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Abstract—With the rising user demands to support multiple
applications, the next-generation wireless communications exploit
coexistence of licensed and unlicensed spectrum to much improve
the spectrum efficiency. However, spectrum sharing is a crucial
yet currently challenging element in enabling the coexistence
of diverse technologies and functionalities in next-generation
wireless network systems. While cognitive radio (CR) is one
such prominent technology to identify the unused portions of the
spectrum, it usually requires extra process or separate hardware
for sensing. In this work we propose a novel approach to integrate
spectrum sensing with the existing channel estimation process.
In particular, we assume that channel estimation is implemented
constantly for licensed spectrum usage for user equipment (UE).
Based on channel reciprocity, adjacent unlicensed spectrum
will be sensed for occupancy and also estimated if unoccupied
simultaneously. The integration of spectrum sensing and channel
estimation offers multiple benefits such as accurate resource
allocation, reduced latency and processing load, faster decision
making, and adaptable to real-time scenarios. Moreover, the pro-
posed scheme can be applicable to most communication systems,
e.g., the fourth-generation mobile network and onwards without
extra hardware implementation. Evaluation results based on the
open-source dataset is included to demonstrate the proposed
concept and scheme.

I. INTRODUCTION

The evolution of wireless technologies from a primitive first-
generation to the current fifth-generation (5G) offered multiple
services such as enhanced connectivity, reduced latency, and
higher throughput [1]. However, the incessant introduction
of sophisticated applications such as Cybersystems, and the
elevation of traditional methods with advanced wireless com-
munications such as smart grids necessitated the need to
expand the wireless spectrum [2]. The limited spectrum of
resources poses multiple challenges. For example, it leads
to increased competition in the unlicensed bands such as
Industrial, Scientific, and Medical (ISM) resulting in increased
packet loss, and poor performance [3]. Advanced sophisticated
applications such as tactile internet require higher frequency
bands such as mmWave due to the higher bandwidth associated
with it. However, a study of the spectrum resources by the
Federal Communications Commission (FCC) reveals the sub-
optimal use of spectrum resources [4]. In this work, we
propose a scheme that can achieve spectrum sensing, as well
as estimate the channel state information (CSI) simultaneously

thereby improving spectrum efficiency with little hardware
modification to the existing systems.

In the pursuit of enhanced spectrum resource utilization
and innovation, LTE and 5G have incorporated a range of
mechanisms to harness unlicensed spectrum with cognitive
radio (CR) technology. For example, LTE-Unlicensed, LTE-
Wi-Fi Aggregation and License Assisted Access enable an
LTE device to use both licensed and unlicensed spectrum
simultaneously to boost the capacity and other performance of
the LTE network [5], [6]. Dynamic spectrum sharing enables
the coexistence of 5G new radio and LTE [7]. Traditional
CR mechanisms identify and allow the secondary users (SUs)
to access the licensed spectrum of the primary users (PUs)
when not in use [2]. In this manner, the efficiency of the
spectrum utilization can be improved without impacting the
functioning of the PUs. The spectrum sensing techniques in
the literature can be categorized into cooperative and non-
cooperative sensing [8]. In non-cooperative sensing, the SUs
will not collaborate with others sensing the frequency band
resulting in issues such as noises, and interference [8]. In
the cooperative sensing technique, the SUs collaborate and
make a final common decision. However, these traditional
CR techniques either requires an extra process or separate
hardware for spectrum sensing, making it lesser accessible to
the current and next-generation wireless communication.

In this work, we propose to integrate spectrum sensing into
the existing channel estimation process such that the two func-
tions can be performed simultaneously with little hardware
modification. For example, in the licensed spectrum utilized
by the LTE the channel estimation is already implemented
based on reference or the pilot signals [9]. Least-square (LS),
and low rank approximation [10] are some of the traditional
channel estimation techniques in addition to machine-learning
used by the LTE [11]. In our proposed scheme design, spec-
trum sensing is performed on adjacent secondary downlink
channels using the same signals received for primary downlink
channel estimation. If available, an interpolation based channel
estimation is utilized to estimate CSI of the secondary down-
link channel using the current primary downlink channel or the
primary uplink channel. Note that the uplink channel is usually
narrower than a downlink channel. Moreover, the downlink
pilot sequences to be transmitted increases with the increase



in the user equipments (UEs). Such a scheme offers numerous
advantages. First, the same resources are used for the spectrum
sensing and channel estimation leading to efficient use of
the limited computing resources. Second, ceding some of
the excess downlink pilots to the new unoccupied channel
can reduce latency on channel estimation, hence improving
applications in real-time scenarios. In comparsion, most the
existing works dwell on proposing techniques and schemes
to identify spectrum holes while our work incorporates the
spectrum sensing in traditional channel estimation methods.

Our contributions to this work can be summarized as
follows. A novel approach integrating the spectrum sensing
into the existing channel estimation method is proposed,
and analyzed using evaluation results based on open-source
datasets. The remainder of this paper can be organized as fol-
lows. Section II outlines the proposed integration of spectrum
sensing and channel estimation for wireless communications.
Section III presents the evaluation results, and Section IV
concludes the paper.

II. SIMULTANEOUS SPECTRUM SENSING AND DOWNLINK
CHANNEL ESTIMATION

A. Studied System Model

As shown in Fig. 1, a frequency division duplex (FDD)
system is considered as the studied system model. In specific,
UEs are both primary users (PUs) for the licensed spectrum
and secondary users (SUs) for adjacent unlicensed spectrum.
The UEs have unlimited access to the primary downlink and
uplink channels, while they only have access to the secondary
downlink channel when it is unoccupied. In the studied system,
each CR UE comprises of M antennas to sense the spectrum
that is currently utilized by N PUs, where N ≤ M . Note that
the signal at the mth antenna, referred to as observed signal,
can be given as follows:

xm(n) =

N∑
j=1

hm,jsj(n) + wm(n), (1)

where n refers to the sample size; sj refers to the transmitted
signal; hm,j denotes the fading channel; and wm(n) refers to
the additive noise. The observed signal x can be written in the
vector format as follows:

x = Hs + w. (2)

The suitable secondary downlink channel can be identified
during a typical channel estimation process of the primary
downlink channel. The energy levels of the secondary channels
are determined based on the energy levels of the primary
received signal. By applying suitable thresholds, the unoccu-
pied secondary channels can be determined. If unoccupied,
channel estimation for the secondary downlink channel is also
performed in addition to the primary downlink channel and
fedback to the BS. In this manner, the spectrum sensing is
integrated into the existing channel estimation process.

Fig. 1: Studied system model.

B. Primary Downlink Channel Estimation and Secondary
Channel Spectrum Sensing

The primary downlink channel is estimated by transmitting
the pilots from the CR BS to the CR UE. The channel is
estimated using the LS method. From Eq. (2) we get,

ĥLS
p = s−1

p xp (3)

where ĥLS
p refers to the channel estimates at the pilot sub-

carriers. With the knowledge of the channel, the transmitted
signal can be estimated using,

ŝ = {(HLS)T HLS} (HLS)T s (4)

where ŝ is the estimate of the transmitted signal s. The energy
of the received signal Ex can be computed using [12]

Ex =
1

K

K∑
n=1

|x(n)|2, (5)

where K is the total number of samples. Ex is also referred
to as the energy of the primary downlink received signals
denoted by Eprimary. We assume that the principle of reciprocity
holds good in our system model. Under similar transmission
conditions and propagation paths, we can say, that energy of
the secondary channels Esecondary is inversely proportional to
Eprimary. With the knowledge of Esecondary it is possible to
estimate the unoccupied secondary channels. In other words,
this entire process trickles down to a classic spectrum sens-
ing problem that can be modeled as a hypothesis problem
using [13],

x(n) =

{
H0 : w(n),

H1 : hs(n) + w(n),
(6)

where H0 that refers to the case when the secondary channel
under study is unoccupied, while H1 when it is occupied.
Traditional approaches to achieve spectrum sensing include en-
ergy detection, cyclostationary feature detection, and matched
filter detection [14]. However, cyclostationary and matched
filter detection suffer from limitations such as the need for
a priori knowledge of PU, and high complexity. However,



sensing the occupancy of the spectrum based on the reciprocity
requires no prior knowledge, and is computationally less
complex [14].

C. Secondary Downlink Channel Estimation

If the secondary downlink channel is unoccupied, the CR
BS will estimate the channel by extrapolating the channel
estimates of the primary channel. The extrapolation technique
is utilized in this work for estimating the channel for the
following reasons. First, channel extrapolation techniques re-
duce the overhead, and computational complexity. Second, by
predicting the channel state it will be feasible for the BS to
tune its parameters such as modulation standards to reduce the
bit error rates. The channel response at a frequency f can be
estimated with the knowledge of channel estimates ĥ. Using
least-square (LS) method on Eq. 1, we can get [15],

ĥLS = hm(fk) +
wm(fk)

s(fk)
, (7)

for k = {0, 1, . . . ,K}, K refers to the channel estimates, ĥLS

denotes the channel estimated using LS method. Applying
LMMSE estimator, the channel extrapolates at a frequency
f can be determined [15].

ĥLMMSE(f) = pH(f) ĥLS , (8)

where pH refers to the vector of coefficients, and it can be
obtained my minimizing the MSE of the estimate.

The salient features of the proposed work are as follows.
First, the integration of spectrum sensing and channel esti-
mation steps eliminates the need for different computational
and hardware resources resulting in efficient utilization of the
spectrum resources. Second, the estimated seconday downlink
CSI enables the BS to tune its modulation scheme to reduce
the bit-error rates (BER) before switching the channels. Third,
since both operations are working in tandem it is possible to
reduce the latency involved in making transmission strategies
decisions. Fourth, integrating both these processes results in
simplified architecture, and it is extremely useful to support
applications in the next-generation wireless networks.

III. EVALUATION RESULTS

A. Dataset and System settings.

The open-source Argos channel dataset was utilized to
validated our approach [16]. The Argos dataset comprises of
uplink pilot sequences corresponding to different scenarios
such as static and dynamic environments stored in the form
of In-phase and Quadrature (I/Q) components. The dataset
corresponding to a 2.4 GHz static environment is used for
testing in this work. More information about the dataset
collection and storage can be inferred from [16]. The system
settings are summarized in Table I.

TABLE I: System settings.

System configuration 96 × 8
# Samples per batch 50
Frequency band 2.4 GHz
SNR values -20 to 20 dB, ∆ = 5
# Channels studied 8 (Channels 1-8)
Uplink channel bandwidth 5 MHz, 10 MHz, 15 MHz, 20

MHz
Downlink channel bandwidth 10 MHz, 20 MHz, 30 MHz,

40 MHz
Dimension of the data 1000, 96, 8 , 52

B. Preliminary Results.

Initially, the I/Q measurements corresponding to differ-
ent channels were processed to compute the received signal
strength (RSS). Figures 2a- 2d presents the RSS measurements
based on 50 samples corresponding to channels 1-4 respec-
tively. The RSS provides important information about the
wireless channels such as the signal strength and quality. For
instance, Channel 2 has the highest strength among the four
referenced channels. Post-processing of the raw measurements,
pilot-based traditional channel estimation is performed using
the primary downlink channel. Figures 3a- 3d depicts the chan-
nel estimation results with unequal UL and DL bandwidths.
The results presented in the above-mentioned figures are based
on channels 1 and 3 acting as primary downlink and uplink
channels respectively. A simple examination of the figures
provides the following inferences. First, the DL bandwidths are
twice that of the UL to reduce the mean-squared errors (MSE).
The MSE decreases with the increase in the DL bandwidth.
For instance, from Figures 3a and 3d the MSE at -10 dB
are -2.15 dB and -2.50 dB respectively. Second, due to the
strong signal strength at higher SNRs the MSE decreases with
the increase in the SNR. For instance in Fig. 3b the MSE
decreased from -2.30 dB at -10 dB SNR to about -2.65 dB
at 20 dB SNR. With the help of the channel information, it
is feasible to determine the energy levels corresponding to
each of these channels as illustrated in Figures 4a-4d. For
instance, Channel 1 on average the highest signal strength
when compared to others. With the help of extrapolation, the
energy levels corresponding to the secondary channels are
approximated based on the primary channels. The one with
the lowest energy levels is the unoccupied secondary channel.
However, if there are channels with the same energy as shown
in Fig. 5 the process is repeated multiple times with different
I/Q measurements till the ideal candidate is determined. For
instance, in this work, the iteration was repeated nearly 8 times
and results about the last three iterations are summarized in
Table II.

TABLE II: Evaluaion results for secondary channel detection.

Iterations Threshold Channels occupied
6 0.30 1, 2, 3,4,5,6,7,8
7 0.35 1,2,3,4,5,6,7,8
8 0.40 2,6,7



(a) Channel-1. (b) Channel-2. (c) Channel-3. (d) Channel-4.

Fig. 2: Raw RSSI measurements.

(a) UL=5 MHz, DL=10 MHz. (b) UL=10 MHz, DL=20 MHz.

(c) UL=15 MHz, DL=30 MHz. (d) UL=20 MHz, DL=40 MHz.

Fig. 3: Channel estimation at different uplink and downlink bandwidths.

(a) Channel-1. (b) Channel-2. (c) Channel-3. (d) Channel-4.

Fig. 4: Energy levels of the received signals.



(a) Channel-1. (b) Channel-2. (c) Channel-3. (d) Channel-4.

Fig. 5: Energy levels of extrapolated secondary channels.

C. Discussions and Future Directions

The integration of spectrum sensing and channel estimation
into a single step eliminates the need to run two different
computationally intensive processes. Moreover, for the battery-
powered devices such an integration would result in an energy-
efficient operation. The objective of this work is to prove the
concept such that spectrum sensing can be integrated into
an existing channel estimation process with little hardware
modification. However, there are a few limitations that we
intend to address in our future works. First, the proposed
approach is studied theoretically using an open-source dataset
while it needs to be further verified using real experimental
data. Second, an automated scheme is needed for the threshold
to maximize the unoccupied channels. Third, currently, the
downlink bandwidth should be at least twice that of the up-
link to ensure reasonably accurate channel estimation results.
Suitable schemes will be designed to improve the channel
estimation when the above-mentioned condition is violated.
Fourth, both these operations are performed independently in
the current evaluation. It will be automated and integrated
to reduce user interference. Last but not least, the proposed
framework works for the static 2.4 GHz dataset, while it will
be expanded to different available datasets.

IV. CONCLUSION AND FUTURE WORKS

In this work we proposed an integrated framework to
improve the efficiency of the spectrum utilization by offering
interpolation-based channel estimation and energy detection-
based spectrum sensing techniques in one single step for
wireless communications. The salient features of this work
includes efficient utilization of resources, as well as expe-
ditious computation of channel information. In addition to
this, we demonstrated that a wider downlink channel can be
estimated using narrower channels. Such benefits are criti-
cal in FDD systems that have uneven downlink and uplink
channels. Moreover, the framework was validated and tested
on open-source datasets. In the future, an extensive study of
the proposed integrated approach will be conducted under
different system configurations and datasets. Furthermore, it
will be evaluated on real-time data using a software-defined
radio based hardware platform.
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