10

11

12

13

14

15

16

17

18

19

20

21

22

23

Unpredictable soil conditions can affect the prevalence of a microbial

symbiosis

Trey J. Scottl.2*
Calum J. Stephenson?
Sandeep Rao?
David C. Queller?

Joan E. Strassmann?

"Department of Organismic and Evolutionary Biology, Harvard University

2Department of Biology, Washington University in St. Louis

*Corresponding Author

E-mail: tjscott@wustl.edu

Competing interests: The authors have declare that they have no competing interests.

Keywords: Symbiosis, cooperation, unpredictable environments, Dictyostelium

discoideum, Paraburkholderia, microbiome



24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Abstract

The evolution of symbiotic interactions may be affected by unpredictable
conditions. However, a link between prevalence of these conditions and symbiosis
has not been widely demonstrated. We test for these associations using
Dictyostelium discoideum social amoebae and their bacterial endosymbionts. D.
discoideum commonly hosts endosymbiotic bacteria from three taxa:
Paraburkholderia, Amoebophilus and Chlamydiae. Three species of facultative
Paraburkholderia endosymbionts are the best studied and give hosts the ability to
carry prey bacteria through the dispersal stage to new environments. Amoebophilus
and Chlamydiae are obligate endosymbiont lineages with no measurable impact on
host fitness. We tested whether the frequency of both single infections and
coinfections of these symbionts were associated with the unpredictability of their
soil environments by using symbiont presence-absence data from D. discoideum
isolates from 21 locations across the eastern United States. We found that symbiosis
across all infection types, symbiosis with Amoebophilus and Chlamydiae obligate
endosymbionts, and symbiosis involving coinfections were not associated with any
of our measures. However, unpredictable precipitation was associated with
symbiosis in two species of Paraburkholderia, suggesting a link between

unpredictable conditions and symbiosis.
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Introduction

The evolution of cooperation varies with ecological unpredictability (Scott,
2023; Scott et al., 2023b). For example, the prevalence of cooperative breeding in
birds is associated with unpredictable environmental conditions (Jetz & Rubenstein,
2011; Griesser et al., 2017). Cooperative breeding is thought to allow organisms to
invade unpredictable environments (Cornwallis et al., 2017) or buffer against times
when conditions are harsh (Capilla-Lasheras et al.,, 2021). So far studies on the
relationship between ecological unpredictability and cooperation have focused on
interactions between members of the same species (Jetz & Rubenstein, 2011;
Sheehan et al,, 2015; Griesser et al,, 2017; Firman et al., 2020). Cooperative
associations between different species in a symbiosis, or mutualism, has been
suggested to have similar benefits in unpredictable environments (Lekberg & Koide,
2014; Veresoglou et al,, 2021; Scott, Queller & Strassmann, 2022a) and may thus be
associated with them. However, this association has not been tested.

We investigated whether symbiosis was associated with unpredictable
conditions using the microbiome of Dictyostelium discoideum. D. discoideum is a
social amoeba that spends part of its lifecycle as a single cell eating bacteria in the
soil (Raper, 1937). After exhausting edible bacteria, individual amoebae come
together and form a multicellular structure called a fruiting body to disperse
resistant spores (Kessin, 2001). Inside some fruiting bodies in the wild, different
species of bacteria have been identified (Brock et al., 2018; Sallinger, Robeson &

Haselkorn, 2021; Steele et al., 2023). Most of these bacteria appear to be regular soil
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bacteria that happen to be in the matrix of the spore-containing part of the fruiting
body. Many of these bacteria are even edible by D. discoideum (Brock et al., 2018).

A subset of the bacteria that are found in D. discoideum fruiting bodies appear
to be prevalent symbionts. The first symbionts to be discovered were three species
of facultatively endosymbiotic Paraburkholderia bacteria (Brock et al., 2011;
DiSalvo et al., 2015). The life histories of these Paraburkholderia bacteria in their
natural soil habitats are unknown, but they can be cultured outside of their hosts in
the lab (DiSalvo et al,, 2015; Brock et al.,, 2020) and one species has been shown to
be horizontally transferred in the lab (Noh et al., 2024). Two of these
Paraburkholderia species, P. hayleyella and P. bonniea, may have a longer history of
host association as shown by their reduced genomes, while P. agricolaris may be a
newer symbiont (Noh et al., 2022).

All three Paraburkholderia species increase host fitness by allowing hosts to
carry other species of edible bacteria along with Paraburkholderia inside the spore-
containing part of the fruiting body called a sorus (Khojandi et al.,, 2019; Brock et al,,
2020). Paraburkholderia are often carried inside spores while prey bacteria are
carried outside of the spores in the sorus (Khojandi et al., 2019). Carriage allows
host amoebae to seed out populations of prey bacteria that hosts can then eat
(Brock etal., 2011). However, the ability to carry comes at the cost of reduced spore
production when edible bacteria are common (DiSalvo et al,, 2015; Scott, Queller &
Strassmann, 2022b). The source of this fitness cost for hosts is unknown, though
there is some evidence that Paraburkholderia itself harms hosts. For example, the

density of Paraburkholderia tends to be associated with lower host spore
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production (Scott, Queller & Strassmann, 2022a,b; Noh et al., 2024) and
Paraburkholderia infection interferes with host immune cells that develop during
the multicellular stage (Scott et al., 2023a).

D. discoideum also harbors endosymbiotic bacteria that are obligate: one
from the genus Amoebophilus and different haplotypes from the phylum
Chlamydiae. These obligate endosymbionts cannot be cultured outside of their
hosts. Both Amoebophilus and Chlamydiae have not been found to measurably affect
host fitness, even when they occur as coinfections with Paraburkholderia
(Haselkorn et al., 2021). We will refer to these obligate endosymbionts as
Amoebophilus and Chlamydiae.

Environmental sampling has found that Paraburkholderia prevalence is
about 25% of sampled hosts but varies by sampling location (Haselkorn et al., 2019)
and over time (DuBose et al.,, 2022). Obligate endosymbionts are found in about
40% of sampled hosts (Haselkorn et al., 2021). Paraburkholderia and Amoebophilus
coinfections are more common than expected due to chance (Haselkorn et al.,, 2021).

A key source of unpredictability in the soil environment of D. discoideum that
has not been studied is precipitation. Precipitation can drastically shift the soil
environment because of the complex structure and physical properties of the soil
(Or etal., 2007). Such shifts are known to affect the abundance of microbes in the
soil (Zeglin et al.,, 2013). When precipitation is unpredictable, it is likely to impact
the availability of soil bacteria for D. discoideum to eat. We hypothesize that hosts

that have Paraburkholderia symbionts may be buffered from unpredictable changes
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in prey abundance because they can carry prey bacteria (Scott, Queller &
Strassmann, 2022a).

Other soil characteristics may also be important for the prevalence of
symbiosis. pH has already been shown to affect the D. discoideum microbiome
(Sallinger, Robeson & Haselkorn, 2021). Temperature can have strong effects on
host amoebae that could shape their interactions with symbionts (Shu et al., 2020).
Soil nutrients (usually measured by the ratio of carbon to nitrogen in the soil) have
not been studied in this symbiosis but are known to affect other symbiotic
interactions (Johnson et al., 2010) and to affect soil bacteria (Bahram et al., 2018)
that are potential prey of D. discoideum. Here we test how unpredictability and
other soil characteristics affect the symbiosis between D. discoideum and its

symbionts.

Materials and Methods
Presence of text from preprinted thesis chapter

Portions of the text in this manuscript were previously published as a preprint

(Scott et al.,, 2023b) and as part of a thesis (Scott, 2023).

Data Acquisition and Processing

To measure the frequency of symbiosis, we used data from prior
environmental sampling (Haselkorn et al,, 2019, 2021). The first study (Haselkorn et
al,, 2019) tested D. discoideum isolates from 21 locations in the United States (one

location was sampled two separate times) for the presence of the three species of
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Paraburkholderia symbionts (Brock et al., 2020) using Paraburkholderia specific 16S
rRNA sequencing. The second study (Haselkorn et al., 2021) tested a similar set of D.
discoideum isolates for Amoebophilus and Chlamydiae using symbiont specific 16S
rRNA sequencing, but also included samples from a few additional countries. For
this study, we focused only on the United States samples because sites from other
countries were not well sampled and could skew the results. We used these data to
construct a presence (1)-absence (0) variable for each D. discoideum clones for
whether they were infected with any of the three species of Paraburkholderia, or
Amoebophilus, or Chlamydiae. We also generated a presence-absence measure for
total symbiosis (having any symbiont across all the tested taxa) and for coinfections
between the five different symbiont types (P. agricolaris, P. hayleyella, P. bonniea,
Amoebophilus, and Chlamydiae).

To investigate the role of environmental predictability on the Dictyostelium-
Paraburkholderia symbiosis, we acquired data on long-term precipitation. We also
acquired data on soil pH, soil organic carbon, nitrogen, and temperature for each
sample location from online databases (detailed below). These variables are known
to affect the abundance of bacteria in the soil (Bahram et al., 2018). For each
location, we collected monthly precipitation data from 1901 to 2020 from the
climate research unit database version 4.05 (Harris et al., 2020). To measure the
predictability of precipitation across these monthly measures, we calculated
Colwell’s P (Colwell, 1974) using the Colwell’s function in the hydrostats package
(Bond & Bond, 2022) with 12 bins corresponding to months and with log-

transformed precipitation measures as in Table 2 in Colwell (Colwell, 1974).
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Colwell’s P ranges from completely unpredictable (0) to completely predictable (1).
To better capture ecologically relevant timescales, we tested two P measures meant
to capture long-term and recent predictability: (1) calculated with precipitation data
from 1901 to the year that a sample was collected and (2) calculated from
precipitation data from 5 years before the sample was taken.

We collected mean soil pH, mean nitrogen, and mean organic carbon data
from the SoilGrids database version 2.0 (de Sousa et al., 2020). SoilGrids are soil
predictions based on empirical soil measurements and are generated at 250-meter
scales. We collected mean soil temperature variables from Lembrechts et al. (2022)
that were generated by predicting deviations of soil temperatures from air
temperatures at 0 to 5 cm and 5-15 cm depths. We used 0-5 cm depths for soilGrids
and soil temperature data because D. discoideum typically resides in the top layers

of soil.

Statistical methods

To test for coinfections across locations, we used mixed effect logistic
regression from the Ime4 package (Bates, 2010) in R version 4.1.2 (R Core Team,
2013). We tested for possible coinfections between all five of the symbiont types
that we investigated. To account for multiple observations at a location, we used
location as a random effect. We treated the location that was sampled twice
(Mountain Lake Biological Station) as two separate locations because soil samples
were taken from different areas within Mountain Lake Biological Station and

because samples were collected 14 years apart.
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As a follow up to our logistic regression results across locations, we tested
whether coinfections involving different Paraburkholderia species were random in
specific locations using Fisher’s exact tests (SI Tables). To perform Fisher’s exact
tests, we constructed a 2x2 contingency table for each sampling location in which at
least 2 of the investigated 3 Paraburkholderia symbionts were present. To correct
for multiple comparisons, we adjusted p-values using Benjamini-Hochberg’s
correction.

To test for associations between soil characteristics and prevalence of
individual symbionts or coinfections, we fit a set of mixed effect logistic regression
models using Ime4 (Bates, 2010) as above. In these models, we tested the effect of
soil characteristics on each of our five symbiont types individually. We also tested
the effect of soil characteristics on the prevalence of symbiosis regardless of the
type and on the prevalence of coinfections between P. hayleyella and Amoebophilus
as these coinfections were more common than expected by chance. We tested
models that were derived from a full model that included the precipitation
predictability (Collwell’s P) since 1901 and for a five year period before samples
were collected, mean annual temperature (MAT), carbon to nitrogen ratio (C/N),
mean annual precipitation (MAP), and soil pH. To reduce the risk of overfitting, we
only compare models with two or fewer total predictors. To identify top models
among the set derived from the full model, we used AICc values (Burnham &
Anderson, 2004) and examined effect sizes of model estimates. We identify
uninformative models if the model does not differ from an intercept only (null)

model in terms of AICc. We identify informative models if the model AlCc is less than
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the null model by 2 or more. For multiple models that fit better than the null model,
we examined models within two AICc units of the best fitting model and looked for
variables that were consistently in top models. To test for spatial autocorrelation in
our models, we performed a Moran’s I test on simulated residuals using the
DHARMa package in R (Hartig, 2020). All models were free of spatial
autocorrelation.

For models that showed an effect of unpredictable precipitation on P.
hayleyella and P. agricolaris prevalence, we ensured that these effects were not
solely due to the influence of the two largest sample locations (Mountain Lake
Biological Station in Virginia). To do this, we refit 1,000 models on subsets of the
data where Mountain Lake samples were no longer outliers in terms of the number
of sampled clones. To produce subsets, we randomly removed 350 clones from the
pool of clones from both locations. Using our fit models, we then estimated the effect
of unpredictable precipitation and compared these estimated effects to those
estimated from the full dataset.

To test whether P. hayleyella and P. bonniea inhabit soils that differ in their
precipitation unpredictability, we used a permutation tests. We randomly shuffled
host infection status (infected with P. hayleyella or infected with P. bonniea) from
hosts infected by either of these species without replacement and calculated sample
statistics for values of precipitation predictability across 10,000 samples. As sample
statistics, we investigated the differences between both the means and medians of
the two species after permutation. Both mean and median difference statistics gave

equivalent results. We report the median difference p-value in the main text.
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Results

To test for relationships between soil characteristics and symbiont
prevalence, we used presence-absence data of symbionts that were collected from
22 collection trips to 21 locations (Figure 1A, Table 1) across the eastern United
States (Haselkorn et al,, 2019, 2021). Because some coinfections are known to be
more common than expected (Haselkorn et al., 2021), we first tested all screened
hosts for non-random coinfections that may also vary with the soil environment
using logistic regression. Paraburkholderia coinfections were not more common
than expected (Figure 1B) even when we tested for coinfections at individual
locations using Fisher’s exact tests (SI Tables). Generally, Paraburkholderia and
Amoebophilus coinfections are more common than expected with P. hayleyella and
Amoebophilus coinfections being the most enriched (Figure 1B). This extends prior
findings that focused on a subset of locations (Haselkorn et al., 2021). Amoebophilus
and Chlamydiae coinfections are less common than expected across our sampled
sites.

To identify associations with symbiont prevalence, we used logistic
regression models. To measure precipitation unpredictability, we calculated
Colwell’s P (see Table 2 in Colwell, 1974) using monthly precipitation data for each
location since 1901 (Figure 2A). Rainfall was generally unpredictable as Colwell’s P
ranged from 0.25 to 0.42. To make sure that more recent unpredictability did not
deviate from long-term predictability, we also calculated Colwell’s P for the last five

years before collection at each location (Figure 2B). Colwell’s P ranges from 0 to 1,
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with 0 being unpredictable and 1 being perfectly predictable (Colwell, 1974). Along
with our measures of unpredictability, we collected mean annual precipitation
(Figure 2C), soil pH (Figure 2D), soil mean annual temperature (Figure 2E), soil
carbon to nitrogen ratio data (Figure 2F). Correlations between these variables
tended to be low with the exception of mean annual temperature being correlated
with pH and long-term Colwell’s P (Figure S1).

We found that the frequencies of the two Paraburkholderia species with
reduced genomes, P. hayleyella and P. bonniea, were associated with unpredictable
precipitation, but in opposite directions (Figure 3A&B). Other variables measuring
mean soil characters were not associated with prevalence unless also included with
unpredictable precipitation (SI Tables). P. hayleyella prevalence was higher in more
unpredictable environments (log-odds = -1.047, se = 0.545; Figure 3A) while P.
bonniea prevalence was higher in more predictable environments (log-odds = 1.181,
se = 0.442; Figure 3B). These opposite responses to the predictability of
precipitation remained even when we accounted for the influence of the two largest
sampling locations (Figure S2). Moreover, our data show (histograms in Figure 3)
that P. hayleyella is found where precipitation is relatively unpredictable (0.33.5 on
average) while P. bonniea is found where precipitation is more predictable (38.1 on
average; Permutation test: p < 0.001). For the other symbiont infections - P.
agricolaris, the obligate Amoebophilus and Chlamydiae endosymbionts, P. hayleyella-
Amoebophilus coinfections, and even symbiosis overall - prevalence was not

associated with unpredictable precipitation or mean soil characteristics (SI Tables).
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Discussion

Our finding that P. hayleyella prevalence increases in unpredictable
conditions supports our hypothesis that symbiosis may buffer hosts during times
when conditions are unpredictable. However, our finding for the relatively less
common P. bonniea is in the opposite direction of this hypothesis.

One explanation for why unpredictability differently affects P. hayleyella and
bonniea prevalence is that these sister species (Brock et al., 2020) compete and are
partitioning their niches within hosts based on unpredictable precipitation. Indeed,
P. hayleyella and P. bonniae were found on different ends of our measure of the
predictability of precipitation. Some additional support for niche partitioning
comes from a previous finding that P. hayleyella and P. bonniea differ on which
sugars they can metabolize (Brock et al., 2020). One argument against niche
partitioning within hosts is that the prevalence of these symbionts may not be high
enough for strong competition within hosts. Instead, competition in the soil could
drive niche partitioning between these symbionts. In this case, interactions with
other members of the D. discoideum microbiome that were not included here may be
involved. Another possibility is that life history characteristics of P. hayleyella and P.
bonniea affect the ability of these bacteria to survive in soils with different levels of
unpredictable precipitation.

In addition to the role of unpredictability, we also identified new associations
between different symbionts in D. discoideum hosts. We found that P. hayleyella and
Amoebophilus coinfections are more common than expected and Amoebophilus and

Chlamydiae coinfections are less common than expected (Figure 1B). The
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association between P. hayleyella and Amoebophilus suggests that the abundance of
both may be driven by the same environmental conditions. Another possibility is
that P. hayleyella and Amoebophilus are mutualists that have increased survival
when together in the same host. The rarity of Amoebophilus and Chlamydiae
coinfections may indicate competitive exclusion inside D. discoideum hosts. Another
explanation is that Amoebophlius or Chlamydiae actively prevent each other’s
colonization. Chlamydial endosymbionts have been shown to reduce the success of
other endosymbionts in other species of amoebae (Konig et al.,, 2019; Arthofer et al,,
2022).

Our results provide suggestive evidence of the role of unpredictability
driving symbiosis that should be followed up in future studies. However, our study
is limited in several ways due to data constraints. First, our samples were not
replicated over time, so our results do not capture the variation in Paraburkholderia
symbiosis over time. This may be an important factor as other soil sampling studies
have found that symbiosis with Paraburkholderia may vary over time in some
locations (DuBose et al., 2022). Second, our soil and climate measures do not
capture within site heterogeneity that is important in many microbial systems
(Nannipieri et al,, 2019). For this reason, our study should inspire future fieldwork
with better sampling to better understand the drivers of symbiosis in this system.

This study demonstrates that the frequency of a microbial symbiosis can be
associated with unpredictable environmental conditions. Unpredictable conditions
may be an important driver of cooperation between members of the same species

and between different species.
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Data Availability

Data and code are available at https://gitlab.com/treyjscott/symbiont prevalence.
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485 Tables and Table Legends

486  Table 1: Counts (and percent) of individual endosymbiont types, the total number of
487  screened hosts, and the year of collection for each sampling location used in this

488  study. Percents need not sum to 100 because of the presence of coinfections.

Tot:

P. P. Scri
Location hayleyella agricolaris P. bonniea Amoebophilus Chlamydiae Hos
Arkansas- Forest City 3(33.3%) 0(0%) 0(0%) 0(0%) 1(11.1%)
Georgia- Cooper Creek 0(0%) 0(0%) 0(0%) 0(0%) 10(71.4%)
[llinois- Effingham 0(0%) 2(28.6%) 0 (0%) 0 (0%) 0 (0%)
Indiana- Bloomington
(Lobelia) 9 (50%) 0(0%) 0 (0%) 1(5.6%) 3(16.7%)
Indiana- Patoka Lake 8(61.5%) 4(30.8%) 0(0%) 1(7.7%) 3(23.1%)
Kentucky- Land Between the
Lakes 6 (60%) 6 (60%) 0 (0%) 0 (0%) 4 (40%)
Massachusetts- Mt. Greylock 1(8.3%) 4(33.3%) 0(0%) 0(0%) 1(8.3%)
Massachusetts-Boston 0(0%) 0(0%) 0(0%) 0(0%) 5(55.6%)
Missouri- St. Louis 0(0%) 0(0%) 0(0%) 0(0%) 1(7.7%)
North Carolina- Linville Falls 0(0%) 10 (41.7%) 0(0%) 0(0%) 0(0%)
North Carolina- Little Butts
Gap 0(0%) 1(4.2%) 3(12.5%) 1(4.2%) 3(12.5%)
Tennessee- Indian Gap 0(0%) 2(20%) 1(10%) 0(0%) 1(10%)
Tennessee- Rhodo Thicket 0(0%) 3(42.9%) 0(0%) 1(14.3%) 3(42.9%)
Tennessee- Road 0(0%) 0(0%) 0(0%) 0(0%) 0(0%)
Tennessee- Sugarlands 0(0%) 0(0%) 2(33.3%) 1(16.7%) 0(0%)
Texas- Armand Bayou 0(0%) 0(0%) 0(0%) 2 (28.6%) 0(0%)
Texas- Carthage 0(0%) 0(0%) 0(0%) 0(0%) 0(0%)
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501

502

503

504

505

506

507

Texas- Houston Arboretum
Texas- Linden

Texas- Webster

Virginia- Mountain Lake
Biological Station

Virginia- Mountain Lake
Biological Station

2 (3.4%)
1(14.3%)
0 (0%)

0 (0%)

26 (13.8%)

19 (32.2%)
1(14.3%)
0 (0%)

3 (1.3%)

48 (25.5%)

0 (0%)
0 (0%)
0 (0%)
4 (1.8%)

8 (4.3%)

14 (23.7%)
0 (0%)
0 (0%)
23 (10.2%)

70 (37.2%)

23

27 (45.8%)
1(14.3%)
0 (0%)

92 (40.7%)

33 (17.6%)
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Figures and Figure Legends
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513  Figure 1: D. discoideum sample locations and patterns of endosymbiont infection.

514  (A) Map of D. discoideum sample locations. Black points show locations. Pie charts
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529

530

show the frequencies of symbionts in screened hosts. Relative pie chart size
indicates the number of sampled hosts at a location. (B) Patterns of coinfection for
different symbiont pairs from logistic regressions. Color shows the estimated log
odds (95% confidence intervals are shown in the boxes). P. agricolaris-P. bonniea
coinfection mean is not colored because it is an outlier due to the lack of any
coinfections (confidence intervals are still shown). Map was generated with the sf

package in R (Pebesma, 2018).
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531

532  Figure 2: Maps of soil characteristics from sample locations. (A) Colwell’s P for
533  precipitation from 1901 to the year of sampling. (B) Colwell’s P from the five years
534  before sampling. (C) Mean annual precipitation (MAP) calculated from 1901 to the
535 year of sampling. (D) pH of soil. (E) Mean annual temperature (MAT) of soil. (F)
536  Carbon to nitrogen ratio (C/N) of soil. Map was generated with the sf package in R
537 (Pebesma, 2018).

538
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540  Figure 3: P. hayleyella and P. bonniea are differently affected by and inhabit

541 different areas of precipitation predictability. The prevalence of P. hayleyella (A) and
542  P. bonniea (B) with different values of predictability of precipitation across locations
543  (samples per site is indicated by the size of the point). Prevalence is the fraction of
544  screened hosts that were found with a given endosymbiont. Logistic regression fits
545  are shown as lines. P. hayleyella and P. bonniea inhabit different soils in terms of
546  their precipitation predictability as shown by histograms on top of panels (note

547  that P. bonniea is only found at predictability values above 0.37 while P. hayleyella is
548 found almost exclusively at or below this value). Numbers above bars in histogram
549  are the number of symbionts found in screened hosts for a given value of

550 precipitation predictability.
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