be  largely  compensated
[115, 116].  To  prevent  the  beam  damage  and  achieve  atomic-
resolution  imaging  of  ultrathin  perovskite  NWs,  Yang  group
recently  applied  single-walled  carbon  nanotubes  to  confine
individual  Cs-Pb-I  NWs  with  even  single-unit-cell  thickness  [87].
Since  both  the  graphene  substrate  and  carbon  nanotubes  can
provide  NWs  from  heating,  irradiation,  and  moisture,  they  were
able  to  use  conventional  TEM  and  scanning  TEM  (STEM)
techniques  to  directly  visualize  the  atomic  structure  of  individual
ultrathin  NWs  without  degradation  (Fig.  6(b)).  Unlike  bulkier
CsPbI3 crystals,  which  commonly  exhibit  an  edge-shared  non-
perovskite  δ-phase  structure  [117],  the  atomically  thin  NW
confined in a nanotube displayed a stable corner-shared perovskite
phase (Fig. 6(b)). The observed co-existence of α-phase and δ-phase
in thicker NWs indicated that geometrical confinement could help
stabilize the photoactive α-phase perovskite [87, 118]. However, the
lead-iodide  octahedral  units  of  these  NWs  were  largely  distorted,
composed  of  a  contracted  cesium  framework  and  an  expanded
iodine framework (Fig. 6(c)) [87]. Interestingly, they found that the
orientation of each octahedral units varied under each STEM scan
(Fig.  6(c)),  which  could  result  from  their  intrinsic  structure
instability  and/or  NW  rotation  [119].  To  gain  further  dynamical
insights,  they  applied  AC-HR-TEM  along  with  a  high-efficiency
direct-electron detection camera with a wide range of electron dose
rates  to  achieve  atomic  resolution and high  frame rates,  capturing
transient structural dynamics in situ [87]. This setup allowed them
to  trace  each  atom  column  over  time  using  atom-tracing
algorithms, enabling them to reconstruct the dynamic behaviors of
MHP NWs at unprecedented resolution.

To determine the crystallographic information of ultrathin MHP
NWs,  XRD patterns  are  typically  measured and analyzed [49, 59].
These  ultrathin  MHP  NWs  exhibit  non-uniform  diffraction  peak
broadening due to their anisotropic 1D morphology [120, 121]. For
example, in the case of CsPbBr3 NWs with a cubic phase, the (100)
diffraction  peak  is  significantly  narrower  than  other  diffraction
peaks due to the large crystallite size only along the wire axial [001]
direction  [63].  Moreover,  the  diffraction  peaks  of  ultrathin  MHP
NWs often shift to smaller angles (i.e., larger d-spacings) compared
to  their  standard  patterns,  signifying  substantial  lattice  expansions
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[75].  This  lattice  expansion  occurs  because  the  high  surface-to-
volume ration in these NWs causes a large fraction of atoms to be
located on the NW surface, causing surface relaxation to minimize
total  energy  [122].  In  addition,  due  to  their  strong  inter-NW  van
der  Waals  interactions,  ultrathin  MHP  NWs  tend  to  bundle
together  upon  solvent  evaporation,  potentially  influencing  XRD
measurements  by  promoting specific  orientations  on the  substrate
[49, 120].  For instance,  Yang et al.  demonstrated that the CsPbBr3
NWs showed exclusively a set of {h00} peaks in the measured XRD
pattern, indicating a high degree of NW alignment on the substrate
[75]. These factors may complicate the unambiguous determination
of  the  crystal  structure  for  ultrathin  MHP  NWs.  Therefore,
complementary  techniques,  such  as  TEM,  are  often  necessary  to
accurately  resolve  the  crystal  phase  of  synthesized  ultrathin  MHP
NWs  [123].  Selected  area  electron  diffraction  (SAED)
measurements  can  provide  localized  diffraction  information,
offering  valuable  support  for  phase  identification,  particularly  in
NW samples with particle shape irregularities [124, 125].

Small-angle  X-ray  scattering  (SAXS)  is  another  powerful
technique for NW characterization, offering insights into their size,

shape,  orientation,  and  structural  uniformity  [126].  Zhang  et  al.
analyzed  SAXS  patterns  for  ultrathin  CsPbBr3 NWs,  revealing  a
prominent  diffraction  ring  that  reflected  their  periodic  packing
along the radial direction [30]. The calculated d-spacing (4.63 nm)
corresponded to the NW diameter (~ 2.2 nm) with the addition of
two  layers  of  surfactants.  Furthermore,  the  narrow  width  of  the
diffraction  peak  indicated  excellent  diameter  uniformity  in  the
synthesized ultrathin NWs [30]. 

4.2    Unique  optical,  electrical  and  optoelectronic
properties of ultrathin MHP NWs towards applications
One unique property of ultrathin MHP NWs, compared to thicker
NWs  or  NRs,  is  the  presence  of  strong  anisotropic  quantum
confinement effect, which is reflected by optical absorbance and PL
spectra  of  these  ultrathin  NWs.  As  the  NW  diameter  decreases,
quantum confinement intensifies, enlarging the material’s bandgap
and  resulting  in  significant  blueshifts  in  both  excitonic  absorption
and  PL  peaks  [63, 85, 127].  For  example,  the  reported  ultrathin
CsPbBr3 NWs  exhibited  tunable  first  excitonic  absorption  peak
position from 413 to 484 nm (Table 1), significantly bluer than the

 

Figure 6    (a) Wide field of view (FOV) HR-TEM images and schematic crystallographic models of synthesized CsPbBr3 NWs with widths of 10 nm (top row), 5.1 nm
(middle  row)  and 3.4  nm (bottom row).  Reproduced with  permission from Ref.  [47],  © American Chemical  Society  2016.  (b)  Schematic  model  of  1D Cs-Pb-I  NWs
confined in single-walled carbon nanotubes (top). ADF-STEM characterization of the static structure of atomically thin 1D Cs-Pb-I NWs, viewed along [100], [110], [011]
directions,  and structural  change  of  the  same NW during  different  scans.  (c)  Transient  structural  distortion  of  individual  Pb-I  octahedral  units,  illustrated  by  atomic-
resolution TEM images  of  Cs-Pb-I  NW segments,  real-time trajectories  of  cesium (blue),  lead  (red)  and iodine  (orange)  atoms,  and unit-cell  framework distortion of
cesium and iodine decomposed based on seven symmetry modes of a square. Reproduced with permission from Ref. [87], © American Chemical Society 2023.
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typical  absorption  peak  position  of  their  nanocube  or  bulk  crystal
counterparts (> 500 nm) [4, 128]. This strong anisotropic quantum
confinement  effect  may  contribute  to  the  high  PLQYs  of  MHP
NWs, despite their extensive exposed surfaces and lattice distortion
[129].  The  highest  reported  PLQY  for  ultrathin  CsPbBr3 NWs
reached 77%,  with  a  cyan emission peak at  496 nm,  accompanied
by  a  shoulder  peak  at  500  nm,  indicating  possible  impurities  or
aggregations  in  the  sample  [47].  However,  as  the  NW  diameter
further  decreases,  the  PLQY  often  drops  significantly  due  to
increased surface defects as evidenced by the shortened PL lifetimes,
indicating  an  increase  in  nonradiative  decay  processes  in  thinner
NWs [47, 86, 130, 131]. Additionally, optical properties of ultrathin
MHP NWs can be tuned by changing the halide composition from
Cl to Br to I, resulting in a PL peak shift from ultraviolet to red [30,
56, 60]. This trend is analogous to that observed in MHP perovskite
nanocubes  [8, 71].  Besides  optical  property  characterizations,  in
2020,  Stern  et  al.  advanced  the  study  of  ultrathin  MHP  NWs  by
applying  conductive  AFM  technique  to  measure  the  electrical
conductivity of individual ultrathin CsPbBr3 and CsPbBrxI1−x NWs
[132].  They  found  that  for  ultrathin  CsPbBr3 NWs,  compared  to
the  results  gained  from  mixed-halide  NWs,  the  measured I–V
curves  exhibited  higher  currents  and  a  steeper  curve  slope,
indicating  the  presence  of  deeper  trap-states  after  halide  mixing.
Additionally,  the  average  rise-voltage  for  pure-bromide  NWs  was
also  significantly  lower,  suggesting  more  crystalline  defects  in
CsPbBrxI1−x NWs.  Interestingly,  the  NW  conductivity  increased
after  the  addition  of  iodide  ions  due  to  its  larger  atomic  diameter
and  lower  electron  affinity  [132].  Their  study  provided  the  first
electrical  characterizations  of  single  ultrathin  NWs  and  offered
insights  into  the  effects  of  anion  exchange  within  ultrathin  MHP
NWs.

Building  on  these  unique  electrical  and  optical  properties,
ultrathin MHP NWs have shown promise in LED applications [38,
133, 134].  Fu  et  al.,  for  instance,  fabricated  blue  perovskite  LEDs
(PeLEDs) using ultrathin CsPbBr3 NW arrays synthesized through
an  AAO  template-based  method  [86].  The  current
density–voltage–luminance  (J–V–L)  curves  for  the  resulting
PeLEDs revealed that turn-on voltages increased with enlarging the
bandgap  of  the  NWs  (Fig.  7(a)),  while  working  current  density
decreased at  the same driving voltage [86].  This phenomenon was
attributed to hindered electron tunneling caused by the large Al2O3
barrier  and  lower  carrier  density  in  the  ultrathin  NWs [135, 136].
The  maximum  luminance  achieved  by  these  NW-based  PeLEDs
reached  96  cd/m2 (cyan),  47  cd/m2 (sky-blue),  13  cd/m2 (blue),
operating at 6.5, 6.8, and 7 V, with corresponding external quantum
efficiencies (EQEs) of 7.1%, 3.2%, 0.9%, respectively (Fig. 7(b)). The
reduced  performances  in  the  latter  two  devices  were  attributed  to
increased surface defects  caused by a  geometry mismatch between
circular pores and the cubic phase perovskites of the applied ultrathin
NWs [86].

Due  to  their  anisotropic  geometry  and  quantum  confinement
effects,  ultrathin  MHP  NWs  also  exhibit  unique  polarized  optical
and  optoelectronic  properties  [49, 137, 138].  When  excited  with
linearly polarized light, NW solutions usually display a polarized PL
behavior  [131, 139−141].  Leveraging  this  property,  Wang  et  al.
fabricated a linearly polarized light detector using ultrathin CsPbBr3
NWs  through  a  brushing-assembled  film  method  (Fig.  7(c))  [49].
The device  showed its  highest  absorption coefficient  and emission
ratio  when the electric  field  of  the  light  was  aligned parallel  to  the
NW’s  axial  direction  (Fig.  7(d)),  contrasting  with  the  lowest  value
when  aligned  radially  [49].  Upon  excitation,  the  photocurrent

 

Table 1    Summary table of reported synthesis of ultrathin CsPbBr3 NWs

Crystal phase Abs. peak
(nm)

PL peak
(nm)

PL FWHM
(nm)

Average PL
lifetime (ns) PLQY (%) Synthetic method Application Average

diameter (nm) Reference(s)

Orthorhombic 484 496 16 4.9 77 Hot injection 5.1 ± 0.5 [47]
Orthorhombic 472 481, 491 18 2.8 40 Hot injection 4.1 ± 0.7 [47]
Orthorhombic 455, 467 473, 483 33 2.5 30 Hot injection 3.4 ± 0.5 [47]

442 465 26 30 Hot injection 2.2 ± 0.2 [30]
Orthorhombic 445 460 Solvothermal 2.6 [91]

Cubic 420 430 < 1 RT colloidal synthesis 1.5 ± 0.5 [63]
Cubic 444 465 21.13 Post-synthetic heat treatment 3.1 ± 0.6 [63]

Orthorhombic 427 445 23.7 LARP [59]
Orthorhombic 441 454 22.6 LARP 2.6 [59]
Orthorhombic 454 462 16.2 LARP 6.1 [59]
Orthorhombic ~ 450 475 LARP ~ 3 [56]

433 447 27 60 Post-synthetic treatment 2.1 [73]
Orthorhombic 413, 448 509 60 LARP 3.8 ± 0.1 [60]
Orthorhombic 413, 448 498 47 LARP 3.8 ± 0.1 [60]

433, 457 Template-assembled 2 [85]
426 432 ~ 12 7.1 15.2 Post-synthetic treatment 2.5 ± 0.6 [75]

Cubic ~ 450 ~ 460 RT colloidal synthesis Linear polarized
light detector 2–3 [49]

Cubic 467 1.4 4 Template-assembled PeLED 2.9 [86]
Cubic 481 1.967 16 Template-assembled PeLED 3.5 [86]
Cubic 492 3.34 27 Template-assembled PeLED 4.3 [86]
Cubic ~ 425 ~ 450 LARP PSCs 2.5 ± 0.5 [147]
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increased instantly, then decreased as charge carriers were captured
by  trap  states  in  the  NWs,  eventually  stabilized  after  all  these  trap
states  were  filled  (Fig.  7(e))  [49].  At  the “light-off” edge,  the
photocurrent  exhibited  a  slight  increase  before  dropping  back
instantly  to  a  stable  dark  current  (Fig.  7(e)),  indicating  a  quick
release  of  the  captured  charge  carriers.  This  device  possessed  a
response rise time of 0.36 s and a fall time of 0.24 s [49]. While the
direction  of  polarized  excitation  light  only  influenced  the
photocurrent  intensity,  the  response  time  remained  constant.
Although  the  initial  photocurrent  signal  was  lower  than  other
polarization-sensitive  photodetectors,  this  method  facilitates  easy
casting  of  NWs  onto  various  substrates,  making  it  ideal  for
fabricating  flexible  optoelectronic  devices  [49].  Furthermore,
integrating  these  NWs  with  other  hybrid  nanomaterials,  such  as
ZnO  NWs,  silica  NWs,  and  polymers,  could  potentially  enhance
sensitivity  and  broaden  the  responsive  wavelength  range  of
ultrathin MHP NW-based photodetector devices [142−148].

Moreover,  the  superior  optoelectronic  properties  of  MHP
materials  make  them  highly  promising  for  solar  cell  applications
[149−151].  For  thin-film  perovskite  solar  cells  (PSCs),  a  planar
heterojunction  typically  forms  at  the  interface  between  the  hole-
transporting layer (HTL) and the perovskite layer, which can create
energy  level  mismatches  that  result  in  considerable  energy  loss
[152−154]. In 2019, Zhang et al. demonstrated the incorporation of
ultrathin  CsPbBr3 NWs  into  a  methylammonium  lead  triiodide
(MAPbI3)  perovskite  thin-film PSC (Fig.  7(f))  [147].  It  was shown

that  these  incorporated  NWs  can  modify  the  surface  electronic
states  of  the  MAPbI3 perovskite  thin  film  by  forming  a
compositionally  graded  heterojunction  at  the  perovskite-HTL
interface. Furthermore, the ultrathin NWs also acted as a “grating”
to  enhance  light  harvesting  and  energy  transfer  at  the  interface.
Importantly,  the  NW  morphology  was  found  to  be  the  key
parameter to achieve a laterally uniform film surface,  as evidenced
by  surface-potential  mappings  (Fig.  7(g)).  This  NW incorporation
lead to an increase in the valence band maximum and boosted the
device  open-circuit  voltage  (VOC)  from  1.04  to  1.12  V—a  much
larger  improvement  than  the  0.01  V  increase  observed  with
CsPbBr3 perovskite  nanocube  incorporation  (Figs.  7(h) and 7(i))
[147].  Consequently,  the power conversion efficiency (PCE) of the
device  increased  from  17.42%  to  20.18%  (Figs.  7(h) and 7(i)),
showcasing  a  promising  strategy  for  further  improving  PSC
performance. 

5    Summary and perspectives
In this review, we provide an overview of the advancements in the
synthesis,  characterization, and properties of ultrathin MHP NWs.
Adding to the advantages  of  MHP materials,  the high aspect  ratio
and  anisotropic  quantum  confinement  effects  of  ultrathin
perovskite NWs make this special category of nanomaterials highly
promising  for  both  fundamental  research  and  next-generation
technological applications. However, such excitement has been held
because  several  critical  research  areas  remain  underexplored,

 

Figure 7    (a) PL spectra of CsPbBr3 QW arrays with different thicknesses. (b) EQE curves as a function of driving voltage for the QW array based PeLEDs. Reproduced
with permission from Ref. [86], © American Chemical Society 2022. (c) The interdigital electrode to measure polarized optoelectronic properties (left). SEM image of the
assembled ultrathin CsPbBr3 NW film prepared by brushing (middle) and corresponding PL image (right). (d) The polarized absorption intensities. (e) The performance
of ultrathin CsPbBr3 NW film-based polarization-sensitive photodetector.  Reproduced with permission from Ref.  [49],  © Wiley-VCH GmbH 2021. (f)  Cross-sectional
SEM image of the PSC using ultrathin CsPbBr3 NW incorporated MAPbI3 thin film. (g) The surface potential  variation obtained from kelvin-probe force microscopy
(KPFM) surface potential mappings of the MAPbI3 thin films without NC (w/o), with CsPbBr3 nanocube, and with ultrathin CsPbBr3 NW incorporation. (h) J–V curves
(reverse scan) and (i) PCE statistics of the corresponding PSCs. Reproduced with permission from Ref. [147], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
2019.
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despite  the  exciting  progress  made  in  the  field.  Here,  we  outline
several critical future directions for advancing ultrathin MHP NWs
toward realization of their full potential in diverse applications. 

5.1    Controlling  NW  thickness  at  the  atomic  level
precision
Achieving  precise  control  over  the  diameter  of  ultrathin  NWs  is
crucial, as their optical and electronic properties are highly sensitive
to  slight  variations  in  size,  particularly  in  the  quantum-confined
regime.  Existing  synthesis  methods,  while  effective  in  producing  a
wide  range  of  NW  sizes,  often  result  in  inconsistencies,  with
discrepancies between NW sizes as observed through TEM images
and  their  corresponding  absorption  peaks  (Table  1).  Addressing
this  challenge  requires  novel  synthesis  strategies  capable  of
achieving atomic-level  precision in  controlling  NW diameters  and
maintaining  uniformity  across  large  batches.  By  refining  the
synthesis  process,  researchers  can  better  harness  and  precisely
control  the  optical  and  optoelectronic  properties  in  NWs  for
applications on demand. 

5.2    Understanding  growth  kinetics  and  formation
mechanisms
Despite  advancements  in  ultrathin  NW  synthesis,  the  underlying
growth  mechanisms  remain  insufficiently  understood.  Unlike  the
synthesis of conventional semiconductor NCs with a more covalent
bond character,  the ionic nature of perovskites leads to their rapid
formation,  making  it  difficult  to  monitor  nucleation  and  growth
stages,  which  are  key  to  controlling  their  final  structure  and
properties.  A  clearer  understanding  of  the  kinetic  processes
governing the growth of ultrathin NWs will be critical for achieving
consistent  results  and  developing  methods  for  fine-tuning  their
properties.  Such  studies  can  be  possibly  enabled  by in  situ
monitoring  tools  such  as  electron  microscopy,  time-resolved
spectroscopy, and X-ray scattering techniques [97, 155−159]. These
mechanistic  studies  should  focus  on  disentangling  the  factors  that
influence NW growth, such as temperature, ligand types, precursor
composition and concentration, and solvent environment. By better
understanding  these  processes,  researchers  could  unlock  more
reliable and scalable production of NWs with finely tuned property
characteristics. 

5.3    Improving stability and environmental resistance
The thermodynamically unfavored morphology of NWs, adding to
the  intrinsic  instability  of  perovskites,  particularly  under
environmental stressors such as moisture, oxygen, and light, poses a
significant  barrier  to  the  widespread  use  of  ultrathin  NWs  in
practical  applications  [48, 49, 160].  Research  efforts  are  needed  to
focus  on  developing  robust  passivation  techniques,  such  as  ligand
engineering, inorganic encapsulation, or core–shell  heterostructure
formation, to shield NWs from environmental degradation. In this
context, surface modification methods, that have shown promise in
enhancing the  stability  of  other  types  of  perovskite  nanostructures
[161−165],  should  be  adapted  and  specifically  optimized  for
ultrathin  NWs.  In  addition,  novel  and  more  effective  passivation
strategies should be anticipated upon accumulating knowledge and
understandings  of  the  MHP  NWs  and  perovskite  materials  as
general in the field. The goal should be set to achieve ultrathin NWs
that  maintain  their  high  performance  over  sufficient  periods,
making them viable for real-life applications such as solar cells and

displays under desired working environments. 

5.4    Expanding  compositional  space  to  nontoxic
alternatives
The  demand  for  more  environmentally  friendly  materials  has
pushed researchers to explore alternatives to lead-based perovskites
[19, 166−168].  Although  lead-halide  perovskites  offer  outstanding
optoelectronic properties, their toxicity presents environmental and
health  concerns.  As  a  result,  there  is  growing  interest  in  lead-free
perovskite  nanomaterials,  including  tin-,  copper-,  bismuth-,  and
antimony-based systems [23, 24, 81, 169−178]. It is well-known that
these  lead-free  perovskite  and  perovskite-analogue  nanomaterials
can  offer  unique  properties,  such  as  tunable  bandgaps  and  band
structures,  higher  stability,  along  with  largely  reduced  toxicity,
making  them  promising  candidates  for  future  applications.  Along
the  line,  expanding  the  family  of  ultrathin  perovskite  NWs  to
include lead-free options should stand as another research focus in
the  field.  This  will  not  only  address  the  lead-induced  health  and
environmental  concerns,  but also open the door to the creation of
new  materials,  for  example,  alloyed  and/or  heterostructure  NWs
with  even  wider  and  more  precise  tunability  in  both  morphology
and  properties.  These  new  materials  could  find  applications  in
diverse  fields  such  as  catalysis,  sensing,  and  energy  storage,  in
addition to optoelectronics. 

5.5    Exploring unique properties of ultrathin MHP NWs
Ultrathin MHP NWs exhibit distinctive properties that differentiate
them  from  their  bulk  or  thicker  counterparts,  yet  many  of  these
remain  underexplored  due  to  their  current  poor  stability.  In
particular, mechanical properties, such as flexibility, tensile strength
and fracture behavior, are critical for applications of NWs in flexible
and  wearable  devices,  as  well  as  their  integration  into  mechanical
and optoelectronic systems [179−181]. However, these properties of
ultrathin  MHP  NWs  have  received  limited  attention  to  date.
Understanding  their  elasticity  index,  strength  index  and  plasticity
index remains elusive.  Bridging this  knowledge gap is  essential  for
evaluating the mechanical robustness and deformation behaviors of
ultrathin MHP NWs,  thereby enabling their  practical  applications.
In addition, the nonlinear optical properties of ultrathin NWs hold
significant  promise  [137, 182−184].  Phenomena  such  as  second-
harmonic  generation  and  multiphoton  absorption/emission  might
be  enhanced  by  the  quantum  confinement  effects  present  in
ultrathin  geometries  [185].  While  thicker  perovskite  NWs  have
demonstrated  nonlinear  behaviors,  ultrathin  MHP NWs are  likely
to  exhibit  novel  or  amplified  effects,  expanding  their  potential  for
photonic  devices,  optical  signal  processing,  and  imaging
applications  [186, 187].  Moreover,  lasing  properties  of  ultrathin
MHP  NWs  remain  largely  unexplored,  with  thicker  counterparts
receiving  the  primary  focus  [26, 188].  Ultrathin  NWs  could
potentially  enable  low-threshold  lasing,  single-mode  emission,  or
even  tunable  lasing  behaviors  owing  to  their  distinct  optical  and
electronic characteristics [189, 190].

In summary, ultrathin MHP NWs represent an exciting frontier
in nanomaterial  research,  offering unique opportunities for a wide
range  of  applications.  However,  challenges  remain  in  terms  of
precise  synthesis,  mechanism  understanding,  materials’ stability,
and compositional expanding. Addressing these challenges through
innovative  and  dedicated  research  will  unlock  the  full  potential  of
ultrathin  perovskite  NWs,  leading  to  breakthroughs  in  their
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applications  in  optoelectronics,  energy  harvesting,  catalysis,  and
beyond.  By  focusing  on  these  key  research  directions,  it  is  highly
anticipated  that  researchers  can  overcome  current  limitations  and
drive future innovations in this promising field. 
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