
Proc. of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME 2024)
4-6 November 2024, Male, Maldives

Designing a System-Centered View to
Microservices Using Service Dependency Graphs:

Elaborating on 2D and 3D visualization
Patrick Harris

patrick harris3@baylor.edu
CS, Baylor University

Waco, TX

Mia Gortney
mia gortney1@baylor.edu

CS, Baylor University
Waco, TX

Amr S. Abdelfattah
amr elsayed1@baylor.edu
SIE, University of Arizona

Tucson, AZ

Tomas Cerny
tcerny@arizona.edu

SIE, University of Arizona
Tucson, AZ

Pablo Rivas
pablo rivas@baylor.edu

CS, Baylor University
Waco, TX

Abstract—Cloud-native systems have become widely embraced
by the industry. The decentralization characteristic of these sys-
tems provides many benefits, which have led to their widespread
adoption. However, while cloud-native systems have solved many
of the limitations of monolithic systems, they have introduced
their own problems. A key issue is decentralization, which makes
it difficult to capture a view of the system as a whole. Without a
system-centric perspective, developers resort to updating assigned
services without analyzing the implications on the overall system.
As a result, a software system can degrade over time by
introducing technical debt. A holistic system view, such as a
service dependency graph, is the instrumental artifact that can
help developers understand system dependencies, discern future
extensions, or aid with change impact analysis. However, the
established visualizations of these graphs are static, aiming to
provide all information at once, which leads to complex and hard-
to-understand graphs when representing microservice systems. In
this paper, we advance the visualization of service dependency
graphs with interactive features. We present an interactive and
reactive two-dimensional and three-dimensional graph view for
microservice systems that aims to simplify analysis of complex
systems when looking for dependencies across services.

Index Terms—Software Architecture Reconstruction, Static
Analysis, Microservices, Cloud-Native

I. INTRODUCTION

Microservice architecture is the standard for cloud-native
systems. Its decentralized nature allows the system to handle
much larger payloads by distributing the work to multiple
services. Multiple services also allow developers to work
independently and institute their own frameworks. Benefits
such as these are the reason companies have moved from
monolithic systems to microservices.

With these benefits and solutions to monolithic problems
come new issues. One major issue is distributed system
architectural degradation, which occurs because there is no
centralized view of the system. Moreover, with developers

working independently on individual microservices and not
reconciling their changes, the system can decay over time
into a completely different version from what was intended.
Independent parts may not work together as a whole due to
different development environments or even different program-
ming languages. Issues can go unnoticed by other developers
if they are not working on that part of the system.

With a holistic view of the system’s service dependen-
cies, developers could better understand the impact of source
code changes on other services and avoid ripple effects. We
performed multiple systematic literature reviews to find the
most common architectural views providing a holistic per-
spective for microservices, and identified service dependency
graphs [1]–[3]. However, current graph visualizations lack
interactivity and present a static, all-in-one solution.

There is a need for more advanced visualization that pro-
vides interactivity [4], [5] to help developers better understand
the system, its design qualities, and the implications of their
code changes to selected system parts. In the context of cloud-
native systems where the number of microservices grows
significantly, an established approach to service dependency
graph visualization renders too complex and too detailed to
help practitioners understand the system [6]; and novel visu-
alization approaches are necessary to adopt the microservice
system specifics. In this paper, we address a novel interactive
visualization for service dependency graphs.

Problem Statement: Established visualizations of service
dependency graphs are static all-in-one solutions that lack
interactivity and available data visualization advancements.
They do not align with the complexity brought by microser-
vices, where many decentralized services interact and render
too complicated to manually reason about when dealing with
system quality assessments.

Paper contribution: To provide interactive service depen-

979-8-3503-9118-3/24/$31.00 © 2024 IEEE

https://orcid.org/0000-0002-3675-239X
https://orcid.org/0000-0003-1834-8833
https://orcid.org/0000-0001-7702-0059
https://orcid.org/0000-0002-5882-5502
https://orcid.org/0000-0002-8690-0987

dency graph visualization that takes into account large-scale
microservice systems, we investigate a 2D and 3D solution.
We implement a visualization prototype that can render a high-
level system-centered view. Finally, we use a large third-party
system benchmark to demonstrate our solution.

The rest of the paper is organized as follows. Section II gives
background into different visualization techniques and the ben-
efits and issues they present. Section III details works related
to our topic. Section IV describes our software reconstruction
method, which includes static analysis and usage of a service
dependency graph. Section V details the implementation of
our visualization prototype. Section VI discusses our findings
overall, the benefits they offer, and potential extensions and
applications for our research. Finally, we conclude our paper
in Section VII with a general summary of our implementation
and research.

II. BACKGROUND

In order to create a high-level view of the system, data about
the system must be extracted in order to reconstruct [6] and
understand it. Two general approaches exist for this extraction
process: static and dynamic analysis.

Dynamic analysis [7], [8] is used primarily in the industry
to extract service dependency graphs. Tracing tools such as
Jaeger [9] and OpenTelemetry [10] can capture and monitor
calls between microservices at runtime. These calls can be
instrumented and aggregated to determine metrics such as
end-to-end delay and failed calls. The metrics can then be
used to determine problem areas within a system and treat
them by implementing load balancing and hot swapping of
microservices. Some small-scale visualizations, like Jaeger’s
service dependency graph generated from a single trace, can
help to more easily see these metrics aggregated, rather than
having to manually parse text [9]. However, this graph is static
and limited to the data collected by tracing, not discovering
many of the dependency relationships that are not executed
during a trace. In addition, the distributed tracing approach
does not scale well as an architecture expands over time since
the implemented mitigation efforts seek to treat the symptoms
as opposed to curing the underlying issues.

On the other hand, static analysis [11] strives to under-
stand the system as it stands, without events taking place at
runtime. Static analysis focuses on analyzing the code and
tracking dependencies based on what is represented in the
code structures. Typically, this involves parsing the code and
generating abstract syntax trees and control-flow graphs that
can be reduced to call graphs. However, one issue comes
with system design where microservices typically build on
components, and common program analysis considers low-
level code [12]. Thus, many works in this area focus on
language-specific solutions or include introspection methods
like reflections which provide the interface perspective of used
components rather than complete detail. Similar to dynamic
analysis, there are limitations. Here, the limits are language de-
pendence and restrictions on detecting components. Successful
demonstration of analyzing microservice systems using static

analysis has been demonstrated by Walker et al. [13], while
limited to the Java platform.

No matter the approach, after extracting the structure of the
system, this data can be aggregated and analyzed to visualize
the system. One specific view of a decentralized system is a
service dependency graph which provides a high-level view
of the services that make up the system and the dependencies
between them. This type of graph is the perfect framework for
visualizing an entire microservice system. The visualization
is simple but easily extendable. The prototype we introduce
in this paper utilizes static analysis to form its own service
dependency graph. We also demonstrate how such a graph
can be extended to have more functionality.

III. RELATED WORK

As the issues of architectural degradation within microser-
vice architecture have become more apparent, research has
been conducted into how this issue can be overcome through
software architecture reconstruction and the outcome visual-
ization to practitioners.

Rademacher et al. outline a modeling method to reconstruct
system architecture in order to enable an analysis of the
system that can help prevent architectural degradation [14].
By collecting the domain concepts, services, and operations
in a system, a decentralized system can be reliably modeled.
Such a model can be used to understand the architecture
and its implementation and identify areas that could degrade
the system. Their approach is broken down into six distinct
steps. The first phase, preparation, consists of gathering the
input for reconstruction, like documentation, source code, and
scripts, as well as inputting any known information about the
system, like the technology stack. In the next phase, domain
modeling, domain concepts are identified as well as their
bounded context, which is a collection of domain objects
within the same scope [15]. Each microservice should be
constrained to one context [16]. The third phase, service mod-
eling, revolves around identifying microservices. Framework-
based annotations are oftentimes useful for doing this, like
the @RestController annotation in the Spring frame-
work [17]. Next, in the operation monitoring phase, operation
nodes, like the deployment containers, are uncovered using
artifacts like Dockerfiles [18]. In the fifth phase, technical
refinement, any information on the technology stack that was
not found in the previous phases is exposed. Finally, the post-
processing phase refactors the models from previous phases
to form a more cohesive model and runs verification checks.

Bushong et al. devised a method to extract endpoints and
calls from a decentralized system’s codebase using static
analysis [19]. The advantage of this method is a view of the
system architecture can be generated before the deployment of
the system and updated as the code changes. Their method was
implemented in a prototype called Prophet [20] that uncovers
the entities, properties, and relationships from a codebase.
Prophet [20] generates an intermediate representation in the
form of UML diagrams, describing the entities, properties,
and relationships within a system. In order to accomplish

this, Prophet [20] takes a two-step approach. The first step
is extracting a context map from the system. This is done
by first identifying the classes in each microservice using
source code analysis or bytecode analysis. Then, the classes
must be filtered to distinguish data entities from other classes.
After filtering, a context map can be built by uncovering
the relationships among the entities. The second step is to
generate a communication diagram. API endpoints and where
these endpoints are referenced are identified with further code
analysis. The format of these endpoints is standardized, such
as with HTTP, and thus makes this approach reliable. However,
since this approach relies on structure uncovered using a
specific syntax, it is not versatile and is limited to specific
technology stacks like the Spring framework [17]. Also, testing
with the prototype confirmed that some complex behavior, like
multiple URLs referring to one call, may not be discovered.
These behaviors may not be easily uncovered in the codebase,
but instead revealed dynamically as a system is running.

Cerny et al. implement models on top of the Prophet
prototype in order to visualize the entities and relationships in
augmented reality [5]. The resulting immediate representation
from the static analysis done by Prophet [20] is analyzed
with system reasoning to generate a system-centric view. Their
prototype, Microvision [21], chooses to represent the system
by combining the service and domain contexts uncovered by
Prophet [20] to illustrate the scope of all entities in the system.
The visualization is composed of two parts: a graph display
and an API view. The graph display shows the system in three-
dimensional space where a node represents a microservice and
links represent the service dependencies among microservices.
Each microservice may be composed of one to many API
endpoints which can be shown by selecting a microservice,
supplying a level of granularity where users can see the details
of the overall system or of a specific service. Microvision [21]
provides a high level of abstraction that helps make the system
easily understandable and navigable.

Another approach taken for the visualization of a software
system, described by Fittkau et al., is viewing software ar-
chitecture as a metaphorical city [22]. In a ’software city’
as they describe, a trace is visualized with two parts: open
and closed packages. Open packages, denoted by flat green
boxes, show the internal details of the package, like sub-
packages and classes. Green boxes on the top represent closed
packages that do not expose their internals. Classes are shown
as small purple boxes and orange lines show communication.
The width of these lines shows the frequency of different calls
and the height of the classes represents the number of active
instances. This model is displayed in virtual reality to provide
a fluid method of interactivity. They found using gestures
for control provided a natural way for users to examine the
model. Moving the model is done like physically grabbing an
object, rotating the model is done like spinning a ball with two
hands, and scaling the model is done by tilting the upper body.
While the approach taken here is very interactive and intuitive,
the package structure is limited and not ideal for illustrating
complex relationships in a decentralized system.

IV. USED SOFTWARE ARCHITECTURE RECONSTRUCTION
METHOD

We chose to use static analysis to generate a system view in
our prototype as dynamic analysis has a few large drawbacks,
namely that sufficient runtime metrics are needed to ensure all
behaviors of the system are captured [23]. For this reason, the
following discussion will be focused on static analysis.

Static analysis functions by examining the source code
without executing it. The code statically defines the structure
of the system including service endpoints and dependencies.
This structure is made apparent by the objects defined within
the code and the external objects referenced by them. Thus,
by analyzing the source code, a map of the system can
be generated [24]. The general process of static analysis,
described in Fig. 1, is extracting the structure, or model,
from the source code and describing it with some kind of
intermediate representation that can then be analyzed and
utilized in a variety of ways, including for visualization.

Source
Code

Model
Extraction

Intermediate
Representation

(IR)
Visualization

Fig. 1. Static Analysis Process

However, oftentimes in a cloud-native system, the codebase
is spread across many repositories and implemented with many
languages. Since this is the case, a tool for static analysis is
language-dependent, meaning that it must be able to process
the syntax of all the languages that make up a particular
system.

Unlike dynamic analysis, static analysis does not require
system instrumentation at runtime, so there is no overhead
placed on the system. Furthermore, instrumentation of the
entire codebase ensures that all services and static dependen-
cies are captured. Overall, static analysis provides an effective
means to reconstruct the services in a cloud-native system and
how those services are interconnected.

Through the use of static analysis, a service dependency
graph can be created. A service dependency graph is made up
of nodes and links, as shown in Fig. 2. The nodes represent the
different microservices in the system. The links represent the
service calls that create dependencies between services [25].
The service dependency graph’s main function is to provide a
high-level view of the system with limited details. The simple
and concise nature of a service dependency graph makes it
ideal to visualize in our prototype; nodes and links can be
easily represented on a screen while still retaining a host of
information about the system’s makeup.

V. MICROSERVICE VISUALIZATION PROTOTYPE

Analysis:: Microservice systems can contain hundreds of
nodes that are connected through remote calls or messages,

Microservice A

Microservice B Microservice C

Microservice D Microservice E

Fig. 2. Service Dependency Graph

leading to dependencies. To deal with system complexity, 2D
space might render limitations that can be better solved in
3D. Moreover, the perspective should not consider an all-in-
one static solution but rather engage developers with selective
options. For instance, service nodes should become selectable
to render more details about their connections illustrated via
edges, or one should be able to drag a selected node to high-
light its specifics, as developers might limit their work on that
one specific node. Cerny et al. [5] approached an interactive
model of service dependency graph in augmented reality. In
a later user study, Abdelfattah et al. [4] identified that such
a model brings many benefits with space rendering, however,
there are outstanding features that practitioners expect such as
the ability to search. Furthermore, augmented reality requires
a distinct interaction with a camera-equipped device that is
used to manipulate the graph. For long-term interaction, this
might be impractical as it is disjoint from the workstation used
to develop the system. This brings the opportunity to fill the
gap with web-based interactive models that can render nearly
any system and enable team collaboration.

Prototype:: To develop our visualization prototype of the
service dependency graph we started by considering the large
third-party microservice system benchmark Train-Ticket [26].
The main objective of the prototype was to visualize a mi-
croservice architecture in a holistic and interactive manner that
provides a quality level of detail while making it easy to use
and find information. Ultimately, we aimed at creating a user-
defined experience that can be useful to both novices and ex-
perts in a variety of computing fields. We chose JavaScript for
our codebase to support a lightweight web application for ease
of use. Data visualization is well-established in JavaScript. For
instance, D3 library provides a two-dimensional force-directed
graph as well as capabilities for a force-directed graph in three-
dimensional space.

Model intermediate representation:: An important piece of
the prototype is how the visualization is generated. This core
functionality is provided through a JSON schema that stati-
cally describes a system at a high level. A decentralized system

Fig. 3. Visualization of Train Ticket Service Call Graph in 3D

is described as a collection of nodes (services) and links
(dependencies between services). This schema can be easily
extracted through static analysis of a system’s codebase [19].
Our prototype takes in this schema as input and generates
the visualization as the collection of nodes and links that
the schema specifies. Using static analysis, we extracted this
JSON schema from the Train Ticket benchmark microservice
system [26], and the resulting visualizations are shown in
Fig. 3 and Fig. 4.

The schema is also easily extensible to allow for a more
enhanced visualization that provides more information in an
easily accessible manner. For example, by providing a node
type, meaning whether a system part is a service, database,
proxy, storage, or some other kind of element, we can render
a visualization with multiple shapes where each shape maps
to a certain kind of system part.

Interactive features:: To create an interactive user-defined
experience, many features were considered on top of the
baseline visualization.

• Each node can be dragged and moved around in order to
allow for better manipulation of the data.

• Hovering over a node, displayed in Fig. 6 and Fig. 7,
simplifies the observability of other nodes this service is
connected to.

• Clicking on a node can show an information box that
provides more detail about that node as shown in Fig. 5.

• An interactive search, highlighted in Fig. 8 and Fig. 10,
makes it quick to find needed information, especially in
a large, decentralized system consisting of hundreds of
nodes.

• Moreover, each node is dynamically colored according to
the degree to which it is coupled with other nodes, which
can be user-defined.

• Additionally, a right-click context menu, shown in Fig. 9,
provides access to multiple options to better be able to
interact with the nodes and links.

– These options include limiting a graph to just a node

Fig. 4. Visualization of Train Ticket Service Call Graph in 2D

and its neighbors, adding a new link, deleting a
node, keeping track of a node as a user traverses
a large graph, showing how data moves from one
node to others, and highlighting nodes to distinguish
them. This menu enables additional features for user
interaction with the system.

Another avenue explored by the prototype is predicting
system evolution. Services and their dependency relationships
can be added or removed from the visualization to illustrate

Fig. 5. Information Box Describing a Node

Fig. 6. Hovering Over A Node in 3D

how these changes may impact the architecture at large.
Developers could test how the introduction, modification, or
removal of a microservice could change the system before
deploying the changes. This aims to help prevent ripple effects
where a small change may have unintended adverse effects.

Other possible features:: In the future, we hope to further
enhance the usefulness of the prototype by expanding the
scope of features offered. One option is incorporating dynamic
analysis which could help to visualize the flow of data
throughout a system when a request is made. Furthermore, by
extending the JSON schema to support dynamic data about
microservices, real-time monitoring and data flow analytics
could be displayed. Another direction could be presenting
views beyond the service dependency graph. A physical archi-
tecture view could open the door to displaying performance
metrics such as CPU, RAM, and disk utilization by different
microservices. Alternatively, providing an option to switch to

Fig. 7. Hovering Over A Node in 2D

Fig. 8. 3D Visualization of Query for ’ts-admin’ Service

Fig. 9. Context Menu To Further Interact with Node

a lower-level call graph that exposes the endpoints within each
microservice may help to provide more granularity. Another
option is implementing a time scale to show how the graph
changes over time. A third option is using the visualization
to highlight deficiencies, also called code smells, within the
system. Illustrating where a cyclic dependency or knot exists
can help raise awareness of system issues and guard against
architectural degradation. There are lots of opportunities for
extension in different directions through the customizability of
our visualization. The size of links, color of nodes and links,
or grouping of nodes can be manipulated to reflect different
attributes. All of these avenues are achievable through the
availability and ease of use of our prototype.

VI. DISCUSSION

In our microservice visualization prototype, we used static
analysis to create a 2D and 3D service dependency graph.
Throughout deciding on this software architecture reconstruc-
tion technique and implementing it in our prototype, we have
discovered several benefits of using this particular approach.

One benefit to using static analysis in conjunction with a
service dependency graph is simplicity. At its core, a service

Fig. 10. 2D Visualization of Query for ’ts-admin’ Service

dependency graph is composed of services and dependencies.
These are relatively simple to derive from the code base and
visualize as a whole.

Another benefit we found is that by using the service
dependency graph, we can extend the visualization’s features
more if needed. It provides the opportunity to add dynamic
analysis and visualize data flows in the service dependency
graph as well as other additional functionality. This ability
to extend is an advantage to the developer as they can pick
and choose what they would like to see. It also creates the
opportunity for multiple views where each graph serves a
different purpose.

Our prototype showcases some of these benefits by illustrat-
ing the different features we were able to add to the original
service dependency graph. We were able to classify different
node types and groups. The user has the ability to dynamically
add and remove nodes and links as they please. We also have a
system that identifies high coupling based on the dependencies.
Even with all these new features, our graph remains simple to
look at as well. Being able to move the nodes around and
rotate the graph enables the user to create different views too.

Overall, our prototype serves not only as a tool for generat-
ing a service dependency graph from a JSON schema but more
importantly as a framework that supplies a foundation for how
cloud-native systems can be visualized. The visualization this
framework outlines has many practical applications including
combating architectural degradation, change impact analysis,
analyzing performance and health metrics, and providing gen-
eral organization for large-scale projects.

While our framework is a good foundation for cloud-
native system visualization, the question of whether 2D or
3D visualization is more useful still needs to be answered.
We have conducted a user study with 6 expert participants
to determine if 2D or 3D visualization is more desirable for
understandability and usage. In this study, each participant
interacted with two different versions of either a small or large
system with the 2D and 3D visualizations. They were given
a list of questions to answer such as finding certain nodes
or implementing a specific feature. After interacting with the

system, we asked for their feedback on what they liked, what
they didn’t like, if they would recommend the prototype for
daily work, and if they preferred one view over the other. At
the study’s conclusion, the participants favored the 2D system.
The overall accuracy of their answers was similar between 2D
and 3D, though the 3D system took longer to navigate. As of
now, the 3D model does not outperform the 2D model, but
with further development, there is potential for the future.

The prototype is available for future research and general
use on GitHub.1

VII. CONCLUSION

Using a microservice system offers several benefits with
architectural degradation as its con. One way to combat
architectural degradation is to completely understand the sys-
tem through service dependency graphs that promote expert
reasoning about planned changes or their impact. This paper
demonstrates advancements in service dependency graph vi-
sualization that take into account the specifics of microservice
systems and illustrates how these graphs can become interac-
tive to better serve developer needs. The service dependency
graph offers simplicity while still being easily extensible. We
demonstrate the usefulness of this approach through our 2D
and 3D visualization prototypes. The visualization advance-
ments are not bound to the specific system data extraction;
however, we illustrated the connection with the software
architecture reconstruction process that involves using static
analysis to create an intermediate representation of the service
dependency graph, which we visualized for a large third-party
system benchmark.

In future work, we aim to elaborate on additional features
and continue to discern whether a 2D or 3D approach would
be more useful for visualizing microservice systems.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. OISE-1854049, OISE-
2409933, and CISE-CNS 2210091.

REFERENCES

[1] T. Cerny, A. S. Abdelfattah, V. Bushong, A. Al Maruf, and D. Taibi,
“Microservice architecture reconstruction and visualization techniques:
A review,” in 2022 IEEE International Conference on Service-Oriented
System Engineering (SOSE), 2022, pp. 39–48.

[2] M. E. Gortney, P. E. Harris, T. Cerny, A. A. Maruf, M. Bures, D. Taibi,
and P. Tisnovsky, “Visualizing microservice architecture in the dynamic
perspective: A systematic mapping study,” IEEE Access, vol. 10, pp.
119 999–120 012, 2022.

[3] G. Parker, S. Kim, A. A. Maruf, T. Cerny, K. Frajtak, P. Tisnovsky,
and D. Taibi, “Visualizing anti-patterns in microservices at runtime: A
systematic mapping study,” IEEE Access, vol. 11, pp. 4434–4442, 2023.

[4] A. S. Abdelfattah, T. Cerny, D. Taibi, and S. Vegas, “Comparing 2d and
augmented reality visualizations for microservice system understand-
ability: A controlled experiment,” in The 31st IEEE/ACM International
Conference on Program Comprehension (ICPC 2023). IEEE, 2023.

[5] T. Cerny, A. S. Abdelfattah, V. Bushong, A. Al Maruf, and D. Taibi,
“Microvision: Static analysis-based approach to visualizing microser-
vices in augmented reality,” in 2022 IEEE International Conference on
Service-Oriented System Engineering (SOSE), 2022, pp. 49–58.

1Prototype: https://github.com/patrickeharris/ArchitectureVisualizationPOC

[6] A. S. Abdelfattah and T. Cerny, “Roadmap to reasoning in microservice
systems: A rapid review,” Applied Sciences, vol. 13, no. 3, 2023.
[Online]. Available: https://www.mdpi.com/2076-3417/13/3/1838

[7] A. Al Maruf, A. Bakhtin, T. Cerny, and D. Taibi, “Using microservice
telemetry data for system dynamic analysis,” in 2022 IEEE International
Conference on Service-Oriented System Engineering (SOSE), 2022, pp.
29–38.

[8] A. Bakhtin, A. Al Maruf, T. Cerny, and D. Taibi, “Survey on tools
and techniques detecting microservice api patterns,” in 2022 IEEE
International Conference on Services Computing (SCC), 2022, pp. 31–
38.

[9] “Open source, end-to-end distributed tracing.” [Online]. Available:
https://www.jaegertracing.io/

[10] “What is opentelemetry?” Jun 2022. [Online]. Available: https:
//opentelemetry.io/docs/concepts/what-is-opentelemetry/

[11] T. Cerny, J. Svacina, D. Das, V. Bushong, M. Bures, P. Tisnovsky,
K. Frajtak, D. Shin, and J. Huang, “On code analysis opportunities
and challenges for enterprise systems and microservices,” IEEE Access,
vol. 8, pp. 159 449–159 470, 2020.

[12] M. Schiewe, J. Curtis, V. Bushong, and T. Cerny, “Advancing static
code analysis with language-agnostic component identification,” IEEE
Access, vol. 10, pp. 30 743–30 761, 2022.

[13] A. Walker, I. Laird, and T. Cerny, “On automatic software architecture
reconstruction of microservice applications,” in Information Science and
Applications, H. Kim, K. J. Kim, and S. Park, Eds. Singapore: Springer
Singapore, 2021, pp. 223–234.

[14] F. Rademacher, S. Sachweh, and A. Zündorf, “A modeling
method for systematic architecture reconstruction of microservice-
based software systems,” Enterprise, Business-Process and
Information Systems Modeling21st International Conference, BPMDS
2020, 25th International Conference, EMMSAD 2020, Held at
CAiSE 2020, Grenoble, France, June 8–9, 2020, Proceedings,
vol. 387, p. 311—326, January 2020. [Online]. Available:
https://europepmc.org/articles/PMC7254549

[15] E. Evans and E. J. Evans, Domain-driven design: tackling complexity in
the heart of software. Addison-Wesley Professional, 2004.

[16] S. Newman, Building microservices. ” O’Reilly Media, Inc.”, 2021.
[17] “Spring.” [Online]. Available: https://spring.io/
[18] “Docker compose overview.” [Online]. Available: https://docs.docker.

com/compose/
[19] V. Bushong, D. Das, and T. Cerny, “Reconstructing the holistic archi-

tecture of microservice systems using static analysis,” in Proceedings
of the 12th International Conference on Cloud Computing and Services
Science - Volume 1: CLOSER,, INSTICC. SciTePress, 2022, pp. 149–
157.

[20] Cloudhubs, “Prophet,” https://github.com/cloudhubs/prophet, 2021.
[21] ——, “Microvision,” https://github.com/cloudhubs/microvision, 2021.
[22] F. Fittkau, A. Krause, and W. Hasselbring, “Exploring software cities

in virtual reality,” in 2015 IEEE 3rd Working Conference on Software
Visualization (VISSOFT), 2015, pp. 130–134.

[23] K. Sellami, M. A. Saied, A. Ouni, and R. Abdalkareem, “Combin-
ing static and dynamic analysis to decompose monolithic application
into microservices,” in Service-Oriented Computing, J. Troya, B. Medja-
hed, M. Piattini, L. Yao, P. Fernández, and A. Ruiz-Cortés, Eds. Cham:
Springer Nature Switzerland, 2022, pp. 203–218.

[24] V. Bushong, D. Das, A. Al Maruf, and T. Cerny, “Using static anal-
ysis to address microservice architecture reconstruction,” in 2021 36th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2021, pp. 1199–1201.

[25] S.-P. Ma, C.-Y. Fan, Y. Chuang, W.-T. Lee, S.-J. Lee, and N.-L. Hsueh,
“Using service dependency graph to analyze and test microservices,” in
2018 IEEE 42nd Annual Computer Software and Applications Confer-
ence (COMPSAC), vol. 02, 2018, pp. 81–86.

[26] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao,
“Benchmarking microservice systems for software engineering
research,” in Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings, ser. ICSE ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
323–324. [Online]. Available: https://doi.org/10.1145/3183440.3194991

https://github.com/patrickeharris/ArchitectureVisualizationPOC
https://www.mdpi.com/2076-3417/13/3/1838
https://www.jaegertracing.io/
https://opentelemetry.io/docs/concepts/what-is-opentelemetry/
https://opentelemetry.io/docs/concepts/what-is-opentelemetry/
https://europepmc.org/articles/PMC7254549
https://spring.io/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://github.com/cloudhubs/prophet
https://github.com/cloudhubs/microvision
https://doi.org/10.1145/3183440.3194991

	Introduction
	Background
	Related Work
	Used Software Architecture Reconstruction Method
	Microservice Visualization Prototype
	Discussion
	Conclusion
	References

