Using Static Analysis to Aid Monolith to Microservice System
Transformation: Tuning Fuzzy c-Means in a VAE-Based GNN
Approach

Korn Sooksatra
korn_sooksatral@baylor.edu
CS, Baylor University
Waco, Texas, USA

Tomas Cerny
tcerny@arizona.edu
SIE, University of Arizona
Tucson, Arizona, USA

Abstract

Transitioning from monolithic systems to cloud-native based on
microservice architecture is essential for organizations facing dy-
namic technological shifts and growing scalability demands. This
paper explores a machine learning-driven approach to decompose
monolithic systems into microservices, targeting maintainability
and modularization. Utilizing static analysis, we extract critical de-
pendency data from the monolith, which guides the configuration
of a Variational Autoencoder (VAE) and fuzzy c-means clustering
process. This approach enables precise tuning of hyperparameters
to optimize the decomposition into highly independent, scalable mi-
croservices. Our findings highlight the effectiveness of integrating
static analysis with machine learning to enhance the adaptability
and efficiency of distributed systems, providing valuable insights
into the nuanced impacts of hyperparameter adjustments on system
performance. Furthermore, we provide a novel system multi-variant
benchmark to the community.

Keywords

Microservices, Mono-to-Micro, Static Analysis, Distributed Systems,
Variational Autoencoder, Graph Neural Networks

ACM Reference Format:

Korn Sooksatra, Md Showkat Hossain Chy, Md Ashfakur Rahman Arju,
Tomas Cerny, and Pablo Rivas. 2024. Using Static Analysis to Aid Mono-
lith to Microservice System Transformation: Tuning Fuzzy c-Means in a
VAE-Based GNN Approach. In 39th IEEE/ACM International Conference
on Automated Software Engineering Workshops (ASEW °24), October 27-
November 1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3691621.3694933

1 Introduction

In software architecture, monolithic systems have traditionally
been favored for their simplicity and straightforward development

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASEW °24, October 27-November 1, 2024, Sacramento, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1249-4/24/10

https://doi.org/10.1145/3691621.3694933

Md Showkat Hossain Chy
chym@arizona.edu
SIE, University of Arizona
Tucson, Arizona, USA

Md Ashfakur Rahman Arju

CS, Montana State University
Bozeman, Montana, USA

Pablo Rivas
pablo_rivas@baylor.edu
CS, Baylor University
Waco, Texas, USA

process, consolidating all functionalities into a single, unified struc-
ture. Monoliths, characterized by their simplicity and ease of initial
development, have played a pivotal role in the evolution of appli-
cations. However, as technology landscapes evolve and business
requirements become more dynamic, the limitations of monolithic
architectures have become apparent.

The motivation to transition from monoliths to microservices
is rooted in the quest for enhanced agility, scalability, and adapt-
ability. Monolithic architectures, while effective in their simplicity,
often encounter challenges when it comes to accommodating rapid
changes, selective service scalability, and facilitating efficient devel-
opment practices [19]. Microservices offer a compelling alternative,
allowing organizations to break down their applications into mod-
ular, independently deployable services. This transition enables
teams to iterate faster, scale specific functionalities independently,
and respond more effectively to evolving business needs. The moti-
vation for this shift lies in the pursuit of a more dynamic, responsive,
and scalable software ecosystem.

Amidst these architectural transformations, the role of static
analysis has become increasingly significant. Static analysis pro-
vides a systematic examination of the codebase without executing
the programs, offering insights into complex dependencies and
potential architectural divisions. This technique is essential for
identifying and understanding the tightly-knit components within
monolithic architectures that must be carefully separated during
the transition to microservices. By employing static analysis, de-
velopers can pinpoint service boundaries more accurately and de-
fine clearer interfaces between services, as discussed by Kalske et
al. (2018) [13]. Chy et al. [6] introduces a methodology for trans-
forming and optimizing existing microservice architectures using
machine learning techniques, specifically Graph Neural Networks
(GNN) and Variational Autoencoder (VAE). It aims to adapt meth-
ods initially designed for monolith-to-microservices migration to
the optimization of microservice systems proposed by Sooksatra et
al [21].

As the software engineering landscape continues to embrace
advancements in artificial intelligence, the integration of machine
learning into the process of decomposing monoliths adds a layer of
intelligence and efficiency. The motivation for employing machine

muhammadashfaku.arju@student.montana.edu

https://orcid.org/0000-0002-5882-5502
https://doi.org/10.1145/3691621.3694933
https://doi.org/10.1145/3691621.3694933

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

learning in this context stems from the desire to make decomposi-
tion decisions more informed, data-driven, and adaptive. By lever-
aging machine learning algorithms, organizations can automate
the identification of optimal service boundaries and intelligently
distribute functionalities across microservices.

This paper delves into the intricate details of the machine learning-
based decomposition method [21]. The focal point of our investiga-
tion lies in utilizing static analysis insights from monolith systems
to drive the nuanced process of tuning a crucial hyperparameter
associated with the fuzzy c-means clustering algorithm recom-
mending appropriate system division. As we explore this machine
learning methodology, our research unveils the profound impact
that fine-tuning this specific hyperparameter exerts on the overall
performance of microservices. The empirical findings and analyses
presented herein shed light on the intricate relationship between
hyperparameter adjustments and the resulting efficacy of the de-
composition process.

In essence, our study extends existing machine learning-based
decomposition method [21] by providing nuanced insights into the
role of hyperparameter tuning as a key determinant in optimizing
microservices performance within the context of machine learning-
based decomposition strategies. This work demonstrates that the
approach [21] is not only theoretical but also practical and realistic,
showcasing the feasibility and benefits of our proposed method.
Furthermore, to validate the method, we use a large microservice
system benchmark, convert it to a monolith, and decompose it
based on our algorithm, followed by implementation, deployment,
and testing, assessing our approach’s feasibility and comparing the
result with the original system baseline. Finally, given the com-
munity’s lack of system multi-variant benchmarks to validate and
compare mono-to-micro methods to foster advancements in re-
search in this direction, we provide a new three-system-variant
benchmark.

The manuscript is organized as follows: Section 2 briefly de-
scribes previous works similar to ours; Section 3 formulates the
problem into an optimization problem; Section 4 describes our pro-
posed solution; Section 5 shows how to apply our approach on
an actual system, demonstrates the evaluation that compares our
approach with several hyperparameters and illustrates the results;
Section 6 concludes everything in the entire work.

2 Related Works

The transformation of monolithic applications into microservices
architectures has been a dynamic journey, blending software en-
gineering techniques with the innovative application of machine
learning. The early exploration of microservices decomposition
was marked by methodologies grounded in software engineering
principles. In 2017, Chen et al. [5] presented a dataflow-driven ap-
proach, leveraging Data Flow Diagrams (DFD) to unearth potential
microservices clusters. This approach focused on grouping similar
operations and data types for effective decomposition and promoted
cohesion within microservices. However, it heavily depended on
DFDs, which risked leading to inconsistent interpretations. Ex-
panding on this, Taibi and Systa [22] in 2019 proposed a detailed
framework, integrating both static and dynamic analyses within
a six-step schema, which, despite its comprehensiveness, revealed
limitations due to its reliance on expert input. Additionally, it also

Sooksatra et al.

lacked mechanisms for crucial tasks such as process identification
and the evaluation of decomposition quality.

Progressing further, Krause-Glau et al. [15] in 2020 integrated the
bounded-context concept from domain-driven design with static
and dynamic analyses for microservices extraction. This approach
meticulously refined the segmentation of monolithic systems into
microservices. The resultant architecture exhibited a notable im-
provement in service cohesion and a marked reduction in coupling.
In 2021, Auer et al. [2] introduced an industrial assessment frame-
work, focusing on key metrics for transitioning to a microservices
architecture, such as functional stability and maintainability.

A significant paradigm shift occurred with the incorporation
of machine learning techniques. IBM’s Mono2Micro [12], intro-
duced in 2021, employed hierarchical clustering for partitioning
application components, complemented by a web interface for visu-
alizing architecture and microservices boundaries. Eski and Buzluca
[9] further advanced automated extraction strategies by combin-
ing analyses with agglomerative hierarchical algorithms validated
against expert benchmarks.

The impact of machine learning extended to nuanced partition-
ing strategies. Abdullah et al. [1], in 2021, presented a URI-based
partitioning method using the k-means algorithm, and Kalia et
al’s Mono2Micro framework [12] in 2020 optimized clustering for
microservice segmentation using spatio-temporal decomposition,
allowing for the dynamic collection and analysis of runtime call
traces while preserving temporal relationships.

The advent of graph neural networks (GNNs) marked another
milestone in microservices partitioning. Desai et al. [7] utilized
graph convolution networks (GCN) for clustering, while subsequent
studies, such as Mathai et al. [17], adopted heterogeneous graph neu-
ral networks, demonstrating the flexibility of this approach. Yedida
et al. [25] optimized existing machine-learning-based methodolo-
gies, refining the partitioning process.

Recently, Trabelsi et al. [23] developed “MicroMiner", combining
machine learning and semantic analysis for transitioning legacy sys-
tems into microservices. Filippone et al. [10] proposed an approach
using graph clustering and the Louvain community algorithm for
creating cohesive microservices, highlighting scaling challenges in
larger systems. Moreover, Google’s Service Weaver [11] emerged,
automating application deployment to cloud-based microservices,
focusing on maintaining business logic integrity. This contrasts
with our approach, which provides a systematic guide for redesign-
ing and restructuring microservices architectures, underscoring
our contribution to this evolving field.

Sooksatra et al.[21] introduced a framework that utilizes the
variational autoencoder[14] and the fuzzy c-means algorithm [3]
to decompose a monolithic application into microservices whereas
Chy et al. [6] proposed a similar approach for optimizing existing
microservices. Our work is the first that investigates various hyper-
parameters of the fuzzy c-means algorithm to enhance the resulting
decomposition and builds upon the framework in [21].

To provide an overview of the methodologies used in transform-
ing monolithic applications into microservices architectures, we
summarize key related works. The following table highlights the
main techniques discussed in these studies. It includes approaches
such as data flow analysis, static and dynamic analyses, machine

Monolith to Microservice System Transformation: Fuzzy c-Means

learning algorithms, and more. This comparison helps to under-
stand the evolution and variety of strategies employed in this field.
3 Problem Formulation

The starting point involves dealing with a monolithic application
consisting of n classes, denoted as C = cy,cg,...,cn. The objec-
tive is to partition this monolithic application into sets of classes
that form cohesive microservices. Achieving this requires balanc-
ing the granularity of the partitioning: too coarse-grained, and we
reintroduce monolithic issues; too fine-grained, and we risk perfor-
mance degradation due to excessive inter-service communication
and interdependencies.

To address these challenges, we establish several objectives. First,
we aim to ensure strong interdependence among classes within
each microservice, meaning classes that frequently interact should
ideally reside in the same microservice. Second, we seek to mini-
mize inter-microservice communication, as excessive interactions
between microservices can lead to performance bottlenecks. Third,
while we allow some classes to be duplicated across multiple mi-
croservices to reduce inter-service communication, we also aim to
minimize such duplications to maintain code manageability and
reduce technical debt.

The decomposition process involves analyzing the interaction
patterns among classes in the monolithic application. We model
these interactions to quantify the relationships and communication

needs between classes. Specifically:
e Distance between classes (d;(c1, c2)): This metric mea-

sures the interaction frequency and dependency strength be-
tween classes ¢1 and cy. A lower distance indicates stronger
interaction and higher interdependence.

e Communication between microservices (d2(mj, my)):
This metric captures the extent of communication required
between microservices m; and ms. Lower communication
requirements are preferable to reduce latency and overhead.

e Duplicated classes (d3(c)): This metric counts the number
of microservices in which a class ¢ is duplicated. Minimizing
this count helps maintain code maintainability.

We formalize the problem as a multi-objective optimization problem,
aiming to minimize a combination of these factors:

rr}vi[n Z Z Z di(c1, c2)+M Z Z dz(ml,m2)+/122d3(c),

meMciEmcEm mieM meeM ceC

where M represents the set of microservices, C represents the
set of classes, dj (c1, c2) quantifies the distance between classes cq
and cg, do2(m1, my) indicates the extent of communication between
microservices m; and mg, and ds(c) signifies the number of occur-
rences of class ¢ across microservices. The parameters A; and A
act as weights to balance the importance of each objective in the
optimization problem.

Given the complexity of this problem, finding a global optimal
solution is impractical. Instead, we employ fuzzy algorithms and
neural networks to seek a local minimum, providing a feasible and
effective approach to partitioning the monolithic application into
well-defined microservices.

4 Our Approach

Our methodology draws inspiration from works presented in [8, 21],
and this section outlines details. Our approach, visualized in Fig.

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

1, comprises three essential steps: Data Preparation, Embedding-
Vector Creation, and Clustering. The input is a monolith application,
and the output is microservices. Note that clusters in Clustering
refer to microservices.

In the preliminary step focused on data preparation, a diverse set
of tools is utilized to extract valuable insights and construct a de-
pendency graph based on the application’s components. This graph
is then subjected to preprocessing to generate a feature matrix,
providing a foundation for subsequent stages.

Proceeding to the subsequent stage, a graph convolution network
is employed to process the information derived from the depen-
dency graph. This process results in the extraction of embedding
vectors for individual nodes within the graph, contributing to a
deeper understanding of their interdependencies.

Finally, the clustering utilizes the fuzzy c-means algorithm to
delineate and identify microservices based on the generated em-
bedding vectors. This multi-step process forms the backbone of our
approach, effectively partitioning the application into its respective
microservices.

(1) Data Preparation: To facilitate the input for our machine
learning model, we collected three distinct types of data from
a monolithic application: a dependency graph, an entrypoint
existence matrix, and an entrypoint co-existence matrix. The
dependency graph can be derived using static analysis applied
to the monolith system. In our notation, the set of entrypoints
is represented as P. The dependency graph, denoted as A, takes
the form of a matrix enumerating all classes upon which a
specific class depends. The entrypoint existence matrix, labeled
E, conveys the involvement of classes in paths initiated by
different entrypoints. In this matrix, E;; is set to 1 when class i is
part of at least one path initiated by entrypoint j. The entrypoint
co-existence matrix, denoted as Co, provides insights into the
frequency of co-occurrence of two classes in paths initiated
by the same entrypoints. Here, Co;; represents the number of
instances where class i and class j are present within the same
entrypoint-initiated paths.

To illustrate this process, consider a simplified monolithic ap-
plication with the following classes and entrypoints:

e Classes: C = {cy,¢2,¢3,¢3}

e Entrypoints: P = {p1, p2}

Assume the following dependencies between classes:

e ¢; depends on cy

® ¢y depends on c3

e c3 depends on c4

From these dependencies, we construct the dependency graph
A:

b

1]
o o o o
o o o R
oo = o
o - o o

Next, consider the paths initiated by the entrypoints:
o For py, assume the pathisc; — c3 = ¢c3 = ¢4
e For py, assume the path is ¢z — ¢3 — ¢4

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

Sooksatra et al.

B _ ~ ~
g.’ x| s X] 5 ~ .| = < | 3 ‘; = ;
3| E2|C8 |3 |5 |28 |25 |3 s S |3 2|5 |28 =
S| 38 | 88 |35 |85 |28 |58 |8 |3y . | 2 S |58 | 88 | =T
£ 28 |23 |58 | S8 |92 |2 |3 |S8 |2 | 2| &|&ss|2-| 28
ZIES|ET |28 |58 |45 |33 | § 2|5 |E|£ 8% g |28
Approach @] 2 X @ < £ Q 3 =] = > = B Q A o
Data Flow Diagrams (DFD) v
Static Analysis v v
Dynamic Analysis v v
Bounded- Context v
Hierarchical Clustering v v
K-Means Algorithm v
Graph Convolution Networks (GCN) v
Heterogeneous Graph v
Neural Networks
Semantic Analysis v v
Louvain Community Algorithm v
Variational Autoencoder v v v
Fuzzy C-Means Algorithm v v v
Metrics for Microservices v
Advanced Partitioning v
Table 1: Comparison of related researches
Data Preparation _)
Embedding- Clustering Resulting

Vector Creation

Microservices

DFS Algorithm \ . . ,
E@ | [—’(‘}g
Monolith :) A A R ® - .
s H ava Parser . ' ~ H ~ A A
Application ' s H . ! -~ 1 |
| M X X KX XXX B B B
Ly X X X X X X XXX XXX
X X X B X X XK XXX
Dependency Entry-point Co- Entry-point i Embedding
Graph existence Matrix ~ Existence Matrix/ Feature Matrix Matrix

Figure 1: The working flow of our approach

The entrypoint existence matrix E is then constructed by per-
forming a depth-first search (DFS) from each entrypoint:

1 0
1 1
E_11
1 1

In this matrix, E;; is set to 1 if class i is part of a path initiated
by entrypoint j. For example, class A is part of the path initiated
by p1 but not by p».

The entrypoint co-existence matrix Co is built by counting the
number of times each pair of classes appears in the same path:

001 1 1
10 2 2
Co=11 2 o 2
12 2 0

For instance, classes cz and c3 appear together in paths initiated
by both p; and pa, so Coc,¢, = 2.

To extract information from the system source code, parsers are
generally available and produce an Abstract Syntax Tree (AST)
representation of the code. The AST serves as the foundation

for extracting essential data from the code. We initially obtained
a list of all classes for generating the dependency graph related
to a specific class. Subsequently, we filtered this list to include
only classes located within the project’s root package, excluding
those imported from external libraries.

The derivation of the entrypoint existence matrix E involved
implementing depth-first search (DFS) within the dependency
graph. DFS was executed using class i as the subject, designating
entrypoint j as the root. When class i was encountered at any
point during the DFS traversal, E;; was set to 1. In parallel, to
construct the entrypoint co-existence matrix Co, DFS was again
employed within the dependency graph. This process entailed
enumerating all paths initiated by the entrypoints. Given class i
and class j, Co;; was set to the number of paths where these two
classes concurrently existed. Following this data collection, we
formed a feature matrix, represented as X , as the concatenation
of E and Co. Symbolically, this can be expressed as

X = E® Co,

where the operator © signifies concatenation. As a result, the
size of X is determined as |C| X (|P| + |C|). Subsequently, we

Monolith to Microservice System Transformation: Fuzzy c-Means

@

employed graph convolutional network (GCN) techniques to

normalize X based on the adjacency classes within the graph.

The normalization process is denoted as

X =D 1AD"1X, (1)
where A is A added to the identity matrix I, D represents the
degree diagonal matrix, and D; is calculated as the summation
ofAij for all j in C.

Embedding-Vector Creation: Building upon the dependency
graph A and feature matrix X, our approach employs a varia-
tional autoencoder (VAE) [14] to generate an embedding matrix
Z. This matrix captures probabilistic information within the
latent space, allowing for a more nuanced understanding of
relationships between classes.

The process of generating the embedding vector using the VAE
involves the following steps:

(a) Encoder: The encoder network takes the feature matrix X
as input and maps it to a latent space to produce the mean p
and the standard deviation o of the latent variables. This is
expressed as:

~

i, 0 = Encoder(X)

(b) Latent Space Sampling: From the mean y and standard
deviation o, we sample the latent variable Z using the repa-
rameterization trick:

Z=p+0-¢ €e€~N(0I)

(c) Decoder: The decoder network then reconstructs the input
feature matrix X from the latent variable Z:

X = Decoder(Z)

The VAE is trained to minimize a loss function that comprises

three components:

e Reconstruction Loss: This measures the difference between
the original feature matrix X and its reconstructed version
X using Mean Squared Error (MSE):

n
DX - Xill
i=1

o Graph Structure Loss: This ensures that the latent variables
Z preserve the structure of the dependency graph A. We use
the inner product of Z to approximate A:

n
>lAi-zZ" 1
i=1

¢ KL Divergence Loss: This regularizes the latent variables
Z to follow a prior distribution (assumed to be a normal
distribution), using the Kullback-Leibler (KL) divergence:

KL(Z, p(2))
The overall loss function for the VAE is:
n n
1X; = Xill5 +)" 114i - ZZT |+ KL(Z p(2)), (2)
i=1 i=1

where p(Z) is the prior distribution of Z assumed to follow
a normal distribution, KL(-,-) is the KL divergence function
between two distributions, and M; denotes row i of matrix M.

3

~

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

Incorporating the graph structure into the latent space embed-
ding allows the VAE to capture both the feature information
from X and the structural information from A, resulting in a
comprehensive representation of the classes.
Clustering: The clustering stage employs the fuzzy c-means
(FCM) algorithm [3], chosen for its flexibility in handling scenar-
ios where classes may exhibit varying degrees of membership
to multiple microservices. Note that this algorithm has two
hyperparameters: the number of microservices and the fuzzy
value m. The algorithm produces a membership matrix W and
a centroid matrix I'. No other clustering algorithm offers this
advantage naturally.
This stage is crucial for determining the microservice assign-
ments for each class. The FCM algorithm minimizes the objec-
tive function, which is a weighted sum of squared distances
and membership values:
k
2,

n
Wil Zj = Till3,

i=1 j=1

where k is the number of microservices, n is the number of
classes, Z; is the embedding of class j, I is the centroid of
microservice i, and Wj; represents the membership value of
class j in microservice i.

The resulting assignments are based on memberships greater
than a specified maintainability threshold. This threshold is a
parameter that ensures classes are assigned to microservices
in a way that balances code maintainability and performance.
Specifically, the maintainability threshold controls the extent
to which a class can belong to multiple microservices. A higher
threshold means a class must have a stronger association with
a microservice to be assigned to it, reducing the number of du-
plications across microservices. Conversely, a lower threshold
allows more flexibility, increasing the likelihood of a class be-
ing shared across multiple microservices, which might improve
performance but could also increase maintenance complexity.
The maintainability threshold is therefore critical in influencing
the final microservice architecture by balancing the trade-offs
between code duplication and inter-microservice communica-
tion. By adjusting this threshold, we can control how strictly
the classes are partitioned, ensuring an optimal balance that
aligns with the desired maintainability and performance goals.

Overall, we use the graph convolutional network to create the

feature matrix (X) and then apply the variational autoencoder to
obtain the embedding matrix (Z) for classes. At last, we utilize the

fuzzy c-means to group all the classes based on their embedding

vectors in Z.

In this work, we focus on tuning the hyperparameter m of the

FCM algorithm in the clustering step to show the significant influ-
ence of m on the microservices’ performance.

5 Case study

Exploring Mono2Micro approaches poses a significant challenge

due to the scarcity of large, realistic systems available in both mono-

lithic and microservices versions. Existing system benchmarks, de-
veloped primarily for showcasing microservice systems, lack the

intention to stress-test a monolith. In response, our semi-automated

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

methodology not only tackles this challenge but also introduces a
novel testing benchmark tailored for the Mono2Micro community.

5.1 Case Study Objectives

The selection of an appropriate microservice system for our case
study involved a meticulous evaluation of options within the mi-
croservices architecture domain [18]. Identifying a critical and com-
plex microservice system that authentically mirrors real-world
applications proved to be a formidable task.

In our pursuit of an ideal benchmark, we extensively surveyed
available options, considering their attributes. While individual
microservices [18] exhibit varying levels of complexity, they often
lack the holistic representation found in comprehensive applica-
tions. This scarcity of suitable alternatives is a common challenge
in microservices architecture research.

Furthermore, simpler microservices designed for experimenta-
tion may fall short of capturing the intricacies of real-world systems.
Conversely, highly intricate systems may impose impractical re-
source demands, limiting the scope of extensive research. Enter
the train-ticket microservice, striking a balance by embodying real-
world intricacies while facilitating comprehensive study.

5.2 Selected Microservice System

Our choice for the case study is the train-ticket microservice system
[27]. This system stands out for its capacity to represent real-world
intricacies while offering a conducive environment for comprehen-
sive study. Moreover, a testing benchmark for this system has been
published for full end-to-end test coverage [20].

Widely acknowledged in existing literature [16, 26], the train-
ticket system serves as an indispensable reference for evaluating
novel methodologies, including the one presented in this study.
Comprising 47 microservices, the system orchestrates a train-ticket
booking platform with a diverse technological landscape. Program-
ming languages such as Java, Node.js, Python, and Go, coupled with
frameworks like Spring Boot/Cloud, Express, Django, and Webgo,
contribute to its richness.

For our experimentation and analysis, we focus on a specific
subset: the 42 Java-based microservices. This targeted subset forms
the core foundation of our research, allowing for a meticulous
and in-depth examination of their composition, dependencies, and
structural intricacies.

To initiate our experiment, we need an application monolith,
and thus, we have manually converted the train ticket system into
a monolith version. To validate the correctness of this system ver-
sion concerning the functionality and offered features, we have
performed the full end-to-end test coverage [20] benchmark on
both system versions, with all tests passing. This monolith version
will be publicly available with a full version of this manuscript.

Moreover, for both systems, we also extracted the system inter-
mediate representation [4] of the service endpoints and the canoni-
cal data model (context map) using static analysis; while this gives
approximation, it allowed us to evaluate matching data model and
assess match of system endpoints.

1We have made available the monolithic version of the train-ticket system benchmark
in https://zenodo.org/records/11215085

Sooksatra et al.

5.3 Our Approach on Train-Ticket Application

We navigate through the intricacies of the decomposition process
illustrated in Data Preparation, Embedding-Vector Creation, and
Clustering as depicted in Fig. 1. The systematic breakdown unfolds
as follows:

(1) Data Preparation: To initiate the decomposition journey,
the monolithic version of the train-ticket application un-
dergoes the discerning gaze of Javaparser. This inspection
yields a dependency graph A, laying the groundwork for
subsequent operations. The subsequent steps involve the
creation of the entrypoint existence matrix E and the entry-
point co-existence matrix Co through the adept application
of the DFS algorithm on A. Merging these matrices using (1)
crafts the feature matrix X, a critical artifact in our quest for
microservices.

(2) Embedding-Vector Creation: Building upon the founda-
tion laid by X, the subsequent stage witnesses the ascen-
dancy of our Variational Autoencoder (VAE). This architec-
tural maestro transforms X into an embedding matrix Z,
governed by the intricate dance of the loss function encapsu-
lated in (2). The resultant Z emerges as a key player, poised
to influence the unfolding narrative. It’s noteworthy that,
for comparative analysis, we also employ an autoencoder,
introducing a nuanced exploration of alternative methodolo-
gies.

(3) Clustering: During the crucial phase, the FCM algorithm
plays a central role, organizing the clustering process on Z.
Each row in Z represents an embedding vector, capturing
the characteristics of each class. We use the elbow method,
as explained in our experiments, to help us decide the best
number of microservices. Classes are allocated to clusters (or
microservices) based on their membership scores exceeding
a certain maintainability threshold.

5.4 Number of Microservices Selection

In our investigation of the hyperparameters associated with the
FCM algorithm, specifically focusing on the number of microser-
vices and the fuzziness coefficient m, we conducted an in-depth
exploration to discern their impact on the decomposition process.
The hyperparameters play a crucial role in influencing the efficiency
and effectiveness of the algorithm in partitioning a monolithic ap-
plication into microservices.

To assess the performance of different configurations, we em-
ployed the computation of the sum of squared errors (SSE) as a
key metric. The SSE provides valuable insights into the quality of
the decomposition, with lower values indicating better results. Our
analysis considered a range of settings for the number of microser-
vices, and varying values of the fuzziness coefficient m.

Fig. 2 visually represents the SSE across the spectrum of the
number of microservices for each distinct value of m. A notable
observation emerged in the range of 0 to 100 microservices, where
the algorithm exhibited optimal SSE minimization with m = 2. This
finding implies that, within this microservice count range, the fuzzi-
ness coefficient of 2 yields a decomposition with minimal errors. It’s
worth highlighting that exceeding 100 microservices might lead to

https://zenodo.org/records/11215085

Monolith to Microservice System Transformation: Fuzzy c-Means

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

200

240 280
175
260
4 150 w220 w
[92) [92] 7))
(V) (V) w0
125 240
100 200
220
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Number of clusters Number of clusters Number of clusters
(@m=2 bym=3 (c)m=4
280
280
280 270
270
W w 260 W
9260 A %260
250
240 250
240
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Number of clusters Number of clusters Number of clusters
d)ym=5 eym=6)m=7
290
280 300
280 290
o 270 A 280
o 0270 A
260 270
260
250 260
250
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

Number of clusters

(gym=8

Number of clusters

(th)ym=9

Number of clusters

{i)m=10

Figure 2: Sum of square error produced by the FCM algorithm for each number of microservices and m.

increased maintenance difficulties, prompting a practical constraint
on the upper limit of the microservice count.

Interestingly, as we progressed to higher values of m, particu-
larly starting from m = 3, the characteristic elbow shape, typically
utilized in the elbow method to identify an optimal number of clus-
ters, became less evident in the trend. This phenomenon posed a
challenge in applying the elbow method to discern the ideal number
of microservices for these configurations. Despite the absence of
a distinct elbow shape, it is worth noting that such a structural
change might become discernible when the number of microser-
vices surpasses 100. Nevertheless, it is essential to acknowledge that
such a large number of microservices is not anticipated in practical
scenarios.

Our exploration of hyperparameters reveals that the fuzziness
coefficient m = 2 showcases superior SSE minimization within a
reasonable range of microservices, and practical considerations
discourage exceeding a certain threshold, emphasizing the need for
a balance between decomposition quality and maintainability.

Upon meticulous analysis, a noteworthy finding emerged when
m = 2, where the number of microservices reached a distinct elbow
point at 20 microservices, as illustrated in Fig. 2a. This observation
signifies a crucial juncture in the curve where the trade-off between
intra-microservice cohesion and inter-microservice separation is
optimized. As a result, we have chosen this specific number of
microservices, 20, as the basis for subsequent experiments, aiming
for a balance between granularity and comprehensibility in the
decomposed system.

Fig. 3 vividly depicts the microservice assignments for various
values of m. Each color represents a distinct microservice, providing
a visual representation of the decomposition results. It becomes ev-
ident that as the fuzziness coefficient m increases, the microservice
assignment becomes more nuanced and blurred. This is prominently
illustrated in Fig. 3i, where m = 10, showcasing overlapping mi-
croservices such as the grey microservice intertwining with several

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA Sooksatra et al.

15 . 15 15 b
..l o % '.- %
10 ° " eo . J“ . 10 . [} % ° 10 e .
. L) e . % . ° o :‘.. . 0..~ .e ."‘~
o o o & . e ” o ‘: 6t o & . %o o < l.‘ . o
L] (] (]
*o L g o | & Yot °
o5 ® °® . ¥ s . L o« © . os © *e 0’. *. . ¥
o g s, ? o.‘ n‘. ° '0 .. :. LTS ﬁ“ o ge o »
. 8 . 0 o 8. . .
%) % .
-1s LA 4 -154 LA 4 -1 LA
L] L]
(@m=2 bym=3 (c)m=4
15 154 15 °
..o %
o w0 . " oo -~ %
B, o %" < .‘08‘
05 o 8 ‘ . 05 . . . 05 L4 . . .
. L) d ° g d
00 e o0 Sy (3 i '.‘ . 00 . e L L) v .
0s ‘gwo . 0s ® °e . o ¥ -0s * .a' . ¥
- ~ ot . T
1.0 .. 1.0 -10 ° e L] . L]
L] L]
) ®e
GV (e)ym ()ym=
15 ° 15 b 15 °
.. o % .. ®e o %
10 -‘o ' 10 .~. .'- -. . 10 S° o, .."’o
) o .:.-:.g o %% ‘:g 4 :-‘.. .
° .o 'R [. ", o .o X ..ﬁ ° ° & “e,
00 . 0% % 00 . ol 00 . o8e o4
“0s .0' 3 [x ° © “0s .-" " “0s ° - 9 ° ©
o%e &.. ‘ ..O:o (] :. o™ u'. ‘ '. '.o' o™ u'. ..'.o. . :.
" . 5. . " . " . 3. .
. % . % . %
15 LA 4 15 LA { 15 LA 4
L] L]
(gym=28 (h)ym=9 (i) m=10
Figure 3: Scatter plot of 20 assigned microservices produced by the FCM algorithm for each m.
others (e.g., orange, black, and purple microservices). This obser-
vation underscores the substantial impact of m on the granularity k
and clarity of microservice assignments. _ l Z e Z Z €i,j
,
In summary, our exploration highlights the critical role of the k f k (k -1 5y 2inj

fuzziness coefficient m in shaping the microservice assignment.
The choice of m = 2 and the corresponding elbow point at 20 mi-
croservices serve as a pivotal configuration for striking an optimal
balance between cohesion and separation in the decomposed sys-
tem, showcasing the nuanced influence of hyperparameter choices
on the resulting microservices.

where k is the number of clusters, e; is the number of edges
inside cluster i, n; is the number of classes inside cluster i,
and e; ; is the number of edges between cluster i and cluster
Jj. We aim to obtain a high SM for the resulting clusters.

Interface Number (IFN): This metric directly counts the
number of external connections of each microservice and de-

5.5 Evaluation Metrics termines the average of the external connections. Therefore,

We do not generate codes for the resulting microservices. Hence, a good microservice should have a low IFN.

we cannot run and evaluate it in the running time. Therefore, we

only use metrics that evaluate the architecture of the microservices 5.6 Results

for comparison. The metrics are briefly described as follows: The outcomes of our evaluation are visually depicted in Fig. 4 and 5,

e Structural Modularity (SM): This metric demonstrates showcasing the Structural Modularity (SM) and Interface Number

how strong the connection among members in a microser- (IFN) scores, respectively. These figures provide a comprehensive
vice is, compared to the connection between the members insight into the relationship between maintainability thresholds,
and the classes outside the microservice. We can formulate fuzziness coefficient (m) values, and the resulting SM and IFN met-

this as follows: rics.

Monolith to Microservice System Transformation: Fuzzy c-Means

N

_
e~

—200

/ 1\

< —300

— =2

S

m=3
— =4
— =5
—4001 — s
— =T

m=8
— =0

0.1 0.2 0.3 0.4 0.5
Threshold

Figure 4: SM scores for the resulting 20 microservices from
the FCM algorithm with several maintainability thresholds
and m values

0.1 0.2 0.3 0.4 0.5
Threshold

Figure 5: IFN scores for the resulting 20 microservices from
the FCM algorithm with several maintainability thresholds
and m values

A crucial observation emerges as we scrutinize the impact of
varying maintainability thresholds in conjunction with different
m values on the SM scores. Intriguingly, the relevance of the main-
tainability threshold diminishes as m increases. This is perceptible
in the graphical representation where the curve transforms into a
linear trajectory around m = 6 for both SM and IFN scores. While
the results with m = 4 exhibit superior performance in terms of
SM scores, an interesting revelation surfaces concerning IFN scores.
Specifically, results obtained with m = 2 and a maintainability
threshold exceeding 0.35 outshine others in the IFN domain. This
dynamic interplay between m and the maintainability threshold
underscores the nuanced considerations that users need to weigh
based on their priorities and the metrics they prioritize.

The divergence in performance across SM and IFN metrics for
different m values accentuates the trade-offs inherent in the de-
composition process. Users are confronted with the challenge of
balancing the structural cohesion captured by SM with the effi-
ciency of external connections reflected in IFN. The dependency
on user priorities becomes paramount in determining the most
suitable configuration, whether it be favoring superior SM scores

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

Microservice 1

"UserRepository", "EmailConfig", "AuthUserRepository", "TrainServicelmpl",
"PriceController”, "JWTULl", "PriceConfigRepository", "JsonUtils", "DeliveryRepository",
"NotificationController", "ExecuteControlller", "FoodController", "Routelnfo”, "JWTProvider",
"AssuranceType", "Type", "ltemNameUtil", "VerifyCodeService", "TrainTicketApplication",
"BaseException", "SecurityConfig", "CommonOrderAlterinfo", "ConsignController",
"SecurityRepository", "Trigger", "InsidePayment", "NotifyRepository"

Figure 6: Example microservice 1 generated by our approach
with 20 clusters and m = 2 that allow duplication and with
the maintainability threshold of 0.25

Microservice 2

"TrainTicketApplicationTests", "VerifyCodeController", "TextMapUtil", "InfoConstant",
"OrderSecurity", "AdminRouteController", "ConsignPriceController", "ExceptionUtils",
"DocumentType", "Account”, "FoodOrder", "AdminTrip", "AssuranceTypeBean",
"RabbitSend", "Queues", "SwaggerConfig", "GetAccountByldResult", "TrainService",
"AuthUserDetailsServicelmpl", "UserOperationException"

Figure 7: Example microservice 2 generated by our approach
with 20 clusters and m = 2 that allow duplication and with
the maintainability threshold of 0.25

with m = 4 or prioritizing optimal IFN results with m = 2 and a
specified maintainability threshold.

In essence, our findings underscore the complexity of decision-
making in microservice decomposition, where users must navigate
the intricate interplay between maintainability thresholds and fuzzi-
ness coefficient values to align the outcomes with their specific
objectives and metric preferences.

5.7 Recommended System Decomposition

Our approach recommended to decompose the system into 20 mi-
croservices. It was configured with an m value of 2, and a main-
tainability threshold of 0.25. Figs. 6 and 7 depict two microservices
generated through our approach. It is noteworthy that the classes
featured in the microservice illustrated in Fig. 6, originally dispersed
across 18 distinct microservices, have harmoniously converged into
a cohesive new microservice.

Moreover, Fig. 7 showcases another instance of the effective-
ness of our approach. That is, the approach efficiently consolidates
classes from 14 different microservices into a singular, optimized
entity, strategically enhancing both functionality and maintainabil-
ity. This amalgamation is not arbitrary; it is a product of meticulous
parameter tuning. The resulting microservice is not merely a con-
tainer for diverse classes but a well-structured, cohesive unit. It
skillfully intertwines functionalities from its constituent classes,
potentially reducing inter-service communication overhead and
streamlining operational flows within the emerging microservice.

5.8 Assessing Recommended Decomposition

To assess the feasibility of our approach and validate our recom-
mendation, we followed the proposed decomposition to implement
the new system versions. Our approach recommended microservice
responsibilities expressed through suggested components (classes
with annotations in the Spring framework). Throughout the trans-
formation process, we identified that the original system exhibited

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

microservice anti-patterns where service components and data
entities were inappropriately injected into various microservices
through libraries. While such a mechanism could be aimed at encap-
sulation for reuse, it is known to be a bad practice in cloud-native
[24] since such injection introduces dependencies across microser-
vices and limits their independent evolution. Our algorithm’s rec-
ommendations, implemented in the new version, effectively elimi-
nated these injections, enhancing the architectural integrity. At the
same time, there were limitations in the proposed decomposition.
In particular, a small set of controllers overlapped because of the
limited algorithm granularity. The original controllers’ methods
had low cohesion when assigned. These were identified as part
of the algorithm’s output but needed to be further refined in our
implementation.

5.9 Resulting Implementation Assessment

We critically evaluated the transformation from the original 47-
microservice train-ticket system, focusing on the 42 Java-based
Spring Boot services, to a monolithic system version and subse-
quently to a more modular 20-microservice version. This transition,
driven by our proposed machine learning algorithm, aimed to ad-
dress modularity and key architectural concerns. The new system
versions’ source code is shared as an anonymous package?.

Considering all system versions, the system intermediate repre-
sentation was extracted and analyzed [4]. The service endpoints
and the canonical data model matched across versions. Functional
equivalence with the original system was verified using the avail-
able testing benchmark [20], with all tests successfully passed. This
ensured that the new microservices maintained the same function-
alities as the original.

At the same time, when we compare the source code analysis
(SourceMonitor?) of the 20 and 42 microservice system versions, the
20 microservices have more lines of code and more classes in total,
which is given by the elimination of the shared resources through a
library anti-pattern and by our algorithm allowing class replication.
The results on cyclomatic complexity are skewed, given the anti-
pattern elimination. Yet, the design change to 20 microservices
provides greater autonomy to individual microservice evolution,
eliminating ripple effects and change propagation. This streamline
updates and modifications that do not promote multiple modules,
which makes it more efficient to adapt or change requirements. It
is also more cohesive as the naming of the services and domain
knowledge is logically organized (related functionalities in the same
modules), enhancing the system’s clarity and coherence.

The new system version shows better maintainability and evolv-
ability with more independent microservices. At the same time, it
must be considered from the context where a more thorough com-
parison and assessment needs to be performed, which is beyond
the scope of this work.

Using dynamic analysis, our testing assessment considered CPU
and Memory usage. The 42-microservice system version needed
16.83GB of RAM and 57.02% CPU to run whereas the 20-microservice

2The source code of the monolith, 20-microservice, and 42-microservice system version
benchmark are available in https://zenodo.org/records/11215085; moreover, we share
the screenshots of passing end-to-end tests benchmark and the user interfaces examples
from running system in the package

3SourceMonitor https://www.derpaul.net/SourceMonitor

Sooksatra et al.

version required 9.94 GB and 37.01% CPU. We conducted a total
of 11 tests using Selenium, covering all user interfaces in the origi-
nal repository. On average, the 42-microservice version took 4.07
minutes and the 20-microservice version took 3.2 minutes for test
execution.

6 Conclusions

In the culmination of our research, we center our focus on the
intricate process of transitioning from monolithic to microservices
structures. The crux of our investigation lies in the adaptation
and application of an extended machine learning methodology
originally conceived for navigating the complexities of this trans-
formative journey.

Within our study, we introduce a machine learning-based ap-
proach that harnesses the power of graph neural networks, varia-
tional autoencoders, and the FCM algorithm. Our exploration delves
into the nuanced impact of hyperparameters, particularly the num-
ber of microservices and the fuzzy value m, on the performance
of the resulting microservices. This elucidation underscores the
critical role that thoughtful parameter tuning plays in achieving
optimal outcomes.

The empirical demonstration of our approach’s effectiveness is
manifested through concrete examples showcasing the resultant
microservices. Therefore, our exploration reveals the complexity of
choosing hyperparameters, highlighting the tradeoffs involved. In
contrast to previous efforts [21], our work provides users with more
alternatives using fuzzy values. These examples provide concrete
proof of our methodology’s ability to intelligently group relevant
classes into coherent microservices.

Our approach on an established system benchmark makes our
work not only theoretical but also validated by actual system im-
plementations that deploy, run, and pass tests. Such broad effort al-
lowed us to perform realistic assessments and prove our approach’s
feasibility and benefits. Moreover, it must be recognized that our
work builds cross-domain bridges and brings significant advance-
ment to the interdisciplinary community in the form of microservice
system benchmarks that a) invite ML experts to further improve
system decomposition to optimize various system qualities using
the system monolith version as input and the original system as
an assessment baseline, and b) invite software engineers to further
validate qualities of provided system benchmark versions.

Looking forward, future avenues of research beckon us to expand
the scope of information incorporated into our machine learning
algorithms. A prospective enhancement involves integrating the
actual codes of the classes into the input of machine learning mod-
els, such as Transformers. This augmentation empowers machine
learning models to make more informed decisions, facilitating the
grouping of classes into microservices with a heightened level of
accuracy and relevance.

Acknowledgments

This material is based upon work supported by the National Science
Foundation under Grant No. OISE-1854049, OISE-2409933.

https://zenodo.org/records/11215085
https://www.derpaul.net/SourceMonitor

Monolith to Microservice System Transformation: Fuzzy c-Means

References

(1]

(2]

[9

=

[10]

[11]
[12]

[13]

[14

[15]

[16]

[17]

[18

[19]

[20

[21]

[22]

[23

Muhammad Abdullah, Waheed Igbal, and Abdelkarim Erradi. 2019. Unsupervised
Learning Approach for Web Application Auto-Decomposition into Microservices.
https://doi.org/10.1016/j.jss.2019.02.031

Florian Auer, Valentina Lenarduzzi, Michael Felderer, and Davide Taibi. 2021.
From monolithic systems to Microservices: An assessment framework. Informa-
tion and Software Technology 137 (2021), 106600. https://doi.org/10.1016/j.infsof.
2021.106600

James C Bezdek, Robert Ehrlich, and William Full. 1984. FCM: The fuzzy c-means
clustering algorithm. Computers & geosciences 10, 2-3 (1984), 191-203.

Vincent Bushong, Diptal Das, and Tomas Cerny. 2022. Reconstructing the Holistic
Architecture of Microservice Systems using Static Analysis. In Proceedings of the
12th International Conference on Cloud Computing and Services Science - CLOSER.
149-157.

Rui Chen, Shanshan Li, and Zheng Li. 2017. From Monolith to Microservices:
A Dataflow-Driven Approach. In 2017 24th Asia-Pacific Software Engineering
Conference (APSEC). 466-475. https://doi.org/10.1109/APSEC.2017.53

Md Showkat Hossain Chy, Korn Sooksatra, Jorge Yero, and Tom Cerny. 2024.
Benchmarking Micro2Micro transformation: an approach with GNN and VAE.
Cluster Computing (05 2024). https://doi.org/10.1007/s10586-024-04526-2
Utkarsh Desai, Sambaran Bandyopadhyay, and Srikanth Tamilselvam. 2021.
Graph Neural Network to Dilute Outliers for Refactoring Monolith Application.
CoRR abs/2102.03827 (2021). arXiv:2102.03827 https://arxiv.org/abs/2102.03827
Utkarsh Desai, Sambaran Bandyopadhyay, and Srikanth Tamilselvam. 2021.
Graph neural network to dilute outliers for refactoring monolith application. In
Proceedings of 35th AAAI Conference on Artificial Intelligence (AAAI’21).

Sinan Eski and Feza Buzluca. 2018. An Automatic Extraction Approach: Transition
to Microservices Architecture from Monolithic Application (XP ’18). Association
for Computing Machinery, New York, NY, USA, Article 25, 6 pages. https:
//doi.org/10.1145/3234152.3234195

Gianluca Filippone, Nadeem Qaisar Mehmood, Marco Autili, Fabrizio Rossi,
and Massimo Tivoli. 2023. From monolithic to microservice architecture: an
automated approach based on graph clustering and combinatorial optimization.
In 2023 IEEE 20th International Conference on Software Architecture (ICSA). 47-57.
https://doi.org/10.1109/ICSA56044.2023.00013

Robert Grandl. 2023. A Quick Introduction to Service Weaver.

Anup K. Kalia, Jin Xiao, Rahul Krishna, Saurabh Sinha, Maja Vukovic, and Deba-
sish Banerjee. 2021. Mono2Micro: A Practical and Effective Tool for Decompos-
ing Monolithic Java Applications to Microservices. CoRR abs/2107.09698 (2021).
arXiv:2107.09698 https://arxiv.org/abs/2107.09698

Miika Kalske, Niko Mikitalo, and Tommi Mikkonen. 2018. Challenges When
Moving from Monolith to Microservice Architecture. 32-47. https://doi.org/10.
1007/978-3-319-74433-9_3

Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

Alexander Krause, Christian Zirkelbach, Wilhelm Hasselbring, Stephan Lenga,
and Dan Kréger. 2020. Microservice Decomposition via Static and Dynamic
Analysis of the Monolith. CoRR abs/2003.02603 (2020). arXiv:2003.02603 https:
//arxiv.org/abs/2003.02603

Bowen Li, Xin Peng, Qilin Xiang, Hanzhang Wang, Tao Xie, Jun Sun, and Xuanzhe
Liu. 2022. Enjoy your observability: an industrial survey of microservice tracing
and analysis. Empirical Software Engineering 27 (01 2022). https://doi.org/10.
1007/s10664-021-10063-9

A. Mathai, S. Bandyopadhyay, U. Desai, and S. Tamilselvam. 2021. Monolith
to Microservices: Representing Application Software through Heterogeneous
Graph Neural Network. arXiv preprint arXiv:2112.01317 (2021).

Davide Rahman, MLand Taibi. 2019. A curated Dataset of Microservices-Based
Systems. In Joint Proceedings of the Summer School on Software Maintenance and
Evolution (Tampere, Finland). CEUR-WS.

C. Richardson. 2018. Microservices Patterns: With examples in Java. Manning.
https://books.google.com/books?id=UeK1swEACAA]

Sheldon Smith, Ethan Robinson, Timmy Frederiksen, Trae Stevens, Tomas Cerny,
Miroslav Bures, and Davide Taibi. 2023. Benchmarks for End-to-End Microser-
vices Testing. In 2023 IEEE International Conference on Service-Oriented System
Engineering (SOSE). 60-66. https://doi.org/10.1109/SOSE58276.2023.00013
Korn Sooksatra, Rokin Maharjan, and Tomas Cerny. 2022. Monolith to Microser-
vices: VAE-Based GNN Approach with Duplication Consideration. In 2022 IEEE
International Conference on Service-Oriented System Engineering (SOSE). IEEE,
1-10.

Davide Taibi and Kari Systé. 2019. From Monolithic Systems to Microservices: A
Decomposition Framework based on Process Mining. https://doi.org/10.5220/
0007755901530164

Imen Trabelsi, Manel Abdellatif, Abdalgader Abubaker, Naouel Moha, Sébastien
Mosser, Samira Ebrahimi-Kahou, and Yann-Gaél Guéhéneuc. 2022. From legacy
to microservices: A type-based approach for microservices identification using
machine learning and semantic analysis. Journal of Software: Evolution and
Process 35 (09 2022). https://doi.org/10.1002/smr.2503

[24] Adam Wiggins. 2017. The Twelve-Factor App.

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

https://12factor.net/
https://12factor.net/, last accessed 1/2/2022.

Rahul Yedida, Rahul Krishna, Anup Kalia, Tim Menzies, Jin Xiao, and Maja
Vukovic. 2021. Partitioning Cloud-based Microservices (via Deep Learning).
Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Wenhai Li, Chao Ji, and Dan Ding.
2018. Delta debugging microservice systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018, Montpellier,
France, September 3-7, 2018, Marianne Huchard, Christian Késtner, and Gordon
Fraser (Eds.). ACM, 802-807. https://doi.org/10.1145/3238147.3240730

Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and Wenyun Zhao.
2018. Benchmarking Microservice Systems for Software Engineering Research
(ICSE ’18). Association for Computing Machinery, New York, NY, USA, 323-324.
https://doi.org/10.1145/3183440.3194991

https://doi.org/10.1016/j.jss.2019.02.031
https://doi.org/10.1016/j.infsof.2021.106600
https://doi.org/10.1016/j.infsof.2021.106600
https://doi.org/10.1109/APSEC.2017.53
https://doi.org/10.1007/s10586-024-04526-z
https://arxiv.org/abs/2102.03827
https://arxiv.org/abs/2102.03827
https://doi.org/10.1145/3234152.3234195
https://doi.org/10.1145/3234152.3234195
https://doi.org/10.1109/ICSA56044.2023.00013
https://arxiv.org/abs/2107.09698
https://arxiv.org/abs/2107.09698
https://doi.org/10.1007/978-3-319-74433-9_3
https://doi.org/10.1007/978-3-319-74433-9_3
https://arxiv.org/abs/2003.02603
https://arxiv.org/abs/2003.02603
https://arxiv.org/abs/2003.02603
https://doi.org/10.1007/s10664-021-10063-9
https://doi.org/10.1007/s10664-021-10063-9
https://books.google.com/books?id=UeK1swEACAAJ
https://doi.org/10.1109/SOSE58276.2023.00013
https://doi.org/10.5220/0007755901530164
https://doi.org/10.5220/0007755901530164
https://doi.org/10.1002/smr.2503
https://12factor.net/
https://doi.org/10.1145/3238147.3240730
https://doi.org/10.1145/3183440.3194991

	Abstract
	1 Introduction
	2 Related Works
	3 Problem Formulation
	4 Our Approach
	5 Case study
	5.1 Case Study Objectives
	5.2 Selected Microservice System
	5.3 Our Approach on Train-Ticket Application
	5.4 Number of Microservices Selection
	5.5 Evaluation Metrics
	5.6 Results
	5.7 Recommended System Decomposition
	5.8 Assessing Recommended Decomposition
	5.9 Resulting Implementation Assessment

	6 Conclusions
	Acknowledgments
	References

