

Novel symbionts reveal amoebae as significant hosts for environmental chlamydiae

Fei Liu^{a#}, Laura Walker^{b#}, Jason B. Wolf^c, Christopher R. L. Thompson^d, Tamara S. Haselkorn^e,
Yijing Shi^f, Jijuan Ding^a, Joan E. Strassmann^b, David C. Queller^{b*}, Longfei Shu^{a*}

^aSchool of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China

^bDepartment of Biology, Washington University in St. Louis, St. Louis, Missouri, USA

10 ^cDepartment of Life Sciences Milner Centre for Evolution, University of Bath, Claverton Down, Bath,
11 United Kingdom

12 ^dDepartment of Genetics, Evolution & Environment, University College London, Gower Street,
13 London, United Kingdom

14 ^eDepartment of Biology, University of Central Arkansas, Conway, Arkansas, USA

¹⁵ Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of
¹⁶ Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of
¹⁷ Environment, South China Normal University, Guangzhou, China

***Correspondence**

20 Prof. Longfei Shu (shulf@mail.sysu.edu.cn)

21 School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China

22 Or Prof. David C. Queller (queller@wustl.edu)

23 Department of Biology, Washington University, St. Louis, MO 63130, USA

25 *Competing Interests

26 The authors declare no competing financial interests

27 **Abstract**

28 Chlamydiae represent a diverse group of obligate intracellular bacteria with elusive hosts in
29 environmental settings. This study used one of the largest collections of wild amoebae (*Dictyostelium*
30 *discoideum* and *D. giganteum*, 106 clones) collected over the past two decades to screen for novel
31 environmental chlamydiae. We found that novel environmental chlamydiae are prevalent in two wild
32 *Dictyostelium* species and assembled 42 novel chlamydiae metagenome-assembled genomes (MAGs).
33 The MAGs represent three chlamydiae species previously only reported using 16S sequencing. Their
34 genomes are divergent enough from other species to warrant placing them in two new genera
35 (tentatively called *Ca. Dictychlamydia* sp. LF1, *Ca. Dictychlamydia* sp. LF2, and *Ca. Feichlamydia*
36 *sp.* LF3). In addition, these chlamydiae species show strong host specificity with two *Dictyostelium*
37 amoeba hosts, except one amoeba sample. *Ca. Dictychlamydia* sp. LF1 and *Ca. Feichlamydia* sp. LF3
38 was exclusively observed in *D. discoideum*, while *Ca. Dictychlamydia* sp. LF2 was found only in *D.*
39 *giganteum*. Phylogenetic and comparative genomic analyses suggest that all three chlamydiae are close
40 to arthropod-associated chlamydiae and likely have some intermediate characteristics between
41 previously reported amoeba-associated and vertebrate-associated chlamydiae. This study significantly
42 broadens our understanding of the chlamydial host range and underscores the role of amoebae as vital
43 hosts for environmental chlamydiae.

44

45 **Keywords:** Chlamydiae; Amoeba; *Dictyostelium*; *Rhabdochlamydiaceae*; Symbiosis

46

47

48

49

50

51 **Introduction**

52 Chlamydiae, a group of obligate intracellular bacteria, have been recognized as significant human
53 pathogens for over a century (1). For many years only one clade, composed of many well-known
54 human and animal pathogens, was recognized. However, in recent decades, our understanding of

55 chlamydiae has expanded considerably, revealing a diverse host range and ubiquity in various
56 environments (2-4). Through co-cultivation approaches, researchers have successfully identified
57 chlamydiae in a wide array of eukaryotic hosts, including amoebae, arthropods, and vertebrates (5-7).
58 Additionally, cultivation-independent studies have shown that chlamydiae are prevalent in
59 environmental samples, such as water, soil, and marine sediments, even though their specific hosts
60 often remain unidentified (2-4). Despite their phylogenetic diversity, these chlamydiae are collectively
61 referred to as environmental chlamydiae in order to distinguish them from classical Chlamydiaceae
62 (1). Given that all chlamydiae, including the environmental strains that have been cultured, are strictly
63 intracellular, these findings raise fundamental questions about the unidentified hosts that contribute to
64 the survival, dispersion, and evolution of environmental chlamydiae.

65 Many efforts have been made to identify the hosts of environmental chlamydiae (3). The most
66 educated hypothesis is that amoeba, ubiquitous unicellular eukaryotes found in both terrestrial and
67 aquatic ecosystems (8, 9), serve as the elusive hosts for many environmental chlamydiae. While
68 knowledge of many protist groups remains limited compared to prokaryotic microbes due to the
69 complex phylogenetic relationships of the protists and cultivation challenges, they exhibit remarkable
70 diversity across environments and many are known to harbor symbionts (8, 10-13). Several protist
71 hosts of chlamydiae are already recognized, primarily in the amoebae, including *Acanthamoeba* sp.
72 (14), *Hartmanella* sp. (15), and more recently, the social amoeba *Dictyostelium discoideum* (12, 16).
73 In fact, most chlamydiae are able to survive and replicate in amoeba cells and co-culturing with free-
74 living amoebae has proven an invaluable tool for studying chlamydiae biology (17). It has even been
75 proposed that amoebae are the actual (although unrecognized) hosts of some chlamydiae that are
76 recovered from diverse animal microbiomes (3). Consequently, amoebae, in particular, are plausible
77 hosts for most species of environmental chlamydiae.

78 However, it is important to note that current evidence provides limited support for this hypothesis.
79 First, most environmental chlamydiae have not been isolated from amoebae. For example, the family
80 *Rhabdochlamydiaceae*, one of the largest and most diverse groups of environmental chlamydiae, has
81 been detected across a wide range of environments, including soil, freshwater, sediment, and marine
82 habitats (5). Surprisingly, the only known hosts of *Rhabdochlamydiaceae* are arthropods (5, 18-20),
83 rather than amoebae. Secondly, many identified amoeba-associated chlamydiae, such as

84 *Parachlamydia* and *Neochlamydia*, differ significantly from environmental chlamydiae. These
85 differences include genome size, as *Parachlamydiaceae* genomes are considerably larger than those
86 of the arthropod symbionts of *Rhabdochlamydiaceae* (5) and they occupy phylogenetic branches
87 distinct from environmental chlamydiae, the bulk of which belong to the *Rhabdochlamydiaceae* family
88 (2). Consequently, there is insufficient evidence to support the idea that amoebae are reservoir for
89 environmental chlamydiae. A noteworthy study by Haselkorn *et al.* (12) found that novel chlamydiae
90 are common in *D. discoideum*, potentially forming a sister group to the *Rhabdochlamydiaceae*.
91 However, 16S sequence analysis proved insufficient for species-level identification, and the study
92 could not yield detailed phylogenetic inferences or any chlamydial genomes for further analysis. (21).

93 Based on these studies, we aim to address this knowledge gap. We believe the lack of evidence to
94 support amoebae as reservoir for environmental chlamydiae may be due to technical difficulties with
95 working on amoebae. On the one hand, many environmental amoebae cannot be readily cultivated (11),
96 and very few studies have systematically screened for the presence of chlamydial symbionts on large
97 scales. The majority of amoeba-associated chlamydiae species have been identified from
98 *Acanthamoeba* or related species (22). Therefore, the so-called amoeba-associated chlamydiae may be
99 biased and represent only a small portion of the actual amoeba-associated symbionts. In this study, we
100 used 106 wild amoeba clones based on Haselkorn *et al.* (12), that were possible to be reservoir for
101 novel chlamydiae. These amoebae were collected by the Queller-Strassmann group over the past two
102 decades. Two social amoeba *Dictyostelium* species (*Dictyostelium discoideum* and *D. giganteum*),
103 distantly related to *Acanthamoeba*, were used for this study.

104

105 **Results**

106 **Novel chlamydiae genomes recovered from two wild *Dictyostelium* amoebae**

107 We conducted an in-depth investigation using next-generation sequencing techniques, resulting in
108 the assembly of 122 high-quality metagenome-assembled genomes (MAGs) (Table S1). Notably,
109 among these genomes, 41 were identified as chlamydiae, which confirmed the presence of chlamydiae
110 in *D. discoideum* (12). Subsequent analyses allowed us to categorize these chlamydiae into three
111 distinct species using a 95% average nucleotide identity (ANI) threshold (Figure S1). To further

112 investigate the taxonomy of these chlamydiae, we compiled genomes from a comprehensive set of 160
113 species under *Chlamydiales*, sourced from the Genome Taxonomy Database (GTDB) for rigorous
114 comparative analyses (Table S2). A substantial fraction of these chlamydiae specimens were derived
115 from environmental sources, such as soil, marine and freshwater environments, and were not
116 associated with specific host organisms (Figure 1). Comparing to these known chlamydiae genomes,
117 two of the novel chlamydiae genomes assembled here were classified within the *PALSA-1444* group,
118 belonging to the *Rhabdochlamydiaceae* family. These species were identified as the sister clade to the
119 genus *Rhabdochlamydia*, whose hosts were associated with arthropods (Figure S2), and their relative
120 evolutionary divergence ranged from 91.83% to 91.96%, representing a potential novel genus (23).
121 Therefore, we tentatively named them as *Ca. Dictyochlamydia* sp. LF1 and *Ca. Dictyochlamydia* sp. LF2.
122 The other species represented a previously unidentified genus within the environmental chlamydiae
123 family, referred to as *FEN-1388* (Figure S3). Our analysis revealed that this novel genus displayed a
124 relative evolutionary divergence ranging from approximately 85.50% to 85.53% when compared to
125 reference genomes. Therefore, we tentatively named them as *Ca. Feichlamydia* sp. LF3. Our results
126 confirmed that there were novel chlamydiae within these amoebae samples, and we also assembled
127 their genomes with high quality, that allow us to infer phylogeny and do additional analyses.

128 In the reference genome sets from GTDB database, there were 38 species had clearly defined
129 natural hosts, encompassing 22 chlamydiae species residing in amoebae, 13 in arthropods, and 3 in
130 vertebrates. Notably, one of our previously unclassified species, *Ca. Feichlamydia* sp. LF3, displayed
131 the closest genetic affinity with chlamydiae typically associated with amoebae hosts. In contrast, the
132 other two novel species showed their closest genetic alignment with the *Rhabdochlamydiaceae* family,
133 previously known only to infect arthropods. This finding significantly expands our understanding of
134 the host range of *Rhabdochlamydiaceae*.

135

136 **Novel Chlamydiae species show strong host specificity to two *Dictyostelium* amoeba hosts**

137 All wild amoeba clones selected for this analysis were expected to be *Dictyostelium discoideum*,
138 but to our surprise, analysis of 18S rDNA from metagenomic data, indicated that 15 clones are instead,
139 *D. giganteum*. To elucidate the distribution patterns of the novel chlamydiae in the amoebae samples,
140 we conducted an assessment of genomic completeness and sequence coverage across the entire

141 spectrum of wild amoeba clones. The findings unveiled that within our collection of 106 amoeba
142 samples, 42 samples displayed associated chlamydia MAGs with genomic completeness exceeding
143 the 50% threshold, coupled with coverage greater than 1. Remarkably, except for one sample (QS4_A1,
144 *D. giganteum*), our observations were indicative of a predominant association of each amoeba species
145 with a single chlamydiae species, mirroring strong host specificity. *Ca. Dictychlamydia* sp. LF1 and
146 *Ca. Feichlamydia* sp. LF3 was exclusively found within *D. discoideum* (Figure 2A), while *Ca.*
147 *Dictychlamydia* sp. LF2 was detected in *D. giganteum* (Figure 2B). These findings underscore the
148 distinct host-specific relationships established by these symbionts.

149 Interestingly, the distribution of chlamydiae was similar with that in previous study (12). Our
150 analysis indicated that the *Ca. Dictychlamydia* sp. LF1 and haplotype 1 could be found in the same
151 samples, as well as haplotype 2 and *Ca. Dictychlamydia* sp. LF2. The relationship between *Ca.*
152 *Feichlamydia* sp. LF3 and haplotype 3 remained less conclusively established, as they were only
153 observed in one same amoeba clone (QS68) (Table S3). Therefore, for further verification, the
154 assembled 16S rDNA, that belong to *Ca. Dictychlamydia* sp. LF1, *Ca. Dictychlamydia* sp. LF2, and
155 *Ca. Feichlamydia* sp. LF3, were used to compared with the sequences of these haplotypes (Figure S5).
156 Surprisingly, the similarity between these 16S rDNA and haplotype 1, 2, and 3 is 99.78%, 99.93% and
157 100%, respectively. These results provide sufficient evidence to suggest that haplotypes 1, 2, and 3
158 correspond to the same species as *Ca. Dictychlamydia* sp. LF1, *Ca. Dictychlamydia* sp. LF2, and *Ca.*
159 *Feichlamydia* sp. LF3, respectively. However, based on the classification, the novel chlamydiae (*Ca.*
160 *Dictychlamydia* sp. LF1 and *Ca. Dictychlamydia* sp. LF2) were not sister clades of
161 *Rhabdochlamydiaceae*, but belonged to this family.

162

163 **Chlamydiae were observed in amoeba spores**

164 Furthermore, we employed transmission electron microscopy (TEM) to validate the presence of
165 chlamydiae within amoeba spores. Four samples, including QS4_A1, QS68_A2, QS74_A3, and
166 QS1080_A10 (with QS4 belonging to *D. giganteum* and the rest to *D. discoideum*), were selected.
167 Chlamydiae endosymbionts were visually characterized as densely wrinkled spheres, measuring
168 approximately 0.5-1 μ m in diameter, distributed throughout the cytoplasm (Figure S4). Chlamydiae
169 are known to exhibit multiple morphotypes corresponding to distinct developmental stages (24),

170 notably the infective elementary bodies (EBs) and replicative reticulate bodies (RBs). However, in our
171 observations, a single morphological type prevailed, initially obscuring its precise identity. Clarity
172 emerged when we detected Golgi fragmentation within the amoeba clone (QS68_A2). This
173 observation provided compelling evidence that the chlamydial cells in this particular amoeba sample
174 were in the RB phase. This finding suggests that chlamydiae employ vesicles to exchange materials
175 with their host, as Golgi fragmentation is pivotal in facilitating efficient chlamydial growth (24).

176

177 Phylogenetic and genomic characteristics of novel chlamydiae species

178 To gain deeper insights into the phylogenetic relationships and genomic attributes of the three
179 newly identified chlamydia species, we selected and analyzed the reference genomes for each species
180 based on the criteria of highest completeness and lowest contamination (Table S4). The genome of *Ca.*
181 *Dictychlamydia* sp. LF1 (Figure S6) encompassed 1.39 Mbp with a GC content of 41.30% and featured
182 1145 open reading frames (ORFs). Similarly, *Ca. Dictychlamydia* sp. LF2 exhibited a genome size of
183 1.68 Mbp, with a GC content of 38.11% and 1261 ORFs, while *Ca. Feichlamydia* sp. LF3 presented a
184 genome of 1.46 Mbp with a GC content of 38.66% and 1265 ORFs (Figure S7). In addition to this, our
185 investigation unveiled 53-83 horizontal gene transfer (HGT) regions within these three species,
186 indicative of ongoing gene exchange events with other bacteria (Figure S8).

187 Next, we conducted a comparative analysis between the novel chlamydiae and known-host
188 chlamydiae, encompassing 38 reference genomes. Pairwise analysis of whole-genome Average
189 Nucleotide Identity (ANI) revealed considerable variation among chlamydiae, with ANI values
190 ranging from less than 70% to as high as 99.98% (Figure S9). Additionally, we observed noteworthy
191 distinctions in the genome size, Open Reading Frame (ORF) count, and GC content among chlamydiae
192 from different host backgrounds (Figure 3, Table S5). It's noteworthy that although a correlation
193 between genome size and GC content is commonly observed in many host-associated bacteria, our
194 analysis revealed no such correlation within chlamydiae (Figure 3A). We noted that the GC content
195 and genome size were host-dependent (Figure 3B and 3D), but no such pattern has been previously
196 found in chlamydiae (5). Remarkably, the GC content of the three novel chlamydia species in our study
197 exhibited similarities to chlamydiae known to infect other amoebae hosts (Figure 3A and 3B), whereas
198 their genome sizes were noticeably smaller and more like chlamydiae that infect animals (Figure 3C).

199 From amoebae-associated chlamydiae to arthropod-associated chlamydiae to vertebrate-associated
200 chlamydiae, the genome size and ORF count were consistently decreased. As for the three novel
201 chlamydiae, the results show that they were aligning more closely with arthropod and vertebrate-
202 associated chlamydiae than these amoeba-associated (Figure 3C and 3D), underscoring the impact of
203 host specificity on genomic attributes.

204

205 **Functional insights and pseudogene evolution in novel chlamydiae species**

206 Previous research has uncovered remarkable differences in the composition of the outer membrane
207 among various chlamydiae species (25). In our study, we utilized the Transporter Classification
208 Database (TCDB) and the UniRef90 database to annotate genes responsible for encoding outer
209 membrane composition proteins (Figure 4, Table S6). Type III Secretion Systems (T3SS) and Type IV
210 Secretion Systems (T4SS) were found in all chlamydiae species with known hosts. These secretion
211 systems are essential for vectorial secretion and the translocation of anti-host effector proteins (26, 27).
212 Additionally, we observed the prevalence of the *Npt* family, responsible for ATP:ADP exchange,
213 similar to the substrate preferences shown in *C. trochomatis* (28). This suggests that these chlamydiae
214 species rely on their host organisms for ATP and NAD⁺, as they cannot synthesize these essential
215 molecules independently (29). We found that the major outer membrane protein (MOMP) family and
216 NTP (ribonucleoside triphosphates) antiporters were prevalent in chlamydiae with amoeba and
217 arthropod hosts but largely absent in those with vertebrate hosts. In contrast, the polymorphic outer
218 membrane protein (Pmp) family and putative outer membrane porin (OMP) family were more
219 commonly found in chlamydiae species associated with vertebrates. These observations emphasize the
220 host-dependent nature of chlamydiae's reliance on membrane proteins for ATP and ribonucleoside
221 triphosphates, with distinct transporters used across different host environments. Interestingly,
222 vertebrate-associated chlamydiae do not form the closest grouping; instead, those associated with
223 arthropods are more closely linked with those associated with amoebae.

224 For a comprehensive examination of the functions of the novel chlamydiae, we employed the
225 KEGG database to annotate the open reading frames (ORFs) in these genomes (Figure 5, Table S7).
226 Our results indicated a close connection between chlamydiae's functional diversity and their host-
227 association. Specifically, the transition from amoeba-associated chlamydiae to those vertebrate and

228 arthropod-associated appear to decreased genome sizes, which might indicate some selectivity. Among
229 functional categories, such as DNA replication proteins and mismatch repair, we observed no changes
230 across different hosts (Figure S10A, ANOVA, $p > 0.05$), totaling 59 genes. In contrast, most functional
231 categories (totaling 688 genes) appear to be decreased trends in arthropod or vertebrate-associated
232 chlamydiae compared to those amoeba-associated, such as the glycine, serine and threonine
233 metabolism related categories significantly reduced functions in arthropod and vertebrate-associated
234 chlamydiae (Figure S10B, ANOVA, $p < 0.05$), while parts of them only decreased in vertebrate-
235 associated chlamydiae, such as ABC transporters related categories (Figure S10B, ANOVA, $p < 0.05$),
236 totaling 214 genes. We also found that functional categories like transfer RNA biogenesis (Figure S10C,
237 ANOVA, $p < 0.05$) were likely to be decreased from amoeba-associated chlamydiae to arthropod-
238 associated chlamydiae, to vertebrate-associated chlamydiae. Other functional categories (totaling 77
239 genes) exhibited increasing trends, such as riboflavin metabolism (Figure S10D, ANOVA, $p < 0.05$).
240 Importantly, the functional genes of the three novel chlamydiae were more closely aligned with
241 arthropod-hosting chlamydiae, underscoring their possible evolutionary intermediate state (Figure 4).

242 Furthermore, we estimated the potential reasons for the genome reduction observed in the novel
243 Chlamydiae genomes. Similar to previous findings regarding chlamydiae insertion sequences (ISs) (5),
244 our study revealed varying numbers of ISs in the genomes of these three chlamydiae species.
245 Specifically, *Ca. Dictychlamydia* sp. LF1, *Ca. Dictychlamydia* sp. LF2, and *Ca. Feichlamydia* sp. LF3
246 contained 338, 201, and 139 ISs, respectively. ISs play a critical role in genome adaptation to the host
247 and intracellular environment, often linked with genome size reduction. Parts of genes harboring or
248 near ISs tend to lose functionality, which may lead to their removal during recombination, contributing
249 to genome size reduction (30). Another indicator of genome size reduction is the increased occurrence
250 of pseudogenization, which signifies the degradation of genes within the genome (31). We employed
251 pseudofinder (29) to identify pseudogenes and observed a consistent decrease in pseudogene numbers
252 from chlamydiae hosted by amoebae to those hosted by arthropods and finally to those hosted by
253 vertebrates (Figure 6). Among these pseudogenes, 42.26% were associated with genetic information
254 processing, signaling, and cellular processes (Table S8). Additionally, pseudogenes related to
255 translation and carbohydrate metabolism showed decreasing trends (Figure S11, ANOVA, $p < 0.05$),
256 with their numbers decreasing from amoeba-associated chlamydiae to arthropod-associated

257 chlamydiae and finally to vertebrate-associated chlamydiae. These findings imply that relaxed
258 selection has contributed to deletion mutations and gene degradation, underscoring the correlation
259 between host adaptation and genome size reduction.

260

261 **Metabolic potential of the novel chlamydiae species**

262 Building upon the insights gained from our earlier findings, we reconstructed the metabolic
263 models of the three novel chlamydiae species (Figure 7). Notably, *Ca. Dictychlamydia* sp. LF1 and *Ca.*
264 *Dictychlamydia* sp. LF2 shared core metabolic functions that were highly similar. Across all three
265 chlamydiae species, we observed an incomplete carbon metabolism and a notable inability to complete
266 the tricarboxylic acid (TCA) cycle independently (Figure 7). These species exhibited complete
267 pathways for fatty acid biosynthesis, although they lacked the capability to utilize fatty acids. We
268 surmise that this pathway may persist as a means to benefit their host organisms. Importantly, these
269 chlamydiae acquired essential resources from their amoeba hosts, including ATP, amino acids,
270 carbohydrates, and various compounds. Intriguingly, our analysis of functional genes revealed
271 distinctions in the ability of the three chlamydiae species to synthesize amino acids. Moreover, we
272 inferred the presence of membrane proteins based on data from the Transporter Classification Database
273 (TCDB) and the UniRef90 database. These proteins play a crucial role in the exchange of signals and
274 nutrients with their host environments. While the precise functions of these membrane proteins remain
275 challenging to ascertain, they are evidently essential for the chlamydiae's interactions with their
276 amoeba hosts.

277

278 **Discussion**

279 Several species of amoeboid organisms are known to host chlamydiae but much debate remains
280 in the field of chlamydiae biology regarding whether amoebae and other unicellular protists serve as
281 the primary hidden hosts for the diverse environmental chlamydiae (3, 5). A notable study by
282 Haselkorn *et al.* identified endosymbionts associated with wild isolates of *Dictyostelium* amoebae,
283 revealing that 27% of the samples in that study contained 16S haplotypes resembling chlamydiae (12).
284 Based on this study, we selected 106 amoebae samples, that were identified as harbor of novel

285 chlamydiae by Haselkorn *et al*, to investigate the genomes of chlamydiae. Indeed, obtaining a complete
286 genome is much more difficult than amplifying the 16S rDNA, we did not observe the presence of a
287 chlamydia genomes with sufficient confidence in every sample, but a consistent finding between our
288 study and that of Haselkorn *et al*. is that approximately 30% of amoeba samples are infected with
289 chlamydiae. Furthermore, our analysis revealed that novel chlamydiae species show strong host
290 specificity with two *Dictyostelium* amoeba hosts. It is thought that they are related to membrane protein
291 within chlamydiae and their hosts, which have been reported in the Chlamydia (32), and they were
292 called “niche-specific” (33). This helps the evolution of the chlamydia, or even co-evolution with their
293 hosts.

294 Our results reinforce the notion that chlamydial endosymbionts are widespread in wild amoeba
295 isolates. It is reported that most of known-host chlamydiae can thrive within amoebae except for
296 *Rhabdochlamydiaceae*. However, the *Rhabdochlamydiaceae*, known to exclusively infect arthropods
297 (14, 22), represent a significant portion of the environmental chlamydiae population (5). This leaves a
298 huge gap in hosts of chlamydiae. This study shows that two novel chlamydiae species (belonging to
299 *Rhabdochlamydiaceae*) are prevalent in two *Dictyostelium* amoeba hosts. Therefore, our results show
300 that all major clades of chlamydiae can thrive within amoebae. This study significantly expands our
301 knowledge of chlamydiae's host range and suggests amoebae as primary unknown hosts for
302 environmental chlamydiae.

303 This research serves as significant evidence that amoebae play a pivotal role in the evolution of
304 chlamydiae. Functional genes and membrane proteins in amoeba-associated chlamydiae differ notably
305 from those in vertebrate-associated chlamydiae, with arthropod-associated chlamydiae falling in
306 between. Importantly, the genomic characteristics of the three novel chlamydiae species align more
307 closely with those of arthropod-associated chlamydiae. This observation suggests that the novel
308 chlamydiae genomes may represent an intermediate evolutionary state. To further substantiate this, we
309 conducted a phylogenetic analysis using 120 conserved proteins, employing four *Cyanobacteria* as an
310 outgroup (34) to trace the ancestral chlamydiae (Figure S12). Considering that the novel chlamydiae
311 were the clade of arthropod-associated ones, our results propose an evolutionary progression wherein
312 chlamydiae is initially associated with amoebae before transitioning to arthropods and vertebrates.

313 The gradual reduction in genome sizes from amoeba-associated to vertebrate-associated species

314 and the accumulation of pseudogenes indicate an evolutionary trend towards genome reduction and
315 loss of gene functionality. The genome size of symbiotic bacteria tends to decrease during the
316 evolutionary process (35). Genome size reduction could result from DNA loss and decreased selection
317 to maintain gene functionality (36). We found that the genome sizes of chlamydiae reduced from
318 amoeba-associated to vertebrate, and the others, including the novel chlamydiae, were intermediate
319 (Figure S13). Our results on pseudogenes showed that 42.26% of pseudogenes were related to genetic
320 information processing, signaling, and cellular processes that may not be useful in endosymbionts.
321 Interestingly, some genes gained in the transition to vertebrate-associated hosts, such as those related
322 to riboflavin metabolism, indicating metabolic complexity could also increase during endosymbiont
323 evolution (17). Given that protists, exemplified by amoebae, represent primary hosts for chlamydiae
324 in environmental settings, these findings underscore the critical role of amoebae in shaping the
325 evolution of chlamydiae.

326

327 **Materials and Methods**

328 **Sample Information**

329 The wild amoeba clones used in this study are part of collection of over 700 amoebae isolated
330 from soil or deer feces collected in various areas of the United States between 25-Sep-2000 and 13-
331 Aug-2014 (Table S9). The 106 clones from this large collection were selected for this investigation in
332 two parts. One set of 10 clones were selected for deep sequencing and investigation of the associated
333 microbial community. To expand the analysis, another set of 96 clones were selected because they
334 were previously reported to carry a Chlamydia symbiont in a PCR screen by Haselkorn *et al.* 2021 and
335 because a whole genome sequence was already available (as part of an collaboration among the labs
336 of authors J.B. Wolf, C.R.L. Thompson, D.C. Queller and J.E. Strassmann). Total DNA was extracted
337 using the FastPrep-24 5G (MPbio, USA) and FastDNA Spin Kit for Soil (MPbio, USA). DNA
338 concentrations were determined using a NanoDrop spectrophotometer (ND-2000, Thermo Scientific,
339 USA) and stored at -20 °C for subsequent analysis.

340

341 **Whole Genome Sequencing and Processing**

342 Genomic DNA was sequenced using Illumina paired-end reads. To maintain data integrity, we
343 deposited the sequencing data in the National Center for Biotechnology Information (NCBI) Sequence
344 Read Archive (SRA) database under accession number PRJNA975672 ([Table S6](#)). After removing host
345 amoeba and food bacteria-related reads, we employed the remaining reads to detect and analyze
346 associated chlamydiae ([Figure S14](#)).

347 We initially excluded reads from the host and food bacteria to recover high-quality metagenome-
348 assembled genomes (MAGs) of amoeba symbionts. In brief, the raw data were first screened with
349 FastQC (v0.11.5) to assess quality, followed by trimming and filtering of low-quality reads using
350 Trimmomatic (v0.36, parameters: TruSeq3-PE.fa 2:30:10, LEADING 5, TRAILING 5,
351 SLIDINGWINDOW 5:20, and MINLEN 30) (37). We aligned the trimmed reads to a single FASTA
352 file containing the reference genomes of both *D. discoideum* AX4 (38) (GCF_000004695.1) and the
353 food bacterium *Klebsiella pneumoniae* (GCF_000240185.1_ASM24018v2) (both downloaded from
354 NCBI in June 2019) using bowtie2 (v2.4.5) (39). Mapped reads were used to identify the species of
355 amoebae clones ([Supplementary description 1](#)). The 16s rDNA sequences from the clean data were
356 extracted and assembled by SPAdes within phyloFlash (v3.4.1) (40), referencing to SILVA 138.1 (41).
357 Only the 16S rDNA sequence larger than 1000 bp would be retained.

358 Unmapped reads were extracted, converted to fastq format with Samtools (v1.13) (42), and
359 subjected to *de novo* contig assembly with SPAdes (default parameters) within the metaWRAP pipeline
360 (v1.3.2) (43). The contigs were binned, refined, and reassembled within the metaWRAP pipeline (43)
361 using the binning module (parameters: --maxbin2 --metabat2), bin_refinement module (parameters: -c
362 20 -x 20), and the Reassemble_bins module (parameters: -c 50 -x 10), respectively. In addition to the
363 two binners used within metaWRAP, we separately performed binning using Vamb (v3.0.8) (44). To
364 ensure quality, we combined all MAGs and retained only MAGs with genome completeness exceeding
365 80% and contamination below 10%, as estimated by CheckM (v1.0.12) (45). The taxonomic
366 classifications were assigned to MAGs via GTDB-Tk (Genome Database Taxonomy Toolkit (23),
367 version=2.1.1, release R207).

368

369 **Population Clustering and Genomic Analyses**

370 To assess the phylogenetic relationships of our chlamydiaceae MAGs among Chlamydiae, we
371 downloaded reference genomes from GTDB (<https://gtdb.ecogenomic.org/>), collecting related
372 information, including GC ratios, genomic sizes, completeness, contamination, and their hosts, if any
373 ([Supplementary description 2](#)). We employed the tool dRep (v3.2.2) (46) to cluster draft MAGs into
374 species-level clusters based on 95% average nucleotide identity (ANI) (parameters: -sa 0.95) (47). The
375 genomic ANI of the reference genomes and our assembled MAGs was calculated using pyani (v0.3)
376 (48). To explore the distribution of the chlamydiae that we found, the inStrain pipeline (v1.0.0) (49)
377 was performed, and genomic completeness was used to represent their distribution ([Supplementary](#)
378 [description 3](#)). Here, genomic completeness measures how much of a region is covered by sequencing
379 reads and is calculated as the percentage of bases in a region that are covered by at least a single read.
380 We only considered MAGs with genomic completeness greater than 50% and coverage > 1.

381 The open reading frames (ORFs) of each MAG were predicted using Prodigal (v2.6.3) (50).
382 Functional annotation of Chlamydia was performed against the Kyoto Encyclopedia of Genes and
383 Genomes (KEGG) database (51) using KofamScan (v1.3.0) (52). The membrane proteins were
384 annotated against the Transporter Classification Database (TCDB) (53) and UniRef90 (54) by
385 DIAMOND (v2.1.8.162) (55) (e-value < 10^{-5}).

386 To construct a phylogenetic tree, we extracted and aligned the 120 conserved proteins from
387 respective genomic set using GTDB-Tk (classify_wf, default parameters). the phylogenetic tree was
388 constructed using IQ-TREE (v 2.2.2.7, parameters: -st AA -B 1000 -alrt 1000, -m MFP) (56) based on
389 extracted and aligned conserved protein sequences and rooted using non-reversible model (57). Finally,
390 visualized using Interactive Tree Of Life (iTOL) (58). Genome visualization was carried out in Proksee
391 (59), including horizontal gene transfers (HGT) identified using Alien Hunter (60). Pseudogenes were
392 identified using Prokka (61) (--compliant) and Pseudofinder (v2.0) (62) (the "Annotate" module). The
393 insertion sequences (ISs) within genomes were found using ISfinder (63). Genomes of cyanobacteria
394 were downloaded from GTDB, including GCF_015207825, GCF_000317675, GCF_001693275, and
395 GCF_002356215. The phylogenetic tree containing the outgroup was constructed and visualized using
396 the same method as descripting above.

397

398 **Transmission Electron Microscopy**

399 Based on the novel chlamydiae distribution among the first sets of 10 amoeba samples, we selected
400 samples containing chlamydiae for Transmission Electron Microscope (TEM) analyses to visualize
401 chlamydiae. Four samples, including QS4_A1, QS68_A2, QS74_A3, and QS1080_A10 (with QS4
402 belonging to *D. giganteum* and the rest to *D. discoideum*), were selected. The amoeba spores were
403 fixed, dehydrated, and embedded in Spurr's resin. After sectioning and staining with uranyl acetate
404 and alkaline lead citrate, samples were observed on a Hitachi Model H-7650 TEM.

405

406 **Statistical analysis**

407 All statistical tests and data analysis were performed in R (v4.2.2) (64) and Python (v3.7.10,
408 <https://www.python.org/>). The Analysis of Variance (ANOVA) was conducted in R (*aov* function).
409 Data visualization was achieved using ggplot2 (v3.4.0) and matplotlib (v3.7.0) (65) unless otherwise
410 specified. The heatmap was generated using the pheatmap package in R. Specifically, the populations
411 of MAGs were clustered by ANIm in dRep with "scale=NA," and the functional heatmap was clustered
412 using "euclidean" and normalized by "scale='row'". were clustered by "euclidean" and normalized by
413 "scale='row'". The metabolic potential and graphical abstract were drawn based on our results
414 ([Supplementary description 4](#)).

415

416 **Data availability**

417 Sequencing data were deposited at the National Center for Biotechnology Information (NCBI)
418 Sequence Read Archive (SRA) database with accession number PRJNA975672. The metagenome-
419 assembled genomes of the three novel chlamydia were deposited at NCBI with BioSample IDs
420 SAMN35628208 (*Ca. Dictychlamydia* sp. LF1), SAMN35621451 (*Ca. Dictychlamydia Ca.* sp. LF2),
421 SAMN35628315 (*Ca. Feichlamydia* sp. LF3) and belong to BioProject ID PRJNA975672.

422

423 **Acknowledgments**

424 We thank the members of our lab groups for their helpful comments. This material is based upon

425 work supported by the Guangdong Natural Science Funds for Distinguished Young Scholar
426 (2023B1515020096), the Innovation Group Project of Southern Marine Science and Engineering
427 Guangdong Laboratory (Zhuhai) (311021006), the National Natural Science Foundation of China
428 (31970384), and U.S. National Science Foundation grants DEB-1753743 and DEB-2237266.

429

430 **References**

- 431 1. M. Horn, Chlamydiae as Symbionts in Eukaryotes. *Annu Rev Microbiol* **62**, 113-131 (2008).
- 432 2. S. Köstlbacher *et al.*, Pangenomics reveals alternative environmental lifestyles among
433 chlamydiae. *Nat Commun* **12**, 4021 (2021).
- 434 3. A. Collingro, S. Köstlbacher, M. Horn, Chlamydiae in the Environment. *Trends in
435 Microbiology* **28**, 877-888 (2020).
- 436 4. J. E. Dharamshi *et al.*, Marine Sediments Illuminate Chlamydiae Diversity and Evolution. *Curr
437 Biol* **30**, 1032-1048.e1037 (2020).
- 438 5. T. Halter *et al.*, Ecology and evolution of chlamydial symbionts of arthropods. *ISME
439 Communications* **2**, 45 (2022).
- 440 6. R. C. Brunham, J. Rey-Ladino, Immunology of Chlamydia infection: implications for a
441 Chlamydia trachomatis vaccine. *Nature reviews immunology* **5**, 149-161 (2005).
- 442 7. M. Horn, M. Wagner, Bacterial endosymbionts of free-living amoebae. *J Eukaryot Microbiol*
443 **51**, 509-514 (2004).
- 444 8. A. M. Oliverio *et al.*, The global-scale distributions of soil protists and their contributions to
445 belowground systems. *Sci Adv* **6** (2020).
- 446 9. C. de Vargas *et al.*, Eukaryotic plankton diversity in the sunlit ocean. *Science* **348**, 1261605
447 (2015).
- 448 10. Y. Shi *et al.*, The ecology and evolution of amoeba-bacterium interactions. *Appl Environ
449 Microb* **87**, e01866-01820 (2021).
- 450 11. S. Geisen *et al.*, Soil protists: a fertile frontier in soil biology research. *Fems Microbiol Rev* **42**,
451 293-323 (2018).
- 452 12. T. S. Haselkorn *et al.*, Novel Chlamydiae and Amoebophilus endosymbionts are prevalent in
453 wild isolates of the model social amoeba *Dictyostelium discoideum*. *Environmental*

454 13. F. Husnik *et al.*, Bacterial and archaeal symbioses with protists. *Curr Biol* **31**, 862-877 (2021).

455 14. T. Fukumoto *et al.*, Acanthamoeba containing endosymbiotic chlamydia isolated from hospital

456 environments and its potential role in inflammatory exacerbation. *BMC microbiology* **16**, 1-8

457 (2016).

458 15. M. Vouga *et al.*, Antibiotic susceptibility of *Neochlamydia hartmanellae* and *Parachlamydia*

459 *acanthamoebae* in amoebae. *Microbes and Infection* **17**, 761-765 (2015).

460 16. E. Sallinger, M. S. Robeson, T. S. Haselkorn, Characterization of the bacterial microbiomes of

461 social amoebae and exploration of the roles of host and environment on microbiome

462 composition. *Environmental Microbiology* **23**, 126-142 (2021).

463 17. J. E. Dharamshi *et al.*, Gene gain facilitated endosymbiotic evolution of Chlamydiae. *Nature*

464 *Microbiology* **8**, 40-54 (2023).

465 18. R. Kostanjšek, J. Štrus, D. Drobne, G. Avguštin, ‘*Candidatus Rhabdochlamydia porcellionis*’,

466 an intracellular bacterium from the hepatopancreas of the terrestrial isopod *Porcellio scaber*

467 (Crustacea: Isopoda). *Int J Syst Evol Micr* **54**, 543-549 (2004).

468 19. D. Corsaro *et al.*, ‘*Candidatus Rhabdochlamydia crassificans*’, an intracellular bacterial

469 pathogen of the cockroach *Blatta orientalis* (Insecta: Blattodea). *Syst Appl Microbiol* **30**, 221-

470 228 (2007).

471 20. T. Pillonel *et al.*, Sequencing the Obligate Intracellular Rhabdochlamydia helvetica within Its

472 Tick Host *Ixodes ricinus* to Investigate Their Symbiotic Relationship. *Genome Biology and*

473 *Evolution* **11**, 1334-1344 (2019).

474 21. M. B. Scholz, C.-C. Lo, P. S. G. Chain, Next generation sequencing and bioinformatic

475 bottlenecks: the current state of metagenomic data analysis. *Current Opinion in Biotechnology*

476 **23**, 9-15 (2012).

477 22. A. Essig, M. Heinemann, U. Simnacher, R. Marre, Infection of *Acanthamoeba castellanii* by

478 *Chlamydia pneumoniae*. *Applied and Environmental Microbiology* **63**, 1396-1399 (1997).

479 23. P.-A. Chaumeil, A. J. Mussig, P. Hugenholtz, D. H. Parks, GTDB-Tk: a toolkit to classify

480 genomes with the Genome Taxonomy Database. *Bioinformatics* **36**, 1925-1927 (2019).

481 24. C. Elwell, K. Mirrashidi, J. Engel, Chlamydia cell biology and pathogenesis. *Nature Reviews*

482

483 25. *Microbiology* **14**, 385-400 (2016).

484 25. F. Bayramova, N. Jacquier, G. Greub, Insight in the biology of Chlamydia-related bacteria.

485 *Microbes and Infection* **20**, 432-440 (2018).

486 26. K. E. Mueller, G. V. Plano, K. A. Fields, New Frontiers in Type III Secretion Biology: the

487 Chlamydia Perspective. *Infection and Immunity* **82**, 2-9 (2014).

488 27. D. E. Voth, R. A. Heinzen, Coxiella type IV secretion and cellular microbiology. *Current*

489 *Opinion in Microbiology* **12**, 74-80 (2009).

490 28. D. J. Fisher, R. E. Fernández, A. T. Maurelli, Chlamydia trachomatis transports NAD via the

491 Npt1 ATP/ADP translocase. *J Bacteriol* **195**, 3381-3386 (2013).

492 29. H. H. Winkler, R. Daugherty, F. Hu, Rickettsia prowazekii transports UMP and GMP, but not

493 CMP, as building blocks for RNA synthesis. *Journal of bacteriology* **181**, 3238-3241 (1999).

494 30. C. M. Bergman, H. Quesneville, Discovering and detecting transposable elements in genome

495 sequences. *Brief Bioinform* **8**, 382-392 (2007).

496 31. N. A. Moran, G. R. Plague, Genomic changes following host restriction in bacteria. *Curr Opin*

497 *Genet Dev* **14**, 627-633 (2004).

498 32. A. Nunes, P. J. Nogueira, M. J. Borrego, J. P. Gomes, Chlamydia trachomatis diversity viewed

499 as a tissue-specific coevolutionary arms race. *Genome biology* **9**, 1-13 (2008).

500 33. V. Borges, A. Nunes, R. Ferreira, M. J. Borrego, J. P. Gomes, Directional evolution of

501 Chlamydia trachomatis towards niche-specific adaptation. *Journal of bacteriology* **194**, 6143-

502 6153 (2012).

503 34. P. Sánchez-Baracaldo, G. Bianchini, J. D. Wilson, A. H. Knoll, Cyanobacteria and

504 biogeochemical cycles through Earth history. *Trends in Microbiology* **30**, 143-157 (2022).

505 35. N. A. Moran, Microbial minimalism: genome reduction in bacterial pathogens. *Cell* **108**, 583-

506 586 (2002).

507 36. A. Mira, H. Ochman, N. A. Moran, Deletional bias and the evolution of bacterial genomes.

508 *Trends in Genetics* **17**, 589-596 (2001).

509 37. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence

510 data. *Bioinformatics* **30**, 2114-2120 (2014).

511 38. L. Eichinger *et al.*, The genome of the social amoeba *Dictyostelium discoideum*. *Nature* **435**,

512 43-57 (2005).

513 39. B. Langmead, S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. *Nature Methods* **9**,
514 357-359 (2012).

515 40. H. R. Gruber-Vodicka, B. K. B. Seah, E. Pruesse, phyloFlash: Rapid Small-Subunit rRNA
516 Profiling and Targeted Assembly from Metagenomes. *mSystems* **5** (2020).

517 41. C. Quast *et al.*, The SILVA ribosomal RNA gene database project: improved data processing
518 and web-based tools. *Nucleic Acids Res* **41**, D590-596 (2013).

519 42. P. Danecek *et al.*, Twelve years of SAMtools and BCFtools. *Gigascience* **10** (2021).

520 43. G. V. Uritskiy, J. DiRuggiero, J. Taylor, MetaWRAP—a flexible pipeline for genome-resolved
521 metagenomic data analysis. *Microbiome* **6**, 158 (2018).

522 44. J. N. Nissen *et al.*, Improved metagenome binning and assembly using deep variational
523 autoencoders. *Nature Biotechnology* **39**, 555-560 (2021).

524 45. D. H. Parks, M. Imelfort, C. T. Skennerton, P. Hugenholtz, G. W. Tyson, CheckM: assessing
525 the quality of microbial genomes recovered from isolates, single cells, and metagenomes.
526 *Genome Res* **25**, 1043-1055 (2015).

527 46. M. R. Olm, C. T. Brown, B. Brooks, J. F. Banfield, dRep: a tool for fast and accurate genomic
528 comparisons that enables improved genome recovery from metagenomes through de-
529 replication. *The ISME Journal* **11**, 2864-2868 (2017).

530 47. C. Jain, R. L. Rodriguez, A. M. Phillippy, K. T. Konstantinidis, S. Aluru, High throughput ANI
531 analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nat Commun* **9**, 5114
532 (2018).

533 48. L. Pritchard, R. H. Glover, S. Humphris, J. G. Elphinstone, I. K. Toth, Genomics and taxonomy
534 in diagnostics for food security: soft-rotting enterobacterial plant pathogens. *Analytical
535 Methods* **8**, 12-24 (2016).

536 49. M. R. Olm *et al.*, inStrain profiles population microdiversity from metagenomic data and
537 sensitively detects shared microbial strains. *Nature Biotechnology* **39**, 727-736 (2021).

538 50. D. Hyatt *et al.*, Prodigal: prokaryotic gene recognition and translation initiation site
539 identification. *BMC Bioinformatics* **11**, 119 (2010).

540 51. M. Kanehisa, S. Goto, KEGG: kyoto encyclopedia of genes and genomes. *Nucleic acids*

541 52. T. Aramaki *et al.*, KofamKOALA: KEGG Ortholog assignment based on profile HMM and
542 adaptive score threshold. *Bioinformatics* **36**, 2251-2252 (2020).

543 53. M. H. Saier *et al.*, The Transporter Classification Database (TCDB): 2021 update. *Nucleic
544 Acids Res* **49**, D461-d467 (2021).

545 54. B. E. Suzek *et al.*, UniRef clusters: a comprehensive and scalable alternative for improving
546 sequence similarity searches. *Bioinformatics* **31**, 926-932 (2015).

547 55. B. Buchfink, C. Xie, D. H. Huson, Fast and sensitive protein alignment using DIAMOND.
548 *Nature Methods* **12**, 59-60 (2015).

549 56. L.-T. Nguyen, H. A. Schmidt, A. Von Haeseler, B. Q. Minh, IQ-TREE: a fast and effective
550 stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular biology and
551 evolution* **32**, 268-274 (2015).

552 57. B. Q. Minh, C. C. Dang, L. S. Vinh, R. Lanfear, QMaker: Fast and Accurate Method to Estimate
553 Empirical Models of Protein Evolution. *Systematic Biology* **70**, 1046-1060 (2021).

554 58. I. Letunic, P. Bork, Interactive Tree Of Life (iTOL) v4: recent updates and new developments.
555 *Nucleic Acids Research* **47**, W256-W259 (2019).

556 59. J. R. Grant *et al.*, Proksee: in-depth characterization and visualization of bacterial genomes.
557 *Nucleic Acids Research* 10.1093/nar/gkad326 (2023).

558 60. G. S. Vernikos, J. Parkhill, Interpolated variable order motifs for identification of horizontally
559 acquired DNA: revisiting the *Salmonella* pathogenicity islands. *Bioinformatics* **22**, 2196-2203
560 (2006).

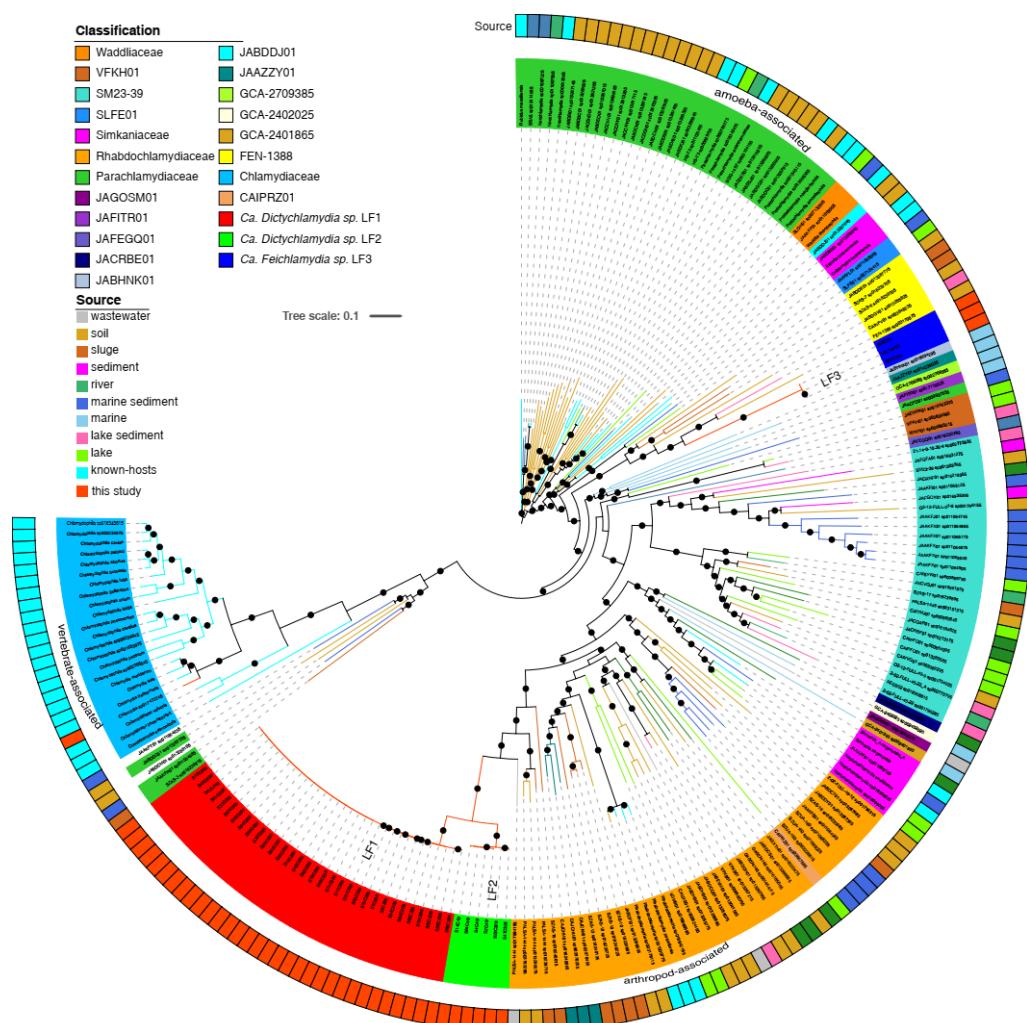
561 61. T. Seemann, Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068-2069
562 (2014).

563 62. M. J. Syberg-Olsen, A. I. Garber, P. J. Keeling, J. P. McCutcheon, F. Husnik, Pseudofinder:
564 detection of pseudogenes in prokaryotic genomes. *Molecular biology and evolution* **39**,
565 msac153 (2022).

566 63. Z. Zhang, S. Schwartz, L. Wagner, W. Miller, A greedy algorithm for aligning DNA sequences.
567 *J Comput Biol* **7**, 203-214 (2000).

568 64. R. Ihaka, R. Gentleman, R: a language for data analysis and graphics. *Journal of computational
569 statistics and graphics* **5**, 27-30 (2000).

570 *and graphical statistics* **5**, 299-314 (1996).


571 65. J. D. Hunter, Matplotlib: A 2D graphics environment. *Computing in science & engineering* **9**,

572 90-95 (2007).

573

574

575 **Figures**

576

577 **Figure 1.** The rooted tree of all 160 chlamydiae from GTDB and 41 novel chlamydiae from this study.
578 The colors on the leaf are the classification of chlamydiae at the family level. The color blocks outside
579 the tree show their source, including the azure blocks representing known-host chlamydiae, and the
580 genomes that obtained from this study mark as red blocks. The points on the tree are the bootstrap
581 (>70). Substitution model: Q.yeast+I+R10.

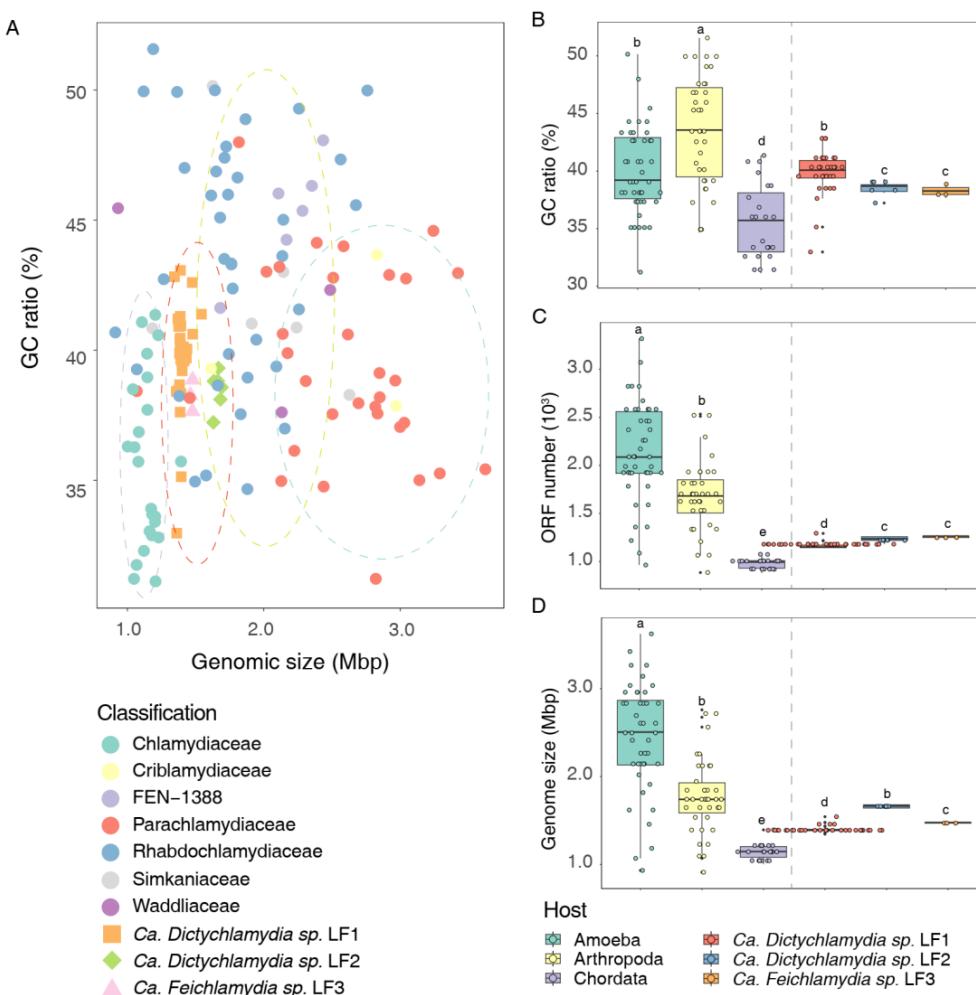
582

Figure 2. A: The distribution of three novel chlamydiae identified in amoebae samples belonging to the *Dictyostelium discoideum*. **B:** The distribution of three novel chlamydiae identified in amoebae samples belonging to the *Dictyostelium giganteum*. Within the two figures: White points: the genomic completeness of chlamydiae less than 50 % within the samples; yellow points: the genomic completeness of chlamydiae ranging from 50% to 80%; green points: the genomic completeness of chlamydiae over 80%.

585

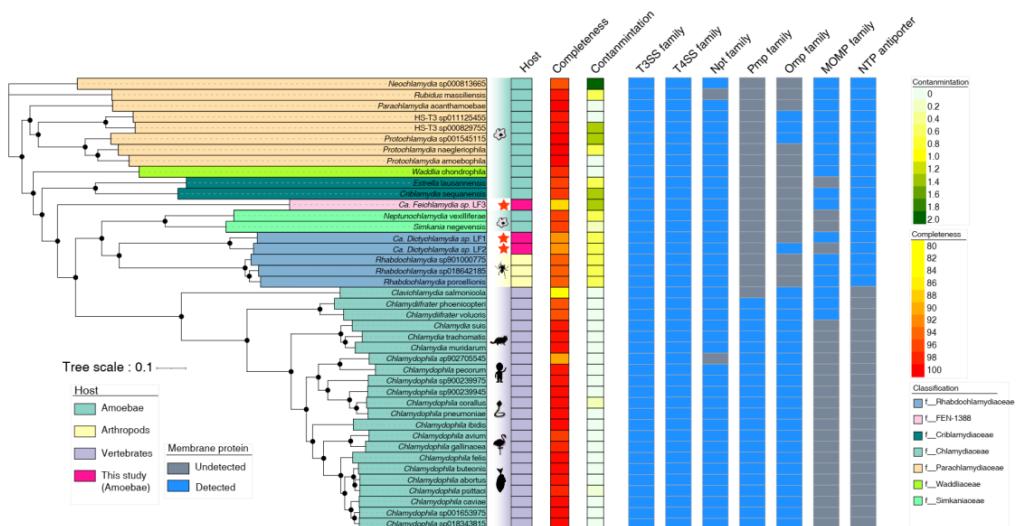
584

585

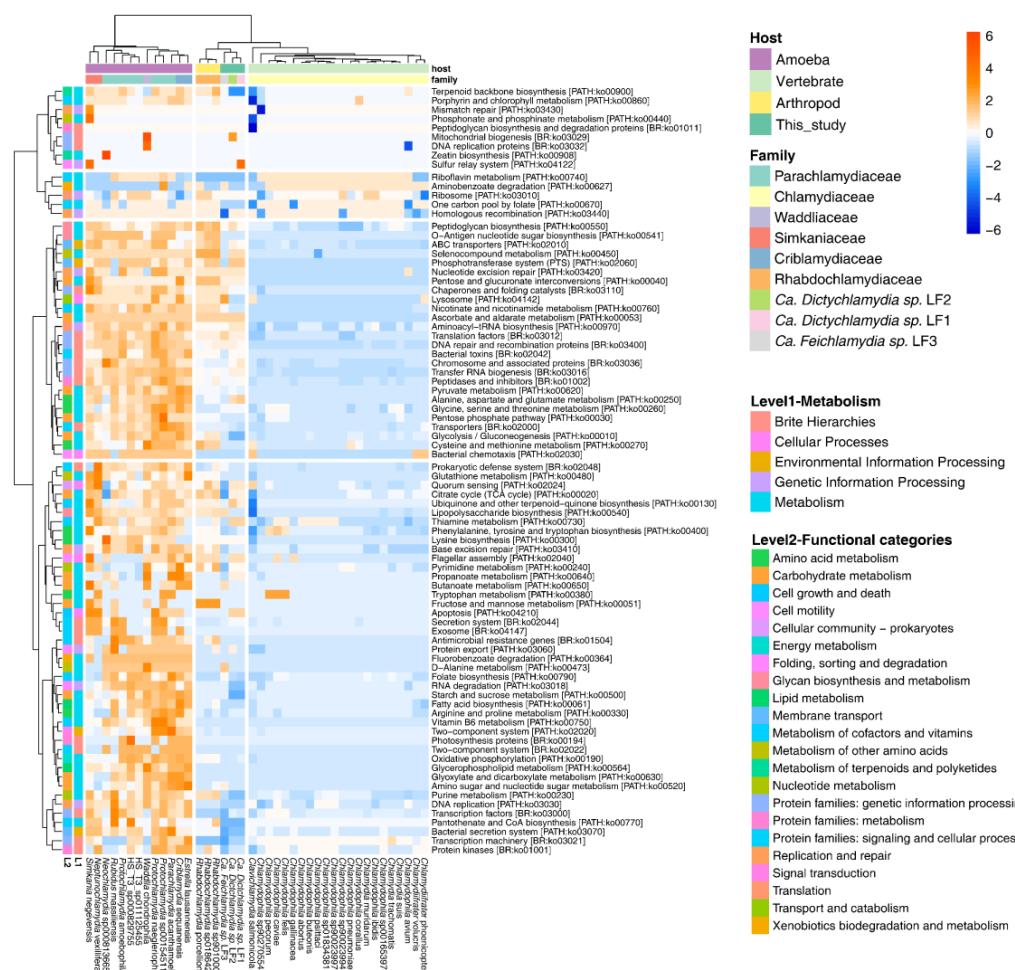

588

3

587

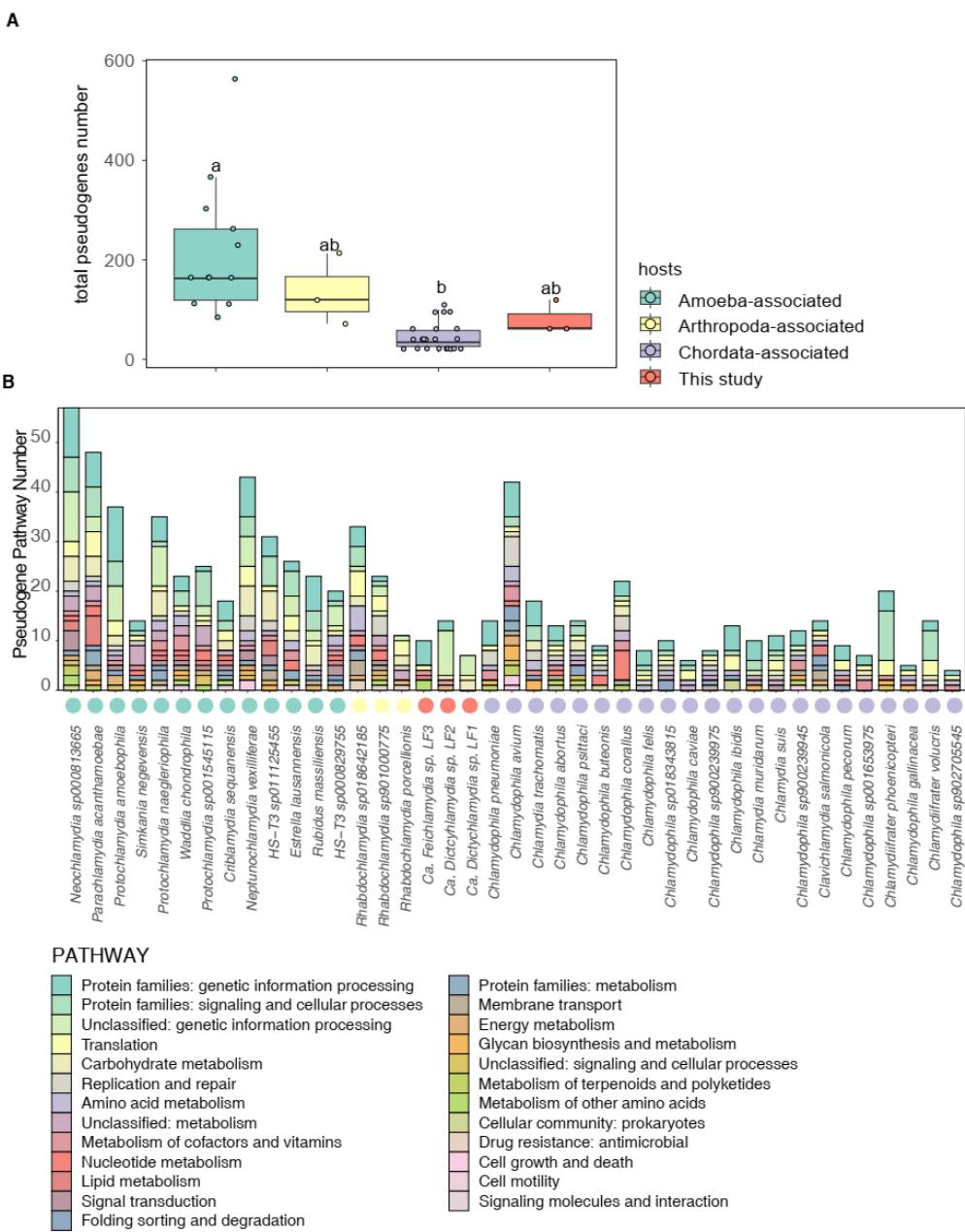

588

500



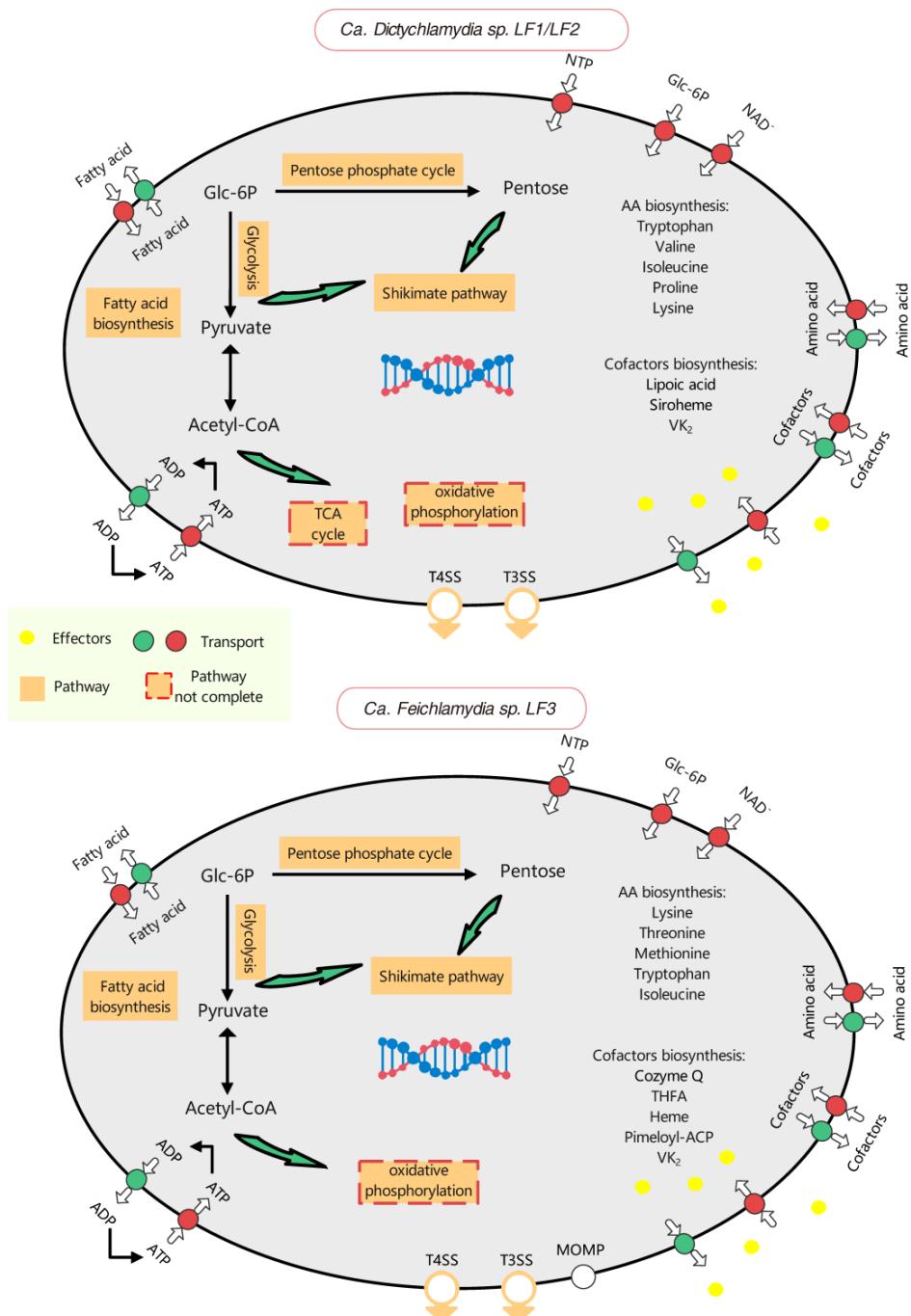
591

592 **Figure 3.** The genomic features of novel chlamydiae. **A:** Correlation of genome size and GC content.
593 The colored circles represent classification at the family level. Other shapes and colors show the 41
594 novel chlamydiae genomes from this study. **B:** The GC content across hosts. **C:** The ORFs number
595 across hosts. **D:** The Genome size across hosts. The colors represent their host. The letter marks their
596 distinctiveness (ANOVA, $p < 0.05$).
597


Figure 4. The phylogenetic tree of chlamydiae with known hosts. The colors on the leaf classify chlamydiae at the family level. The black points on the tree are the bootstrap values (>70). Substitution model: Blosum62+F+R4. The blocks represent their hosts, completeness, contamination, and membrane proteins, including type III Secretion Systems (T3SS), Type IV Secretion Systems (T4SS), major outer membrane protein (MOMP) family, NTP (all four ribonucleoside triphosphates) antiporter, polymorphic outer membrane protein (Pmp) family and putative outer membrane porin (OMP) family.

607

608 **Figure 5.** The functions of novel chlamydiae genomes. The y-axis represents functional pathways, and
609 the color blocks indicate different functional classification levels. The x-axis represents species; the
610 color blocks indicate their family-level classification and host information. The heatmap color
611 represents the abundance of functional genes and is normalized by rows. The x-axis and y-axis are
612 clustered by the Euclidean method.


613

614

615 **Figure 6.** The pseudogenes across chlamydiae of different hosts. **A:** The boxplot shows the difference
 616 of total pseudogenes number between amoeba, arthropoda, chordate-associated chlamydia and
 617 chlamydiae obtained in this study. **B:** Stacked bar plot shows the annotated pathway of these
 618 pseudogenes across their genomes based on KEGG database.

619

620

621 **Figure 7.** The metabolic models of three novel chlamydia species. The *Ca. Dictychlamydia sp. LF1* is
 622 nearly the same as *Ca. Dictychlamydia sp. LF2* in the core metabolic pathway we used. Thus, they are
 623 shown in the same picture (top figure).