
Is the 3D model the way to go when presenting microservice
architecture?

Tomas Cerny
tcerny@arizona.edu

SIE, University of Arizona
Tucson, Arizona, USA

Amr S. Abdelfattah
amr_elsayed1@baylor.edu
SIE, University of Arizona
Tucson, Arizona, USA

Darek Gajewski
dgajewski@arizona.edu
SIE, University of Arizona
Tucson, Arizona, USA

Patrick Harris
patrick_harris3@baylor.edu

CS, Baylor University
Waco, Texas, USA

Mia Gortney
mia_gortney1@baylor.edu

CS, Baylor University
Waco, Texas, USA

Abstract
Software engineers are challenged with maintaining complex sys-
tems as the architecture becomes too difficult to understand in a 2D
space. As a result, researchers look for system abstractions to help
engineers understand the system architecture and its dependencies
in both real time and statically. This problem is especially concern-
ing to decentralized systems like those built with microservices. The
advancement in the areas of virtual and augmented reality brings
interesting directions for coping with complex models abstract-
ing these systems. However, when considering a visual model to
represent the system architecture with its dependencies, there are
two most obvious options: an intractable two or three-dimensional
model (2D/3D). This paper questions the effectiveness of virtual
and augmented reality and 3D visual models to improve compre-
hension. In this paper, we develop two interactive visual models
to represent microservice dependency graphs. One model is 2D,
and the other is 3D, allowing us to render a microservice system
with varying size. We then ask microservice developers questions
about the abstracted system, and analyze the pros and cons of these
models for the tasks related to system architecture comprehension.

CCS Concepts
• Human-centered computing → Visualization; • Applied
computing → Service-oriented architectures; • Software and
its engineering → Software architectures.

Keywords
Visualization, Program Comprehension, User Study, Microservices
ACM Reference Format:
Tomas Cerny, Amr S. Abdelfattah, Darek Gajewski, Patrick Harris, and Mia
Gortney. 2024. Is the 3D model the way to go when presenting microservice
architecture?. In 39th IEEE/ACM International Conference on Automated
Software Engineering Workshops (ASEW ’24), October 27-November 1, 2024,
Sacramento, CA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/
10.1145/3691621.3694954

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1249-4/24/10
https://doi.org/10.1145/3691621.3694954

1 Introduction
Maintainability of software systems has a significant impact on
costs promoted to end users. A driving factor for system maintain-
ability is robust software architecture. However, modern systems
have become complex and decentralized, inviting multiple disjoint
development teams to contribute to the overall software solution. A
great example comes with microservices, which fuel cloud-native
solutions. It is common for one microservice to be a manager but a
single team [2] to support the separation of duty.

Increase in system complexity requires new methods to visualize
the system as a whole. First, we condense two-dimensional (2D)
representations; then, we add metadata to help illustrate more infor-
mation. It has been established in other fields that 2D images suffer
similar issues. Adding dimensions like time (real-time changes,
growth) and space (the size of a component), along with other vari-
ables, further add complexities in a 2D visualization that can be
difficult to differentiate. The paper starts from a proven theory that
adding dimensions to the visual forms, allows humans to consume
more data at once. Making it interactive allows engineers to ignore
information to reduce noise.

To tackle the comprehension of dependencies in complex sys-
tems, we often use an abstraction model that represents selected
architectural views [7]. A commonly used view for microservices is
the service view, which shows the interconnection between services.
Such a view is recovered through trace analysis or by a software
architecture reconstruction process [3]. In the context of systems
with a large number of microservices, proper visualization of the ar-
chitectural view becomes critical as it impacts how quickly software
engineers understand the system architecture and its properties.

In the context of visualization advancements, technologies that
support virtual reality (VR) or augmented reality (AR) come into
play. However, we must consider that these technologies influence
the choice of visual models. To document software architecture,
modeling languages like UML and SysML are commonly used, or
ArchiMate is commonly used for enterprise architecture. However,
all these models consider two-dimensional (2D) modeling aspects.
For VR/AR, we would likely seek alternative visualization that
would suit three-dimensional (3D) space.

The logical question to ask is how the 2D and 3D models com-
pare when used by practitioners for tasks involving software archi-
tecture, its properties, and component dependencies. This paper

https://orcid.org/0000-0002-5882-5502
https://orcid.org/0000-0001-7702-0059
https://orcid.org/0009-0005-0441-4213
https://orcid.org/0000-0002-3675-239X
https://orcid.org/0000-0003-1834-8833
https://doi.org/10.1145/3691621.3694954
https://doi.org/10.1145/3691621.3694954
https://doi.org/10.1145/3691621.3694954


ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA Cerny et al.

performs an experiment where a service view of a microservice sys-
tem is rendered in two visual models, and microservice engineers
participate in a user study that asks them to extract common sys-
tem architectural properties from the two different visualizations.
It analyzes the models as instruments to aid engineers in extracting
correct answers about the system based on a set of questions; it
also considers their satisfaction and feedback. The controversial
findings are elaborated on and discussed in this paper.

This paper is organized as follows. Section 2 introduces back-
ground. Section 3 details the experiment and user study. Section 4
provides a discussion, and Section 5 concludes the paper.

2 Background
An architecture description is formally described by the ISO/IEC/IEEE
42010:2022 [7]. It describes the structure and expression of various
entities, including software, systems, enterprises, systems of sys-
tems, etc. In this description, we consider that architecture serves
many purposes, and for this reason, we can consider multiple view-
points. An architecture viewpoint is a way of looking at a system
of interest. To illustrate this, if we were in a custom house construc-
tion business, there would be different interests for an electrician
and a plumber. When we consider a specific system, the particular
viewpoint leads to an architectural view that might address multiple
concerns. For instance, for a particular house, we might produce a
sketch for a plumber; however, even an electrician might use that
sketch to ensure proper distances for his work. The architectural
view thus exposes architectural descriptions of a system of interest.
Using this form of abstraction has the benefit of focusing on specific
concerns or stakeholder interests. An architecture description is
a work product that expresses an architecture. It is used to help
stakeholders understand, analyze, and compare architectures. An ar-
chitecture description may take the form of document(s), model(s),
simulation(s), or other forms.

In the context of this paper, a visualmodel is our interest. When
we consider software systems, the traditional way to design systems
has been using visual models [14], such as UML, SysML, or Archi-
Mate. The advantage of ArchiMate is that it is meant for enterprise
systems, while UML suite models small system parts. Both of these
models operate in the 2D space [3]. ArchiMate is typically modeled
at four levels with different specializations: Business, Application,
Data, and Technology, which to some extent correspond to the
architectural views that have also been used for microservices [9].

As mentioned in the introduction, the specific perspective con-
sidered in this paper relates to microservices. The service viewpoint
is considered the most common visualization for microservices in
literature [5]. This viewpoint represents interconnection across
services that typically interact through remote calls to exposed
endpoints. However, it is also possible to use message queues with
implicit invocation as well. Established tools typically use a 2D
graph where nodes represent a microservice and oriented edges
show the direction of the interconnection implied by remote calls.
Such graphs are reconstructed from dynamic traces by monitoring
or through software architecture reconstruction [3].

A few studies have compared different visualizations for mi-
croservice architecture viewpoints, i.e., the AR vs. 2D in [1]. How-
ever, these studies did not provide a fair comparison between ab-
stract visual models. Notably, there is a lack of research in the
community to determine if the 3D model’s superiority can be natu-
rally assumed simply because it utilizes an additional dimension.

This paper develops two visual models with equal levels of in-
teractivity and rendering space to assess the understandability of
service viewpoint across these dimensions. This approach ensures
a more accurate assessment of both 2D and 3D models, addressing
whether the 2D or 3D model is the preferred choice for visualizing
microservices.

3 Experiment
The objective of this experiment is to assess how the choice between
2D and 3D models impacts practitioners’ efficiency in understand-
ing the architectural properties of microservice systems.

We measure the impact of the visual dimension of the visualiza-
tion on the system’s understandability and examine the suitability
of each model for rendering different system variants. In summary,
the goal of the experiment is formulated as follows:

Evaluating two visualization approaches, for the purpose
of measuring the microservice system understandability,
under the control of the same level of interactivity.

We ask the following research questions (RQs) to achieve the goal:
• RQ1: Is 2D or 3D visualization more efficient for understand-
ing microservice systems?

• RQ2: How do participants perceive the use of 2D/3D models
for assigned tasks?

• RQ3: What are the challenges identified by participants re-
garding the 2D/3D visualization techniques?

3.1 Benchmark and Visualization Design
To set realistic settings, we use a well-established system bench-
mark called TrainTicket [13] that has been cited over 150 times on
Google Scholar. This benchmark represents a train ticket registra-
tion system and consists of 47 microservices. This system uses re-
mote procedure calls, and we reconstructed the service dependency
graphs (SDG) using static analysis of the source code, similarly as
described in [3], to avoid manual errors. The intermediate represen-
tation of the SDG has been extracted from 44 microservices (as we
were constrained by Java) in the form of a JSON file. Additionally,
we anonymized and augmented the microservice names to resemble
different systems to minimize the learning effect in the study.

We implemented two proofs-of-concept (PoC) tools [6] to visu-
alize microservice systems from the JSON intermediate representa-
tion of the SDG. Figs. 1 and 2 show the visual models provided by
our PoCs that implement the 2D and 3D versions of the SDGs. In
the SDG, microservices are presented as nodes, and the dependency
relationships between them are represented by links connecting
the nodes. Dependency relationships were extracted using static
analysis [4, 11] and, in particular, analyzing the REST calls sent be-
tween services. The size of the links denotes how many endpoints



Is the 3D model the way to go when presenting microservice architecture? ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

Figure 1: A 2D representation of multiple nodes connected. Figure 2: A 3D representation of multiple nodes connected.

comprise that specific link. The more endpoints connecting the two
nodes, the thicker the link.

The goal was to reduce the variability between the tools so that
when comparing them, the abundance or lack of features was not
a factor in our analysis. Our PoC implemented several features to
increase the system’s usability. The nodes in the system can be
dragged into any position the user desires. The view of the graph
itself can also be explored through panning, zooming, and rotating
(in the case of the 3D graph). When the user clicks on a node, an info
box pops up showing the node/microservice name and type, as well
as its dependencies and dependents of other nodes/microservices.
Each shows the contributing REST calls listed as attributes. Upon a
right-click on a node, there is an option to isolate the node to only
its neighbors.We also implemented an interactive search, which was
pointed out as a major challenge in an AR study mentioned in re-
lated work [1]. Each node’s color is distinct and randomly assigned,
with the node and its outgoing links sharing the same color.

3.2 Participants
We reached out to ten engineers from Europe and the U.S. as poten-
tial participants. They were asked to complete a pre-study survey to
assess their expertise with microservices. Based on the survey, 6 en-
gineers were selected for the experiment. These participants were
all industry professionals with an average of 5 years of experience
working with microservices in various job roles.

3.3 Artifacts
The experiment tasks were designed and delivered via Google
Forms, with PoC visualization tools deployed and web links pro-
vided to participants for both the 2D and 3D visualizations. The
tasks included nine questions about the system, requiring engage-
ment with the visualization PoC. These questions were categorized

into specific areas: identifying incoming and outgoing dependencies
(2 questions), coupling and endpoint identification (3 questions),
endpoint analysis (2 questions), and identifying cycles (2 questions).

The training material consisted of PowerPoint slides that covered
the PoC’s features and interaction methods. Each slide included
a link to a deployed version of the PoC with a simple dataset,
encouraging hands-on practice.

A feedback form, created using Google Forms, was used to gather
participant impressions. This form featured two types of questions:
participants rated various aspects of the visualization on a 5-point
Likert scale, quantifying their experience and evaluating ease of use,
completeness, and efficiency. Additionally, participants provided
open-ended feedback on what they liked most and least about
each PoC and suggested improvements. These artifacts collectively
guided participants through tasks, training, and feedback processes,
ensuring comprehensive data collection and analysis.

3.4 Design Procedure
The study was designed as a between-subjects experiment. Each
participant received a script through e-mail divided into two sec-
tions: one for the 2D visualization and one for the 3D. Participants
were randomly assigned, so half began with the 3D model and the
other half with the 2D to minimize learning effects. The study was
structured to be completed within 60 minutes, with 10 minutes allo-
cated for training, 15 minutes for tasks, and 10 minutes for feedback
for each visualization. Participants were instructed to submit their
completed task form if they reached the 15-minute mark.

Participants began by completing the training material. They
then recorded their screens while performing the tasks, providing
insight into their interaction with the PoC. Following this, partici-
pants were required to use the PoC to complete the task form. They
accessed a deployed version of the visualization PoC with an obfus-
cated TrainTicket benchmark via a provided link. After each task



ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA Cerny et al.

group, participants reported the time taken to complete the group,
aiding in the assessment of PoC difficulty. Finally, participants filled
out a feedback form accessed via a provided link.

3.5 Analysis Approach
The participant task answers and feedbackwere analyzed towards ac-
curacy and perception of the system service view in 2D/3D models.
RQ1: Participants were asked to complete nine categorized tasks.
We prepared predetermined correct answers for each task, allowing
us to compare participant responses and calculate a correctness ra-
tio (0-1) for each task. Additionally, at the end of each task category,
participants reported the recorded the time on their stopwatch. This
allowed us to measure both the accuracy of their answers and the
time taken to complete each set of tasks.
RQ2: The perception of the systems was evaluated using a feedback
form completed by participants after finishing the tasks. The form
included a series of questions measured on a 5-point Likert scale, as-
sessing aspects like usability, understandability, completeness, and
accessibility. Participants also rated the ease of navigating the graph
and the usefulness of features like zooming, panning, and rotating.
We calculated descriptive statistics for these responses to describe
participants’ perceptions of the two different visualizations.
RQ3: The verbalized challenges in both visualizations were evalu-
ated through feedback analysis. In the feedback form, participants
were asked which features were most useful and what they would
improve or change about the visualization. They also described
any difficulties encountered. These responses besides the analysis
of recordings helped identify the challenges in both approaches.
We used the Open and Axial qualification methodologies [8, 10] to
analyze and categorize the challenges faced by the participants.

3.6 Data Analysis Results
We analyzed the collected data from participants and analyzed them
for the corresponding data to answer the RQs.
RQ1: According to the study results, there does not appear to be
a significant advantage between 2D and 3D visualizations. Partici-
pants were asked to answer nine questions for both the 2D and 3D
systems. The overall answer correctness for the 2D visualization
was 67%, while the 3D had a very similar accuracy of 65%. The most
accurate answers were for the Incoming and Outgoing Dependents
categories in both visualizations, with nearly 100% correctness.
However, the least accuracy was observed in the Endpoint Analysis
and Cyclic Dependencies categories, with around 40% correctness.

When analyzing the time taken to answer, the 3D visualization
required more time for participants to analyze the system and an-
swer most of the questions compared to the 2D model. The average
total time for the 2D visualization was 11:12 minutes, whereas the
3D visualization took 14:51 minutes. The most time-consuming
categories were Coupling and Endpoint Identification, with partic-
ipants taking an average of 3:54 minutes in 2D and 6:33 minutes
in 3D. Similarly, for the Endpoint Analysis category, the 2D visu-
alization took 2:20 minutes, while the 3D visualization took 3:45
minutes. The other categories showed marginal timing differences.
RQ2: Overall, participants seemed to find the 2D PoC more fa-
vorable than the 3D. Participants were almost twice as likely to
recommend the 2D PoC for daily work over the 3D. 50% of the

participants found navigating the 2D model to be easy or very
easy compared to only 16.7% for the 3D model. Only 16.7% of the
participants found manipulating the placement of nodes in the 2D
model to be not useful or not useful at all compared with 33% on
the 3D model. Participants consistently found the 2D PoC to have
more usability, more understandability, more quick to get needed
information, and more complete.
RQ3: The challenges were categorized into Visual Decisions, Navi-
gation Decisions, and Interactivity. Regarding navigation decisions,
one challenge participants voiced is related to both visualizations.
Participants often spatially oriented themselves in a system based
on the current context of what they were viewing (coordinates,
level of zoom, nodes in view, etc.). When interactions changed the
context of the system they were viewing, some participants found
themselves disoriented and confused about where they were in the
system versus where they were. This is most evident when clicking
on a node, which will bring up an informational box about that
node but will also zoom in on that node. Closing the informational
box then zooms back out to the overall system. These decisions
made it hard for participants to maintain a certain context within
the system and led to overall confusion.

The visual presentation of the PoC is important for conveying
information about the system in a useful and easy-to-understand
manner. Thus, when the visual presentation is lacking in some
areas, it may be harder to use the PoC to achieve the purpose of
analyzing and understanding a microservice-based system. Partici-
pants pointed out areas where the decisions we made led to a poor
visual presentation. In 2D, one complaint was some of the lighter
colors of nodes, and node names made them harder to pick out
against the white background. However, in 3D, the complaint was
that the arrows were too small, making it hard to determine the
correct direction of a dependency relationship.

A final challenge concerned interactivity. Our PoC aimed to be
as versatile, fluid, and interactive as possible by providing many
features to better analyze the system. However, some found the
amount of interactivity overwhelming, especially in 2D models.

3.7 Threats to Validity
In terms of validity threats [12], poor training materials could con-
fuse participants about the PoC and its use. Therefore, we had
external reviewers assess the materials and conduct a trial run be-
fore distribution. Participants also rated the training material in
their feedback forms. Additionally, unclear task questions might
lead to incorrect results; therefore, we used appropriately detailed
language for our target audience and tested the study on colleagues
unfamiliar with the PoC. Using a single system benchmark might
misrepresent dependencies, so we employed an established bench-
mark from the scientific community. While there was a risk of
incorrect SDG construction, we manually verified its accuracy. All
visualized system variants were obfuscated forms of the benchmark.

The small participant pool may limit generalizability, as indi-
vidual responses have a larger impact on the results. To address
this, we used a between-subject design, effectively doubling the
participant count. Also, we employed different anonymized names
for microservices in both visualizations, ensuring that participants
were not exposed to the same version, which helped reduce bias.



Is the 3D model the way to go when presenting microservice architecture? ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

4 Discussion
The results of this study indicate that 3D visual models do not
outperform 2D visual representations in the area of microservice
architecture and program comprehension. The practitioners seem
to slightly prefer 2D visual models. One must consider the practi-
cality of 3D models where practitioners place themselves in front
of Integrated Development Environments and have mostly been
exposed to static models or those rendered in 2D. The 3D model per-
spective, which is likely preferred for VR/AR, will need to overcome
the burden that all practitioners have been educated in 2D models,
and the 3D perspective becomes a new instrument to them as they
have not used it before. There must be a convincing argument for
the 3D perspective to engage engineers in finding benefits in it over
efficient and interactive 2D models. When discussing our results
with non-engineers, a similar point has been made that individuals
use 2D models in their education, and this can greatly influence
their choice when offered an alternative. We must admit that we
saw it as a disappointment at first that the 3D model was seen as
less suitable for the task, but likely the trajectory to us it might lead
through 3D education, and thus, younger generations of engineers
might be more engaged with it.

Interestingly, the related study by Abdelfattah et al. [1] revealed
that AR visualization is better suited to the microservice architec-
ture viewpoint compared to static 2D visualization. Although there
are multiple differences between that study and ours, it raises an
important point: AR could potentially promote the 3D model to
outperform 2D visualization, even if it is interactive. This opens a
new challenge, suggesting that next we should assess the impact of
AR/VR mediums on the 3D model and conduct a study to compare
it with interactive 2D visualization.

5 Conclusion
3D visualizationmight not have the expected advantages when com-
pared to the 2D approach while targeting engineers interested in
understanding the architecture of microservice systems. Although
more time may be needed to adjust to navigating in 3D space on
a 2D screen, there is little impact on system understandability,
whether a visualization uses 2D or 3D models. Our experiment
showed that no matter the model, the answers maintained similar
correctness from participants. However, for 3D, correctness comes
at the cost of a greater time taken to analyze the system over the
2D model. Practitioners in our experiment preferred 2D models,
likely due to their educational background and greater familiarity
with this format. In future work, we aim to study the impact of the
AR/VR medium on the efficiency of these visualizations.

Data Availability
The PoC source codes, tools’ screenshots, protocol material, and
study results are publicly available at https://zenodo.org/records/
12798890.

Acknowledgments
This material is based upon work supported by the National Science
Foundation under Grant No. OISE-1854049 and OISE-2409933.

References
[1] Amr S Abdelfattah, Tomas Cerny, Davide Taibi, and Sira Vegas. 2023. Comparing

2D and Augmented Reality Visualizations for Microservice System Understand-
ability: A Controlled Experiment. In 2023 IEEE/ACM 31st International Conference
on Program Comprehension (ICPC). 135–145.

[2] Dario Amoroso d’Aragona, Xiaozhou Li, Tomas Cerny, Andrea Janes, Valentina
Lenarduzzi, and Davide Taibi. 2023. One microservice per developer: is this the
trend in OSS?. In European Conference on Service-Oriented and Cloud Computing.
Springer Nature Switzerland Cham, 19–34.

[3] Tomas Cerny, Amr S Abdelfattah, Jorge Yero, and Davide Taibi. 2024. From static
code analysis to visual models of microservice architecture. Cluster Computing
(2024), 1–26.

[4] Tomas Cerny, Amr S. Abdelfattah, Jorge Yero, and Davide Taibi. 2024. From static
code analysis to visual models of microservice architecture. Cluster Computing
27, 4 (2024), 4145–4170. https://doi.org/10.1007/s10586-024-04394-7

[5] Mia E Gortney, Patrick EHarris, Tomas Cerny, Abdullah AlMaruf, Miroslav Bures,
Davide Taibi, and Pavel Tisnovsky. 2022. Visualizing microservice architecture
in the dynamic perspective: A systematic mapping study. IEEE Access (2022).

[6] Patrick Harris, Mia Gortney, Amr S. Abdelfattah, Tomas Cerny, and Pablo Rivas.
2024. Designing a System-Centered View to Microservices Using Service De-
pendency Graphs: Elaborating on 2D and 3D visualization. In 2024 International
Conference on Electrical, Computer, Communications and Mechatronics Engineering
(ICECCME) (Maldives).

[7] ISO/IEC/IEEE 42010 2022. Software, systems and enterprise — Architecture de-
scription. Standard. International Organization for Standardization, Geneva,
CH.

[8] Shahedul Huq Khandkar. 2009. Open coding. University of Calgary 23, 2009
(2009), 2009.

[9] Florian Rademacher, Sabine Sachweh, and Albert Zündorf. 2020. A Modeling
Method for Systematic Architecture Reconstruction of Microservice-Based Soft-
ware Systems. In Enterprise, Business-Process and Information Systems Modeling.
Springer International Publishing, Cham, 311–326.

[10] Maike Vollstedt and Sebastian Rezat. 2019. An introduction to grounded theory
with a special focus on axial coding and the coding paradigm. Compendium for
early career researchers in mathematics education 13, 1 (2019), 81–100.

[11] Andrew Walker, Ian Laird, and Tomas Cerny. 2021. On Automatic Software
Architecture Reconstruction of Microservice Applications. In Information Sci-
ence and Applications, Hyuncheol Kim, Kuinam J. Kim, and Suhyun Park (Eds.).
Springer Singapore, Singapore, 223–234.

[12] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell, and A. Wesslen. 2000.
Experimentation in Software Engineering: An Introduction. Kluwer Academic
Publishers, Norwell, MA, USA.

[13] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and Wenyun
Zhao. 2018. Benchmarking microservice systems for software engineering re-
search. In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings. 323–324.

[14] Zhengshu Zhou, Qiang Zhi, Shuji Morisaki, and Shuichiro Yamamoto. 2020. A
Systematic Literature Review on Enterprise Architecture Visualization Method-
ologies. IEEE Access 8 (2020), 96404–96427. https://doi.org/10.1109/ACCESS.
2020.2995850

https://zenodo.org/records/12798890
https://zenodo.org/records/12798890
https://doi.org/10.1007/s10586-024-04394-7
https://doi.org/10.1109/ACCESS.2020.2995850
https://doi.org/10.1109/ACCESS.2020.2995850

	Abstract
	1 Introduction
	2 Background
	3 Experiment
	3.1 Benchmark and Visualization Design
	3.2 Participants
	3.3 Artifacts
	3.4 Design Procedure
	3.5 Analysis Approach
	3.6 Data Analysis Results
	3.7 Threats to Validity

	4 Discussion
	5 Conclusion
	Acknowledgments
	References

