
Citation: Abdelfattah, A.S.; Cerny, T.;

Yero, J.; Song, E.; Taibi, D. Test

Coverage in Microservice Systems: An

Automated Approach to E2E and API

Test Coverage Metrics. Journal Not

Specified 2024, 1, 0. https://doi.org/

Received:

Revised:

Accepted:

Published:

Copyright: © 2025 by the authors.

Submitted to Journal Not Specified

for possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Test Coverage in Microservice Systems: An Automated Approach
to E2E and API Test Coverage Metrics

Amr S. Abdelfattah 1 , Tomas Cerny 2 *, Jorge Yero 3 , Eunjee Song 4 , and Davide Taibi 5

1 Computer Science, Baylor University, TX, USA; amr_elsayed1@baylor.edu
2 Systems and Industrial Engineering, University of Arizona, Arizona, USA; tcerny@arizona.edu
3 Computer Science, Baylor University, TX, USA; jorge_yero1@baylor.edu
4 Computer Science, Baylor University, TX, USA; eunjee_song@baylor.edu
5 University of Oulu, Oulu, Finland; davide.taibi@oulu.fi

* Correspondence: tcerny@arizona.edu

Abstract: Test coverage is a critical aspect of the software development process, aiming for overall 1

confidence in the product. When considering cloud-native systems, testing becomes complex since 2

we deal with multiple distributed microservices that are developed by different teams and may 3

change quite rapidly. In such a dynamic environment, it is important to track test coverage. This is 4

especially relevant to end-to-end (E2E) and API testing since these might be developed by teams 5

distinct from microservice developers. Moreover, indirection exists in E2E, where the testers see 6

the user interface but do not know how comprehensive their test suits are. To ensure confidence in 7

health checks in the system, mechanisms and instruments are needed to indicate the test coverage 8

level. Unfortunately, there is a lack of such mechanisms for cloud-native systems. This manuscript 9

introduces test coverage metrics for evaluating the extent of E2E and API test suite coverage for 10

microservice endpoints. It elaborates on automating the calculation of these metrics with access to 11

microservice codebases and system testing traces. It delves into the process and offers feedback with 12

a visual perspective, emphasizing test coverage across microservices. To demonstrate the viability of 13

the approach, we implement a proof-of-concept tool and perform a case study on a well-established 14

system benchmark assessing existing E2E and API test suites with regard to test coverage using the 15

proposed endpoint metrics. The results of endpoint coverage reflect the diverse perspectives of both 16

testing approaches. API testing achieved 91.98% coverage in the benchmark, whereas E2E testing 17

achieved 45.42%. Combining both coverage results yielded a slight increase to approximately 92.36%, 18

attributed to a few endpoints tested exclusively through one testing approach, not covered by the 19

other. 20

Keywords: microservices; end-to-end testing; API tests; test quality 21

1. Introduction 22

Microservice architecture empowers practitioners to build scalable software systems 23

by breaking them down into a collection of loosely coupled interacting services. Each 24

service, responsible for a specific business capability, can be independently developed and 25

deployed, facilitating faster development and deployment cycles, easier maintenance, and 26

enhanced scalability. 27

Ensuring the robust functionality and seamless user experience of applications is 28

crucial in software development. This necessitates the use of two distinct testing approaches: 29

E2E testing [1], which assesses the entire application workflow by simulating real user 30

interactions, and API testing [2], focused on verifying the reliability of the application’s 31

backend through direct interactions with its APIs [3]. Striking a balance between these 32

approaches is essential for achieving comprehensive test coverage and delivering high- 33

quality software products. 34

Version February 16, 2025 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

Version February 16, 2025 submitted to Journal Not Specified 2 of 22

Conventional testing methods in this area struggle to effectively manage the com- 35

plexities posed by microservices-based systems [4]. These systems have attributes such as 36

distributed nature, continuous architectural evolution, dynamic infrastructure provisioning, 37

and hidden complexities. This makes it challenging for conventional testing strategies since 38

applications are broken down into smaller, interconnected microservices and deployed 39

across various environments. Several studies highlight the absence of assessment method- 40

ologies to accommodate the microservice and distributed approaches [5,6]. This shift in 41

paradigm requires a comprehensive reassessment of testing methodologies to ensure that 42

microservice distributed systems meet the desired quality standards. 43

Testing microservice systems using either of these approaches stands with the same 44

challenges in calculating the testing coverage for their components. In E2E testing, con- 45

cealing microservice and endpoint calls within user interface interactions weakens the 46

connection that links user interactions to the underlying endpoint calls in the system. Addi- 47

tionally, maintaining the sequence of testing steps proves challenging [7], especially in API 48

testing, where deviations may occur, testing APIs designed for calls through other APIs 49

exclusively. In essence, both approaches interact with an interfaceÐeither the user interface 50

in E2E testing or the program interface in API testing. Both conceal the underlying logical 51

system structure, presenting challenges in testing all possible scenarios. These challenges 52

are compounded by testers’ lack of knowledge about specific services, leading to difficulties 53

in estimating the testing coverage for their tests [8]. 54

Recognizing the extent to which a microservice system’s individual tests involve 55

specific microservices is crucial for testers to gain insights into system coverage and test-to- 56

microservice dependencies. E2E tests interact with the system through the user interface, 57

mediating interactions to the microservice endpoint level [9,10]. API tests interact through 58

direct individual endpoint calls or composite calls that include multiple such endpoint calls. 59

Associating tests with impacted microservices and their endpoints provides testers with 60

insights into the comprehensiveness of their test suites in covering all system endpoints. 61

This paper aims to establish metrics for calculating the coverage of endpoints in E2E 62

and API test suites, their individual tests, and microservices. It introduces a practical 63

method and measurement approach through a case study. The automated approach 64

proposed maps individual tests to system microservices and their endpoints, aiding testers 65

in achieving test design completeness. By providing detailed knowledge of test-to-endpoint 66

associations, this approach enables testers to better understand their test suite coverage 67

and identify less apparent gaps. This paper extends our prior work [9], which aimed to 68

establish metrics for calculating the coverage of endpoints in E2E test suites. The current 69

paper offers a comprehensive assessment of testing approaches and includes an additional 70

perspective on coverage calculations for API testing. Moreover, it brings a new case 71

study illustrating differing coverages between these two types of tests, which gives more 72

insight into how such tests stand when delivering a comprehensive perspective in terms of 73

endpoints. Furthermore, it shows how a combined test coverage perspective could ensure 74

better confidence in the system’s health. 75

This paper makes the following contributions in the context of microservices: 76

• Expanded the proposal and evaluation of three metrics (Microservice Endpoint Cover- 77

age, Test Case Endpoint Coverage, and Complete Test Suite Endpoint Coverage) for 78

assessing endpoint coverage in both E2E testing and API testing. 79

• Process of calculating metrics and implementation of proof-of-concept tool. 80

• A practical case study is deriving and validating the coverage metrics in a large 81

microservice system benchmark. 82

• Dataset encompassing comprehensive endpoint coverage across both testing method- 83

ologies for the system benchmark. 84

The subsequent sections of the paper are structured as follows: Section 2 provides 85

an elaboration on related work, while Section 3 describes the methodology, metrics, and 86

Version February 16, 2025 submitted to Journal Not Specified 3 of 22

process. Section 4 presents a detailed case study, followed by a discussion in Section 5 and 87

threats to validity in Section 6. The paper is concluded in Section 7. 88

2. Related Work 89

As emphasized by Horgan [11], comprehensive test coverage metrics play a crucial 90

role in testing strategy efficacy. This notion is further supported by Whalen et al. [12], 91

who emphasize the importance of black-box testing and the utilization of formal software 92

requirements to thoroughly assess test suite effectiveness. 93

As software development progresses towards cloud-native architectures and microser- 94

vices, new complexities arise in the testing landscape. Staats et al. [13] and Rajan et al. [14] 95

explore requirements coverage metrics and their pivotal role in improving fault detection. 96

This need for refined coverage metrics, accurately capturing the nuances of modern sys- 97

tems, is echoed in innovative approaches to REST API testing by Corradini et al. [15] and 98

insights into branch coverage within continuous integration by Grano et al. [16]. 99

Various studies have identified the lack of assessment techniques for microservice sys- 100

tems. A systematic literature review by Ghani et al. [5] concluded that most articles focused 101

on testing approaches for microservices lacked sufficient assessment and experimentation. 102

Jiang et al. [6] emphasized the need for improved test management in microservice systems 103

to enhance their overall quality. 104

A recent survey by Golmohammadi et al. [17] presented the results of their systematic 105

mapping study on testing REST APIs. They also emphasized the importance of having the 106

right metrics to evaluate the effectiveness of the API testing and classified the state-of-the-art 107

metrics into three types: coverage criteria, fault detention, and performance. Additionally, 108

Waseem et al. [18] conducted a survey and revealed that unit and E2E testing are the most 109

commonly used strategies in the industry. However, the complexity of microservice systems 110

presents challenges for their monitoring and testing, and there is currently no dedicated 111

solution to address these issues. Similarly, Giamattei et al. [19] identified the monitoring 112

of internal APIs as a challenge in black box testing microservice systems, advocating for 113

further research in this area. 114

To address these gaps, it is crucial to develop an assistant tool that improves system 115

testing and provides appropriate test coverage assessment methods. Corradini et al. [20] 116

conducted an empirical comparison of automated black-box test case generation approaches 117

specifically for REST APIs. They proposed a test coverage framework that relies on the 118

API interface description provided by the OpenAPI specification. Within their framework, 119

they introduced a set of coverage metrics consisting of eight metrics (five request-related 120

and three response-related), which assess the coverage of a test suite by calculating the 121

ratio of tested elements to the total number of elements defined in the API. However, these 122

metrics do not align well with the unique characteristics of microservice systems. They do 123

not take into account the specific features of microservices, such as inter-service calls and 124

components like API gateway testing. 125

Giamattei et al. [19] introduced MACROHIVE, a grey-box testing approach for mi- 126

croservices that automatically generates and executes test suites while analyzing the in- 127

teractions among inter-service calls. Instead of using the commonly used tools such as 128

SkyWalking or Jaeger, MACROHIVE builds its own infrastructure, which incurs additional 129

overhead by requiring the deployment of a proxy for each microservice to monitor. It also 130

involves implementing communication protocols for sending information packets during 131

request-response collection. MACROHIVE employs combinatorial tests and measures the 132

status code class and dependencies coverage of internal microservices. However, compared 133

to our proposed approach, MACROHIVE lacks static analysis of service dependencies, 134

relying solely on runtime data. In contrast, our approach extracts information statically 135

from the source code, providing accurate measurements along with three levels of system 136

coverage. 137

Ma et al. [21] utilized static analysis techniques and proposed the Graph-based Mi- 138

croservice Analysis and Testing (GMAT) approach. GMAT generates Service Dependency 139

Version February 16, 2025 submitted to Journal Not Specified 4 of 22

Graphs (SDG) to analyze the dependencies between microservices in the system. This 140

approach enhances the understanding of interactions among different parts of the microser- 141

vice system, supporting testing and development processes. GMAT leverages Swagger 142

documentation to extract the SDG, and it traces service invocation chains from centralized 143

system logs to identify successful and failed invocations. The GMAT approach calculates 144

the coverage of service tests by determining the percentage of passed calls among all the 145

calls, and it visually highlights failing tests by marking the corresponding dependency 146

as yellow on the SDG. However, GMAT is tailored to test microservices using the Pact 147

tool and its APIs. In contrast, our approach introduces three coverage metrics that focus 148

on different levels of microservice system parts, emphasizing endpoints as fundamental 149

elements of microservice interaction. While our approach doesn’t consider the status code 150

of each test, combining GMAT with our proposed approach could offer further insights for 151

evaluating microservice testing and assessment criteria. 152

Dynamic analysis supplements static analysis by utilizing instrumentation to capture 153

and scrutinize the runtime actions of programs. This method is essential for identifying 154

breaches of properties and understanding program behavior, as highlighted by Ball et al. 155

[22]. The advent of NVBit, as introduced by Villa et al. [23], enhances the functionalities of 156

dynamic binary instrumentation, enabling tailored error detection, bug identification, and 157

performance assessment. This approach holds particular relevance in cloud-native systems, 158

where continuous monitoring of endpoints and components in distributed architectures is 159

critical for upholding system integrity and efficiency. 160

In essence, the field of software testing is experiencing a significant shift propelled 161

by the embrace of cloud-native architectures and microservices. This shift calls for a 162

comprehensive approach that merges E2E testing and API testing, forming the foundation 163

for the creation of thorough coverage metrics tailored to the distinct intricacies of these 164

systems. This paper addresses the gap in assessment techniques for microservice testing by 165

introducing test coverage metrics and designing an analytical tool capable of evaluating 166

microservice systems, quantifying and visualizing their test coverage. 167

3. Test Coverage Methodology 168

The objective of this methodology is to assess E2E and API testing suites in achiev- 169

ing coverage of endpoints within microservices-based systems. Although these testing 170

approaches may appear distinct, this methodology outlines a generalization technique for 171

calculating the test coverage of both. Additionally, it elucidates the specificities of how 172

these approaches differ in their modes of interaction. 173

To calculate test coverage for endpoint components in a microservice system, it in- 174

volves retrieving information on both the static endpoints declared in the system’s source 175

code and the dynamic endpoints actually tested during test suite execution. Subsequently, it 176

compares these two sets of information to derive various metrics of test coverage. Thus, 177

this methodology employs static and dynamic analysis techniques to extract the necessary 178

information for both testing approaches. 179

Both static and dynamic information necessitate more specific extraction methods. 180

Extracting static endpoints involves applying analysis techniques to the source code, which 181

either requires customization for the programming language used, or the adoption of a 182

polyglot technique capable of accommodating multiple programming languages in a more 183

abstract manner, as demonstrated in [24,25]. Conversely, extracting dynamic endpoints 184

requires analyzing traces and log information generated by specific systems such as Jaeger 185

and Skywalking. 186

This methodology elaborates on each step without being tightly bound to any par- 187

ticular programming language or technology. This makes it sufficiently generalized to be 188

applicable across different system setups while also being specific enough to provide clear 189

instructions on the required attributes and techniques for calculating test coverage. 190

The rest of this section presents our proposed metrics and automated approach, 191

outlining its stages for extracting the data required for calculating the metrics over systems. 192

Version February 16, 2025 submitted to Journal Not Specified 5 of 22

3.1. Test Coverage Metrics 193

While testing involves test suites, each test suite contains test cases that represent a 194

series of steps or actions defining a specific test scenario. We introduce three metrics to 195

assess the coverage of endpoints in microservice systems: microservice endpoint coverage, 196

test case endpoint coverage, and complete test suite coverage. These metrics are described 197

in detail below: 198

• Microservice endpoint coverage: determines the tested endpoints within each microser- 199

vice. It is obtained by dividing the number of tested endpoints from all tests by the 200

total number of endpoints in that microservice. This metric offers insights into the com- 201

prehensiveness of coverage for individual microservices. The formula for microservice 202

endpoint coverage is: 203

Cms(i) =
|Etested

ms(i)
|

|Ems(i)|
;

Cms(i)- the coverage per microservice i,

Etested
ms(i) - the set of tested endpoints in microservice i,

Ems(i) - the set of all endpoints in microservice i.

204

• Test case endpoint coverage: gives a percentage of endpoints covered by each test case. 205

It is calculated by dividing the number of endpoints covered by each test by the total 206

number of endpoints in the system. This provides insights into the effectiveness of 207

individual tests in covering the system’s endpoints. The formula for test case endpoint 208

coverage is: 209

Ctest(i) =
|Etested

test(i)
|

|
⋃m_total

j Ems(j)|
;

Ctest(i) - the coverage per test i,

Etested
test(i) - the set of tested endpoints from test i,

m_total - the total number of microservices in the system,

m_total⋃

j

Ems(j) - the set of all endpoints in the system.

210

• Complete Test suite endpoint coverage: determines the test suite overall coverage of 211

the system by dividing the total number of unique endpoints covered by all test cases 212

in the test suite by the total number of endpoints in the system. It provides insights 213

into the completeness of the test suite in covering all endpoints within the system. The 214

formula for complete test suite endpoint coverage is: 215

Csuite =
|
⋃t_total

i Etested
test(i)|

|
⋃m_total

j Ems(j)|
;

Csuite - the complete test suite coverage,

m_total - the total number of microservices in the system,

t_total - the total number of tests in the test suite,

t_total⋃

i

Etested
test(i) - the set of all tested endpoints from all tests,

m_total⋃

j

Ems(j) - the set of all endpoints in the system.

216

Version February 16, 2025 submitted to Journal Not Specified 6 of 22

3.2. Clarification Example 217

To provide further clarification, consider a system consisting of three microservices 218

(MS-1, MS-2, MS-3), each with two endpoints, with a test suite composed of two tests 219

(Test-1, Test-2), as depicted in Figure 1 for E2E test suite. In the example, the tests interact 220

with endpoints through the user interface, which triggers the initiation of endpoint requests 221

passed through the API gateway component. The example demonstrates that Test-1 calls 222

two endpoints, one from MS-1 (E1.1) and one from MS-2 (E2.1). On the other hand, Test-2 223

calls two endpoints from MS-2 (E2.1, E2.2), and E2.2 has an inter-service call to endpoint 224

E3.1 in MS-3. The identical illustration can be depicted in Figure 2 for the API testing suite. 225

It showcases the same interactions; however, the calls are made directly through the API 226

gateway component instead of the user interface. 227

Figure 1. E2E Calculation Clarification Example

Applying our metrics on both test suites, we can calculate the microservice endpoint 228

coverage (Cms(i)) for each microservice. For MS-1 and MS-3, only one out of their two 229

endpoints is tested throughout all tests, resulting in a coverage of 50% (Cms(1) = Cms(3) =
1
2) 230

for each. However, for MS-2, both of its endpoints are tested at least once, leading to a 231

coverage of 100% (Cms(2) =
2
2). 232

Figure 2. API Testing Calculation Clarification Example

Next, we calculate the test case endpoint coverage (Ctest(i)) per each test. Test-1 covers 233

two out of the six endpoints in the system, resulting in a coverage of approximately 234

33.3% (Ctest(1) = 2
6). Test-2 covers three distinct endpoints, resulting in a coverage of 235

50% (Ctest(2) =
3
6). It is important to highlight that Test-2 contains an inter-service call to 236

endpoint E3.1, as shown in our approach. 237

Version February 16, 2025 submitted to Journal Not Specified 7 of 22

Finally, we can calculate the complete test suite endpoint coverage (Csuite) of the 238

system. Out of the six endpoints in the system, four distinct endpoints are tested from the 239

two tests. This results in ≈ 66.6% coverage (Csuite = 4
6). 240

3.3. The Metrics Extraction Process 241

To automatically collect the data for calculating the test coverage metrics, we propose 242

to employ a combination of static and dynamic analysis methods. 243

The static analysis phase focuses on examining the source code to extract information 244

about the implemented endpoints in the system. The dynamic analysis phase involves 245

inspecting system logs and traces to identify the endpoints called by the automation 246

tests. By combining the data obtained from both analyses, the approach applies the 247

proposed metrics to generate the endpoint coverage, and then it provides two visualization 248

approaches to depict the coverage over the system representation. This process involves 249

the following four stages as illustrated in Figure 3: 250

Stage 1. Endpoint Extraction From Source Code (Static Analysis). 251

Stage 2. Endpoint Extraction From Log Traces (Dynamic Analysis). 252

Stage 3. Coverage Calculation. 253

Stage 4. Coverage Visualization. 254

Figure 3. The proposed approach overview

We will delve into the details of each stage to demonstrate the approach. 255

3.3.1. Stage 1: Endpoint Extraction From Source Code (Static Analysis): 256

This stage aims to comprehend the offerings of the system implementation concerning 257

the declared endpoints ready for consumption. Our approach applies a static analysis 258

approach to the system’s source code to extract the employed endpoints in each microser- 259

vice (Ems(i)). Static analysis refers to the process of analyzing the syntax and structure of 260

code without executing it in order to extract information about the system. As depicted 261

in Figure 4, initially, microservices can be divided and detected from the system codebase. 262

Each microservice’s codebase is then processed by the endpoint extraction process, which 263

produces the endpoints corresponding to each microservice. 264

Figure 4. Stage 1: Static analysis flow

Version February 16, 2025 submitted to Journal Not Specified 8 of 22

The identification of API endpoints typically relies on specific frameworks or libraries1. 265

This ensures consistency in metadata identification. Code analysis extracts metadata at- 266

tributes about each endpoint, including the path, HTTP method, parameters, and return 267

type. However, identification of endpoints can be performed across platforms as demon- 268

strated by Schiewe et al. [24] or accomplished by frameworks like Swagger2
269

As a result, a list of endpoints is generated and organized according to the respective 270

microservice they belong to. This comprehensive list of endpoints becomes one of the 271

inputs for our coverage calculation process, where it combines the output of the dynamic 272

analysis flow. 273

3.3.2. Stage 2: Endpoint Extraction From Log Traces (Dynamic Analysis): 274

The objective of this stage is to identify the endpoints invoked by the test suites during 275

runtime. We utilize dynamic analysis to identify the endpoints called during the execution 276

of each test case in test suites (Etested
test(i)

. It also identifies the microservices containing these 277

tested endpoints (Etested
ms(i)

). The analyzed system is executed to observe its runtime behavior 278

and transactions. This analysis involves running multiple tests and capturing the traces 279

that occur, as illustrated in Figure 5. 280

Figure 5. Stage 2: Dynamic analysis flow

The dynamic analysis flow sketched in Figure 5 has two main responsibilities. Firstly, 281

it takes the tests (i.e., E2E tests and API tests) and executes them sequentially. During the 282

execution of the tests, traces are generated, capturing the interactions with the system. 283

These traces are sent to a configured centralized logging system (i.e., SkyWalking, Jaeger), 284

which stores them in its own storage, or an externally configured data storage solution (i.e., 285

Elasticsearch), enabling analysis and further processing. Secondly, the process calculates 286

the delta of the produced traces to identify the traces relevant to each executed test. This 287

can be achieved in various ways, such as recording a timestamp from the start of a test’s 288

execution to its completion, retrieving the traces after each test execution and calculating 289

the difference based on the latest track record, or sending a dynamically generated trace 290

before and after the execution of each test to mark the start and end. In our approach, we 291

have employed the first strategy, as it avoids unnecessary processing and complexity at 292

this stage. 293

The extracted test trace sequences corresponding to each test undergo a traces filtration 294

process that filters and identifies the traces related to endpoints. This may involve queries 295

to the trace storage to return specific trace indexes in the data. For instance, the SkyWalking 296

tool marks the traces involving endpoint calls and makes them accessible under an index (in 297

particular, sw_endpoint_relation_server_side index). Additionally, centralized logging 298

systems encode the data records using Base643 when sending them to external storage like 299

Elasticsearch. Therefore, this step may include an additional decoding process if needed to 300

detect the endpoints. These endpoint-related trace records contain information about the 301

source and destination endpoints involved in the call relationship. 302

1 An example, in the Java Spring framework, annotations such as @RestController and @RequestMapping are
commonly used.

2 Swagger: https://swagger.io
3 Base64: https://developer.mozilla.org/en-US/docs/Glossary/Base64

Version February 16, 2025 submitted to Journal Not Specified 9 of 22

As a result, a list of endpoints is generated and organized according to the respective 303

test suite they belong to. This list of endpoints becomes the second input for the coverage 304

calculation process, where it is combined with the output of the static analysis stage. 305

3.3.3. Stage 3: Coverage Calculation: 306

During this stage, we determine which of the system endpoints have been accessed 307

throughout the test suites and which ones have not been accessed. Therefore, this stage 308

combines the extracted data from the previous two stages to calculate the three metrics 309

of coverage (Cms(i), Ctest(i), Csuite). This stage follows the Set-based approach to solely 310

account for the uniqueness of endpoints and their correspondence through the preceding 311

stages. 312

A challenge arises when matching the extracted system endpoints from the source
code with those extracted from the traces. Since traces contain invoked endpoints
with arguments’ values (e.g., http://xxx.com/10), while those identified by static
analysis hold parameter types and names (e.g., http://xxx.com/id: Integer). A
similar challenge has been accounted for when profiling systems using log analysis
and matching log lines with logging statements in the source code [26]. The source
code contains a log message template with parameters, and execution logs contain
a message with values from the execution context, which is not a direct match (i.e.,
source code log.info(’calling {a} from {b}’) vs. a contextual log statement
’calling for from bar’ where both a and b are interpreted). Zhao et al. [26] have
identified all code log statements to extract templates that could be matched using
regular expressions to identify and match the parameter types whose values are
present in the log output.

In our approach, we employ signature matching to solve the challenge. It
involves comparing the endpoint method signature with the data and parameters
exchanged during REST call communication to detect and verify the authenticity
and matches of the requests. Thus, to determine which system endpoints were called
by the test, we consider the comparison of extracted attributes of the endpoints
(such as path, request type, and parameter list) from the source code with the REST
calls extracted from the test traces. This matching process helps to establish the
coverage levels and determine which endpoints were invoked by the tests.

313

The calculation of Cms(i) involves categorizing and dividing the number of tested 314

endpoints (Stage 2) by the number of declared endpoints for each microservice (Stage 1). 315

For Ctest(i), the calculation entails extracting, for each test case, the number of endpoints 316

covered (Stage 2), and dividing it by the total number of endpoints in the system (Stage 317

1). This computation reveals the percentage of coverage that a test case achieves across 318

the entire system’s endpoints. Finally, Csuite is determined by dividing the total number of 319

distinct endpoints covered by all test cases in the test suite (Stage 2) by the total number of 320

endpoints in the system (Stage 1). 321

3.3.4. Stage 4: Coverage Visualization: 322

While microservice architecture primarily caters to large systems, it is essential to 323

provide a user-friendly presentation to assist practitioners in easily comprehending the 324

coverage within the familiar context of the system. Therefore, this approach provides a 325

centralized visualization of the coverage calculation by offering two methods for visualizing 326

these coverage metrics. The first displays a list of microservices, with each microservice 327

showing its endpoints. Covered endpoints are marked in green, while missed endpoints 328

are marked in red, as demonstrated in Figure 12a. The second representation utilizes 329

the service dependency graph, where microservices are represented as nodes, and the 330

dependencies between them are shown as edges. The nodes in the graph are color-coded 331

based on the coverage percentage, allowing users to visually observe the coverage on the 332

Version February 16, 2025 submitted to Journal Not Specified 10 of 22

holistic system view depicting service dependencies, as exampled in Figure 12b. These 333

visualization techniques help in interpreting the two metrics of Cms(i) and Ctest(i). Thus, 334

these coverage calculations and visualizations provide valuable insights into the extent of 335

test coverage achieved by automation frameworks in the context of microservices, enabling 336

users to visually assess the effectiveness of their testing efforts and identify areas that 337

require improvement. 338

3.4. Methodology Discussion 339

This methodology elucidates the interplay between static data analysis and dynamic 340

data analysis, which are pivotal for calculating testing coverage metrics. Its design ensures 341

versatility for polyglot systems, offering detailed guidelines without strict adherence 342

to any specific programming language or technology. This flexibility facilitates broad 343

applicability across diverse system configurations while maintaining specificity in guiding 344

the calculation of test coverage. Consequently, implementation details may vary between 345

system environments to accommodate the methodology effectively. 346

However, challenges arise when reconciling information extracted from static and 347

dynamic phases, as they exhibit distinct characteristics. Mismatched endpoint signatures 348

between source code and traces can occur due to discrepancies in trace values aligning with 349

defined types in the code. Consequently, the methodology acknowledges and addresses 350

this challenge to ensure accuracy in matching extracted data. 351

Despite differences in communication layers between E2E testing and API testing 352

Ðwhere E2E testing traverses various layers from the user interface to API-gateway to 353

endpoints, while API testing focuses on specific endpoint calls that may pass through API- 354

gateway directlyÐ the methodology remains applicable for calculating testing coverage 355

in both scenarios. By extracting traces generated during execution, regardless of the com- 356

munication layers traversed, the methodology captures comprehensive endpoint testing 357

coverage. Moreover, its flexibility enables focused analysis of testing specific communica- 358

tion layers, thereby highlighting inter-service communication calls and distinguishing tests 359

passing through the API-gateway from those bypassing it. This distinction underscores the 360

importance of the API-gateway as a filtration point, particularly for enforcing cross-cutting 361

aspects such as security authentication. 362

Furthermore, implementing this methodology across both testing approaches offers 363

substantial assurance of system health from diverse perspectives. Each approach targets 364

distinct testing strategies to ensure system testability, such that E2E testing focuses on user 365

scenario perspective, while API testing emphasizes functionality reliability. 366

4. Case Study 367

In this section, a case study is conducted to showcase the feasibility of the proposed 368

automated metric calculation approach. The objective is to provide testers with insights that 369

enhance system coverage and testability. This is achieved by implementing the proposed 370

approach and its stages to extract the necessary data for calculating the three coverage 371

metrics. The case study involves integrating data extraction from the system source code 372

with log traces generated during the execution of both E2E and API test suites. 373

This case study considered an open-source system benchmark and utilized an existing 374

E2E test suite and API test suite designed for the same system. A proof of concept (POC) 375

was developed to illustrate the automation of the proposed metrics calculation, which was 376

employed to assess the provided test benchmarks. The complete data analysis phases with 377

their results are published in a dataset4. This dataset contains the complete calculations of 378

the metrics. 379

4 Dataset: https://zenodo.org/records/10553186

Version February 16, 2025 submitted to Journal Not Specified 11 of 22

4.1. Proof of Concept (POC) Implementation 380

This section describes the implementation of a POC5 to showcase the four phases of 381

the proposed approach. We focused on statically analyzing Java-based project source codes 382

that use the Java Spring Cloud framework, an open-source framework that is widely used 383

for building cloud-native applications. It provides developers with a comprehensive set of 384

tools and libraries to build scalable and resilient applications in the Java ecosystem. 385

For the endpoint extraction from source code (Stage 1), we utilized the open-source 386

JavaParser library [27]. It allowed us to parse Java source code files, generate an Abstract 387

Syntax Tree (AST) representation, and traverse it to detect spring annotations such as 388

@GetMapping and @PostMapping. We extracted the relevant attributes once the endpoints 389

were detected. 390

For the endpoint extraction from log traces (Stage 2), we focused on extracting the 391

skywalking generated logs and traces from Elasticsearch, which is widely adopted as a 392

central component in the ELK (Elasticsearch, Logstash, Kibana) stack [28]. We used the 393

Elasticsearch Java High-Level REST Client [29] which offers a convenient way to interact 394

with Elasticsearch. It provided a QueryBuilder class to construct queries for searching and 395

filtering data, such as creating a query to retrieve the logs that are between specific start 396

and end timestamps. 397

Figure 6. Frameworks Considered in the POC

Then, the POC performs the coverage calculation (Stage 3). It utilized Apache Maven, 398

a build automation tool for Java projects, to execute the test suites of Selenium [30] and 399

Gatling [31]. After that, it integrates the results of the two stages’ outcomes of static and 400

dynamic processes and applies the proposed metrics. For the coverage visualization (Stage 401

4), we provided the two visualization approaches discussed earlier. We employed React 402

framework to implement a web application6 that presents the information in an expandable 403

list view for easy navigation. To integrate with the service dependency graph visualization, 404

we utilized the Prophet library7, an open-source project that generates the graph from 405

source code. Additionally, we utilized the visualizer library8, which offers a tailored 3D 406

microservices visualization for service dependency graphs. The summarized frameworks 407

for each stage are depicted in Figure 6. 408

5 POC Source Code: https://github.com/cloudhubs/test-coverage-backend
6 Coverage Visualizer: https://github.com/cloudhubs/test-coverage-frontend
7 Prophet: https://github.com/cloudhubs/graal-prophet-utils
8 3D Visualizer: https://github.com/cloudhubs/graal_mvp

Version February 16, 2025 submitted to Journal Not Specified 12 of 22

4.2. Benchmark and Test Suites 409

To ensure unbiased testing of our application, we utilized an open-source testbench 410

consisting of the TrainTicket system and associated test suites. 411

TrainTicket [32,33] is a microservice-based train ticket booking system that is built us- 412

ing the Java Spring framework. It uses the standard annotations for defining the endpoints 413

and uses the RestTemplate Java client to initiate requests to endpoints. This benchmark 414

consists of 41 Java-based microservices and makes use of Apache SkyWalking [34] as its 415

application performance monitoring system. 416

In order to run the TrainTicket system and execute tests on it, certain configuration 417

fixes were necessary. To address this, a fork9 of the TrainTicket repository was created, 418

specifically from the 1.0.0 release. This fork incorporated the necessary fixes and a de- 419

ployment script. TrainTicket integrates with Elasticsearch, allowing our POC to utilize 420

SkyWalking to forward system logs to Elasticsearch for additional processing and analysis. 421

For the test suites, we utilized an open-source test benchmark10 published in [35]. 422

This benchmark aims to test the same version of the TrainTicket system. It contains 11 423

different E2E test cases using the Selenium framework and 26 API test cases using the 424

Gatling framework. 425

4.3. Ground Truth 426

To validate the completeness of our approach, we performed a manual analysis to 427

construct the ground truth for the test benches. The complete results of the ground truth 428

are published in the open accessed dataset4. This involved manual extraction of the data 429

related to the first two stages in our proposed process in Section 3.3, as follows: endpoint 430

extraction from source code and endpoint extraction from log traces. 431

For Stage 1, we validated the endpoints extracted during the static analysis by manu- 432

ally inspecting the source code of the microservices’ controller classes. This allowed us to 433

identify and extract information such as the endpoint’s path, request type, parameter list, 434

and return type. This process extracted 262 defined endpoints in the TrainTicket testbench 435

codebase. 436

For Stage 2, we verified the endpoints identified during the dynamic analysis by 437

reviewing both the E2E (Selenium) and API (Gatling) test suites. Given that E2E tests 438

primarily involve UI-based interactions and do not explicitly mention endpoints, we 439

conducted a manual analysis of the logs generated by these tests stored in Elasticsearch. 440

The logs contained encoded details about source and destination endpoints, which we 441

decoded and filtered to compile a list of 171 unique endpoints invoked during E2E tests 442

and 495 unique endpoints included during API tests. These unique endpoints encompass 443

non-actual system endpoints, such as API gateway mediator calls, which will be filtered 444

out in the next steps. 445

4.4. Case Study Results 446

We began the execution by running the deployment script to set up the TrainTicket 447

system on a local instance. Subsequently, our POC executed the test cases from the provided 448

test benchmarks, generated the list of called endpoints, and calculated the test coverage 449

according to the described metrics for each of the E2E and API tests separately. The 450

execution of the POC takes a few seconds to extract the data and calculate the metrics. 451

In terms of evaluating the completeness of our POC, this case study confirmed that 452

we captured all the endpoints declared in the ground truth. The POC successfully captured 453

all 262 implemented endpoints in the system, demonstrating the completeness of the Stage 454

1 outcome. For Stage 2 completeness, the POC extracted all 171 endpoints during E2E tests 455

and 495 unique endpoints during API testing. The execution of the POC and the detailed 456

9 TrainTicket: https://github.com/cloudhubs/train-ticket/tree/v1.0.1
10 Test benchmark: https://github.com/cloudhubs/microservice-tests

Version February 16, 2025 submitted to Journal Not Specified 13 of 22

Te
st

 c
as

e
E

nd
po

in
t C

ov
er

ag
e

(%
)

0

2

4

6

8

10

12

14

16

Boo
kin

g

Use
rLi

st

Adm
inC

on
fig

Lis
t

Con
tac

tLi
st

Pric
eL

ist

Adm
inS

tat
ion

Lis
t

Adm
inT

rai
nL

ist

Rou
teL

ist

Orde
rLi

st

Trav
elL

ist
Lo

gin

Figure 7. Test case Endpoint Coverage in the E2E testing Benchmark (Ctest(i))

coverage metrics calculations (Stage 3) are outlined in the following subsections, including 457

both E2E testing using Selenium and API testing using Gatling. 458

4.4.1. End-to-End Testing Results (Selenium) 459

The results of the experiment execution on the E2E tests benchmark revealed a total 460

of 171 unique endpoints extracted from a set of 953 log records4 generated during the 461

execution of the test cases, out of which 119 endpoints are actual endpoints within the 462

system, and 52 endpoints are related to API gateway calls. 463

Through the complete data extraction, we calculate the complete test suite coverage to 464

be approximately 45.42% (Csuite = 119
262 ≈ 45.42%). The summary statistics for the metrics 465

calculations are provided in Table 1. 466

The calculation of Ctest(i) shows that the maximum coverage achieved by a test case 467

in the study is approximately 15.27%. This was observed in the Booking test case, which 468

made 53 calls to 40 unique endpoints in the system. On the other hand, the minimum 469

coverage is approximately 1.14%, which occurred in the Login test case that only called 470

three endpoints. The analysis shows that the average test case endpoint coverage is approx- 471

imately 7.29%, while the most common coverage among the test cases is approximately 472

7.25%. This coverage was observed in the following five test cases: AdminConfigList, 473

ContactList, PriceList, AdminStationList, and AdminTrainList. Figure 7 illustrates 474

the endpoint coverage achieved by the 11 test cases, along with the average coverage for 475

better measurement. 476

The calculation of Cms(i) reveals that the maximum coverage is 100%, observed in the 477

ts-verification-code-service, which has two endpoints covered by the test cases. On 478

the other hand, the minimum coverage is 0%, indicating that test suites completely missed 479

testing any endpoints in the following four microservices: ts-wait-order-service, ts-preserve- 480

Table 1. End-to-End Summary Statistics of Coverage Metrics

Metric Coverage (%)

Csuite 45.42

Minimum Average Maximum Mode

Cms(i) 0 44.5 100 25

Ctest(i) 1.14 7.29 15.27 7.25

Version February 16, 2025 submitted to Journal Not Specified 14 of 22

85.71%
56.25%
85.71%
75%
66.67%
46.15%
83.33%
71.43%
71.43%
62.5%
80%
25%
75%
60%
50%
25%
66.67%
66.67%
66.67%
50%
40%
22.22%
22.22%
22.22%
100%
50%
33.33%
33.33%
25%
25%
20%
20%
20%
16.67%
16.67%
0%
0%
0%
0%

ts-admin-basic-info-service(21)
ts-order-service(16)
ts-travel-service(13)
ts-station-service(9)

ts-train-service(8)
ts-price-service(7)

ts-contacts-service(8)
ts-route-service(7)
ts-user-service(7)

ts-config-service(6)
ts-order-other-service(16)
ts-admin-user-service(5)

ts-travel2-service(12)
ts-auth-service(6)

ts-admin-travel-service(5)
ts-admin-route-service(4)

ts-assurance-service(9)
ts-food-service(9)

ts-inside-payment-service(9)
ts-admin-order-service(5)

ts-basic-service(4)
ts-cancel-service(3)

ts-seat-service(3)
ts-execute-service(3)

ts-verification-code-service(2)
ts-security-service(6)
ts-consign-service(6)

ts-consign-price-service(5)
ts-station-food-service(5)

ts-travel-plan-service(5)
ts-payment-service(4)

ts-route-plan-service(4)
ts-rebook-service(3)

ts-train-food-service(3)
ts-preserve-service(2)

ts-food-delivery-service(9)
ts-notification-service(7)
ts-wait-order-service(4)

ts-preserve-other-service(2)

0 2 4 6 8 10 12 14 16 18 20 22

Covered Endpoints Non-covered Endpoints

Figure 8. Microservice Endpoint Coverage in the E2E testing Benchmark (Cms(i))
The numbers in parentheses indicate the total number of endpoints in each ms.

other-service, ts-notification-service, and ts-food-delivery-service. The average microservice 481

endpoint coverage is approximately 44.5%, while the mode statistics show that 25% is the 482

most common coverage, observed in the following four microservices: ts-travel2-service, 483

ts-payment-service, ts-route-plan-service, and ts-order-other-service. The complete calculations 484

for each microservice are illustrated in Figure 8. 485

4.4.2. API Testing Results (Gatling) 486

The outcomes of the experiment execution in the API tests benchmark unveiled a 487

total of 495 distinct endpoints extracted from a collection of 1902 log records4 generated 488

during the test case execution. Among these, 241 endpoints correspond to actual endpoints 489

within the system, 249 endpoints are associated with API-gateway calls that are not actual 490

endpoints in the system, and 5 endpoints deviate from the correct API signature in declared 491

the system, as detailed in Table 2. 492

Additionally, we manually retrieved endpoints from the API tests implementation 493

since they are explicitly referenced in the source code of the tests in contrast to the case in 494

E2E tests. This enables us to perform additional validation with API testing for endpoints 495

do not appear in the logs but may be integrated into the tests source code. This revealed 496

that two microservices (ts-wait-order-service and ts-food-delivery-service) are slated for testing, 497

but they do not surface in the logs due to misconfigurations in the TrainTicket testbench 498

system. Consequently, this highlights an additional aspect that our methodology can reveal 499

Version February 16, 2025 submitted to Journal Not Specified 15 of 22

Table 2. API testing’s Endpoints Mismatched with System Signatures

Mis-matched Endpoint Reason

ts-consign-price-service/api/v1/consignpriceservice/
consignprice@GET

Expected
POST method

ts-auth-service/api/v1/users/login@GET Expected
POST method

ts-security-service/api/v1/securityservice/
securityConfigs@DELETE

Expected
1 parameter

ts-assurance-service/api/v1/assuranceservice/types@GET Expected
’/assurances’

ts-assurance-service/api/v1/assuranceservice/assurances/
orderid/{id}@GET

Mis-spelled
’/assurance’

Te
st

 c
as

e
E

nd
po

in
t C

ov
er

ag
e

(%
)

0

2

4

6

8

10

12

14

16

Orde
rS

erv
ice

Trav
elS

erv
ice

Foo
dS

erv
ice

Pay
men

t

Stat
ion

Lis
t

Con
tac

tLi
st

Rou
teL

ist

Trai
nL

ist

Con
sig

nS
erv

ice

Pric
eL

ist

Use
rLi

st

Con
fig

Lis
t

Plan
Serv

ice

Ass
ua

nc
eS

erv
ice

Bas
icS

erv
ice

Noti
fyS

erv
ice

Orde
rLi

stA
dm

in

Sec
uri

ty

Trav
elL

ist

Pres
erv

e

Exe
cu

teS
erv

ice

Gen
era

l
Lo

gin

Orde
rLi

stU
se

r

Reb
oo

k

Lo
gin

Mod
ule

Figure 9. Test case Endpoint Coverage in the API testing Benchmark (Ctest(i))

by comparing the expected coverage derived from the endpoints in tests with the actual 500

coverage derived from the logs. Through the complete data extraction, we calculate the 501

complete test suite coverage to be approximately 91.98% (Csuite = 241
262 ≈ 91.98%). The 502

summary statistics for the metrics calculations are provided in Table 3. 503

The computation of Ctest(i) indicates that the highest coverage attained by a test case in 504

the study is around 12.21%. This was evident in the OrderService test case, which covered 505

32 unique endpoints in the system. Conversely, the minimum coverage is approximately 506

0.76%, observed in the LoginModule test case that only invoked two endpoints. The analysis 507

reveals that the average test case endpoint coverage is about 3.55%, with the most common 508

coverage among the test cases being around 1.90%. This coverage was observed in the 509

following five test cases: BasicService, NotifyService, OrderListAdmin, Security, 510

and TravelList. Figure 9 illustrates the endpoint coverage achieved by the 26 test cases, 511

along with the average coverage for better measurement. 512

The calculation of Cms(i) discloses that the maximum coverage is 100%, which is also 513

the most prevalent coverage for 32 microservices in the system. Conversely, the minimum 514

coverage is 0%, signifying that the test suites entirely overlooked testing any endpoints 515

Table 3. API Testing Summary Statistics of Coverage Metrics

Metric Coverage (%)

Csuite 91.98

Minimum Average Maximum Mode

Cms(i) 0 91.77 100 100

Ctest(i) 0.76 3.55 12.21 1.90

Version February 16, 2025 submitted to Journal Not Specified 16 of 22

100%
100%
100%
100%
100%
100%
100%
100%
85.71%
100%
100%
100%
100%
50%
100%
100%
88.89%
100%
100%
100%
100%
100%
100%
100%
100%
83.33%
100%
100%
100%
100%
100%
100%
100%
100%
100%
0%
71.43%
0%
100%

ts-admin-basic-info-service(21)
ts-order-service(16)
ts-travel-service(13)
ts-station-service(9)

ts-train-service(8)
ts-price-service(7)

ts-contacts-service(8)
ts-route-service(7)
ts-user-service(7)

ts-config-service(6)
ts-order-other-service(16)
ts-admin-user-service(5)

ts-travel2-service(12)
ts-auth-service(6)

ts-admin-travel-service(5)
ts-admin-route-service(4)

ts-assurance-service(9)
ts-food-service(9)

ts-inside-payment-service(9)
ts-admin-order-service(5)

ts-basic-service(4)
ts-cancel-service(3)

ts-seat-service(3)
ts-execute-service(3)

ts-verification-code-service(2)
ts-security-service(6)
ts-consign-service(6)

ts-consign-price-service(5)
ts-station-food-service(5)

ts-travel-plan-service(5)
ts-payment-service(4)

ts-route-plan-service(4)
ts-rebook-service(3)

ts-train-food-service(3)
ts-preserve-service(2)

ts-food-delivery-service(9)
ts-notification-service(7)
ts-wait-order-service(4)

ts-preserve-other-service(2)

0 2 4 6 8 10 12 14 16 18 20 22

Covered Endpoints Non-covered Endpoints

Figure 10. Microservice Endpoint Coverage in the API testing Benchmark System (Cms(i))
The numbers in parentheses indicate the total number of endpoints in each ms.

in the following two microservices: ts-wait-order-service and ts-food-delivery-service. The 516

average microservice endpoint coverage is approximately 91.77%. The detailed calculations 517

for each microservice are depicted in Figure 10. 518

4.5. On Combined E2E and API Test Coverage 519

While E2E tests ensure that the user-facing aspects of the system work as intended, the 520

API tests validate the functionality and communication between backend services. Combin- 521

ing the coverage generated from both test suites is expected to yield a more comprehensive 522

overview of the assurance or confidence in the system’s health at the granularity of system 523

endpoints. Such combined tests ensure that endpoints are responsive and touched by at 524

least some tests. 525

When a problem is detected, it is still relevant to perform both E2E and API tests 526

as they help isolate the issue. For instance, they can determine whether it’s a frontend, 527

backend, or integration problem, making debugging and fixing more efficient. Combining 528

E2E and API tests creates a robust testing strategy that addresses different aspects of the 529

system, leading to improved reliability and faster identification of issues. Thus, for such a 530

perspective, a combined test coverage becomes relevant to the comprehensive evaluation 531

of the system. 532

In terms of microservice endpoint coverage (Cms(i)), the combined approach only 533

increased the coverage of the ts-assurance-service microservice, reaching 100% coverage 534

Version February 16, 2025 submitted to Journal Not Specified 17 of 22

compared to the 88.88% achieved with API testing coverage and 22.22% achieved with 535

E2E testing coverage. This improvement is attributed to E2E tests successfully covering a 536

misconfigured endpoint of ts-assurance-service/api/v1/assuranceservice/assurances/types@GET 537

in the API tests. However, the coverage for the remaining 40 microservices in the system 538

remains unchanged from API test coverage. 539

Conversely, the combination of Ctest(i) in both E2E and API test coverage involves 540

a simple appending process since each test suite serves a different purpose with distinct 541

testing objectives from the API test and E2E test. Thus, this shows a more comprehensive 542

list of tests and their attached coverage of the system. 543

The complete test suite endpoint coverage (Csuite) experienced a slight increase to 544

approximately 92.36% (Csuite = 242
262 ≈ 92.36%) after combining the endpoints from E2E 545

and API tests. This contrasts with the individual coverage percentages of 91.98% for API 546

and 45.42% for E2E. The intersection between endpoints covered from each of these two 547

testing approaches was calculated, as depicted in Figure 11. It reveals that both the E2E and 548

API test suites collectively covered a total of 118 endpoints. Moreover, the E2E test suite 549

specifically covered an endpoint (ts-assurance-service/api/v1/assuranceservice/assurances/ 550

types@GET) that was not addressed by the API test suites. Conversely, the API test suites 551

covered an additional 123 endpoints that were not included in the E2E test suite’s coverage. 552

Consequently, in total, the TrainTicket system had 21 endpoints that were not addressed by 553

either of the test suites. 554

Figure 11. Combined Endpoint Coverage in the E2E and API tests Benchmark

4.6. Coverage Visualization 555

The metrics calculations are visualized using two visualization approaches (Stage 4), 556

as shown in Figure 12a and Figure 12b. One has a service list view, and the other provides 557

a holistic service dependency overview in the context of endpoint coverage. The service 558

list view consists of multiple expandable lists to present a comprehensive display of all 559

microservices within the system, as depicted in Figure 12a. Each expandable list header 560

includes the microservice name and its coverage percentage, while the body exhibits the 561

paths of endpoints associated with that microservice. This visualization employs red-green 562

color coding, such that covered endpoints are highlighted in green, and uncovered ones are 563

marked in red. For instance, the ts-config-service microservice shows an approximate 564

coverage of 83.33% from the E2E test suite, missing only one (GET@/api/v1/configservice/ 565

welcome) out of six endpoints. In contrast, the ts-contacts-service has an approximate 566

coverage of 62.50%, with two out of seven endpoints remaining untested. 567

On the other hand, the service dependency view utilizes a 3D graph visualization rep- 568

resenting the complete service dependency graph of the system, as illustrated in Figure 12b. 569

Nodes represent microservices, and edges denote dependencies between microservices. 570

This approach introduces four color codes based on microservice coverage percentages: red 571

Version February 16, 2025 submitted to Journal Not Specified 18 of 22

ts-config-service

83.33% Coverage

GET /api/v1/configservice/configs

POST /api/v1/configservice/configs

PUT /api/v1/configservicse/configs

DELETE /api/v1/configservicse/configs/{configName}

GET /api/v1/configservicse/configs/{configName}

GET /api/v1/configservice/welcome

ts-contacts-service

62.50% Coverage

GET /api/v1/contactservice/contacts

POST /api/v1/contactservice/contacts

POST /api/v1/contactservice/contacts/admin

DELETE /api/v1/contactservice/contacts/{contactsId}

PUT /api/v1/contactservice/contacts

GET /api/v1/contactservice/welcome

GET /api/v1/contactservice/contacts/account/{accountId}

}

2 of 2

(a) Expandable list view shows microservice endpoints list

(b) 3D interactive visualizer shows service dependencies (cropped view)

Figure 12. Microservices endpoint coverage visualization (full pictures6)

for 0-69%, orange for 70-79%, yellow for 80-89%, and green for 90-100%. For example, the 572

node corresponding to ts-config-service is highlighted in yellow, indicating its coverage 573

of 83.33%. In contrast, the node for ts-contacts-service is marked in red, representing 574

Version February 16, 2025 submitted to Journal Not Specified 19 of 22

its coverage of 62.50%. This 3D graph visualization provides a dynamic representation of 575

service dependencies along with their respective coverage statuses. 576

5. Discussion 577

Our approach brings a promising solution to maintaining system reliability through 578

better assurance of E2E and API test suit completeness. It contributes to the continuous 579

reliability and quality assurance of decentralized microservice systems. In addition to 580

integrating both testing methodologies, our approach, in contrast to existing literature, 581

takes into consideration specific features of microservice architecture, including inter- 582

service communication and components such as API gateway testing. Many existing 583

studies overlook these microservice-specific characteristics. Furthermore, our approach 584

offers three levels of granularity, enabling developers and testers to identify and benefit 585

from the specific parts requiring modification as the system evolves. Our assessment results 586

indicate a positive impact on establishing connections between different tests and system 587

endpoints through automated means. Such tracking provides valuable insights for testers 588

in managing change propagation to the testing infrastructure, as they directly indicate 589

co-change dependencies between specific microservices or endpoints and particular tests. 590

Combining E2E testing with API testing provides an even more comprehensive per- 591

spective on system coverage. However, it is essential to consider the context in which the 592

approach is applied, recognizing that the user interface in E2E testing may not interact with 593

all middleware endpoints. This can be reflected in the provided metrics, indicating that 594

the E2E test might not achieve 100% coverage. This prompts the question of whether the 595

remaining endpoints signify the presence of the Nobody Home smell [36], indicating missing 596

wiring from the user interface, or if they represent outdated or dead code. 597

On the contrary, API tests in our study covered a substantial portion of these endpoints, 598

resulting in higher coverage compared to E2E tests. Nonetheless, API testing could include 599

tests of deprecated, removed, or unused endpoints from the user interface perspective, as it 600

directly points to API endpoints for testing. Nevertheless, the advantage of API testing is 601

rooted in its static source code, which encompasses the tested endpoint APIs. This enables 602

the approach to identify directly declared endpoints within the API test suite source code. 603

The approach can cross-reference the declared endpoints in API test suites with those 604

extracted from the system source code, pinpointing those that no longer exist in the system. 605

Moreover, analyzing the log traces to distinguish covered endpoints from direct user calls 606

(via the user interface or direct API calls) versus those covered through inter-service calls 607

(from another microservice) adds an extra layer of validation. This aids practitioners in 608

ensuring the design and exposure perspective of each endpoint in the system. 609

Furthermore, considering the nature of the testing approaches in the case study, 610

the API tests exhibited higher coverage in microservices and complete test suite metrics, 611

while the metric of test case endpoint coverage showed lower coverage per test case. This 612

discrepancy arises because API tests executed a larger number of test cases, each consuming 613

fewer endpoints, while E2E test cases consumed more endpoints each but constituted a 614

smaller number of test cases in the overall test suite. 615

It is worth noting that microservices often implement isAlive/welcome endpoints for 616

health checks. Some libraries, like Hystrix, can automatically generate these endpoints, 617

while others may implement them manually. In the case of TrainTicket, 39 endpoints were 618

implemented that were not utilized in the user interface since rendering them meaningless. 619

However, they are considered for testing in the API tests. Verifying these endpoints can 620

ensure that the system is correctly initialized. 621

6. Threats to Validity 622

In this section, we address the potential validity threats to our approach. We adopt 623

Wohlin’s taxonomy [37], which encompasses construction, external, internal, and conclu- 624

sion threats to validity, as a framework for our analysis. 625

Version February 16, 2025 submitted to Journal Not Specified 20 of 22

A potential construction validity threat arises from the dependency on static analysis 626

for endpoint extraction and dynamic analysis of centralized traces generated by tests. It 627

includes missing or non-standard source code and a lack of support for centralized traces, 628

which can hinder our approach. 629

Our POC is currently implemented for specific programming languages and frame- 630

works. However, it is important to note that the methodology itself is not limited to these 631

specifications. It can be adapted and applied to other languages and frameworks, mitigat- 632

ing construction threats related to dependencies. Moreover, asynchronous messaging poses 633

a potential risk to test execution by causing ghost endpoint call trace events. To mitigate 634

this threat, potential approaches include disabling asynchronous services or conducting 635

repeated test executions to minimize the impact. 636

Internal validity threats arise from potential mismatches between the extracted end- 637

point signatures from the source code and the traces. Although overloads are infrequent, 638

inaccurate matching may occur due to trace values not aligning precisely with the defined 639

types in the code. For example, if a trace contains an integer in the URL, it may match with 640

an integer parameter type even if the corresponding endpoint has a string parameter type. 641

Moreover, Multiple authors collaborated to ensure accurate data and calculations. They 642

independently verified and cross-validated the results, rotating across validation processes 643

to minimize learning effects. 644

To address external validity threats, our case study utilized a widely recognized open- 645

source benchmark to evaluate its endpoints coverage using our proposed approach. Still, 646

it is important to acknowledge that the results and conclusions drawn from this specific 647

benchmark may not fully represent the entire range of microservices systems that adhere 648

to different standards and practices. 649

One potential conclusion validity threat is that our tool was tested on an open-source 650

project rather than an industry project. However, we aimed to address this by selecting an 651

open-source project that employed widely-used frameworks in the industry. Furthermore, 652

to ensure the reliability and consistency of our results, we performed the case study in 653

multiple environments and confirmed that the outcomes remained consistent. 654

7. Conclusion 655

Test coverage is an important part of software development. The lack of tools to 656

provide feedback on test coverage leaves an open gap for cloud-native and microservice- 657

based systems. This work proposes endpoint-based metrics for E2E and API test coverage 658

of such systems. Moreover, it illustrates an automation approach to extract such metrics 659

and evaluates the approach through a proof-of-concept implementation assessed on a case 660

study using a third-party system. Such a mechanism can provide testers with an important 661

perspective of how complete the test coverage is with respect to the number of endpoints 662

in the system that are involved in tests. 663

Furthermore, the presented approach establishes connections between tests and mi- 664

croservice endpoints at three distinct levels. It showcases the coverage of the entire suite 665

of tests on each individual microservice, the coverage of each test case across the entire 666

system endpoints, and the coverage of the entire suite of tests on the complete set of system 667

endpoints. Additionally, It demonstrated two approaches for visualizing microservice test 668

coverage within the holistic context. 669

The results of the case study highlighted distinct outcomes from both the E2E and 670

API test suites applied to the same microservice benchmark. The API tests exhibited a 671

high coverage percentage, which is reasonable given their focus on targeting specific APIs 672

in their testing. However, they lacked a realistic sequence of calls that mirror real-world 673

scenarios from the user’s perspective. Conversely, the E2E test suites established this 674

realistic chain of calls starting from the user interface through to the system endpoints. 675

Nevertheless, they demonstrated a lower test coverage percentage of the system. This could 676

be attributed to unused endpoints within the system user interface or insufficient tests in 677

the suites to cover the entire user interface scenario. Combining the coverage generated by 678

Version February 16, 2025 submitted to Journal Not Specified 21 of 22

both test suites is anticipated to provide a more comprehensive assessment of the system’s 679

assurance of endpoints. This is particularly relevant considering that each test approach 680

aims to achieve distinct objectives, and their integration can offer a more holistic view of 681

the system’s health and functionality coverage. 682

While there are missing tools in decentralized systems that could provide feedback on 683

test coverage for tests that involve the system as a whole if we resort to system endpoint 684

coverage, a feasible mechanism can be provided by automated means and still provide 685

relevant feedback. Yet, if endpoints provide a broad range of conditional executions, this 686

approach will have limited descriptive value since it only measures if an endpoint was 687

reached in test execution. 688

In future work, we aspire to explore the evolution of both the system and the test 689

suite, delving deeper into the details beneath endpoints. Furthermore, we intend to expand 690

our metrics to include a wider range of test paths within the endpoints. Additionally, we 691

envision conducting more comparative studies and integrating with existing literature to 692

provide more comprehensive instruments for the community. 693

Author Contributions: Conceptualization, Amr S. Abdelfattah, Jorge Yero; methodology, Amr S. Abdelfattah, Tomas Cerny, validation, 694

Tomas Cerny, Eunjee Song, Davide Taibi; formal analysis, Amr S. Abdelfattah; investigation, Amr S. Abdelfattah, Tomas Cerny, 695

Jorge Yero; resources, Amr S. Abdelfattah; data curation, Amr S. Abdelfattah, Jorge Yero; writing±original draft preparation, Amr 696

S. Abdelfattah, Tomas Cerny; writing±review and editing, Amr S. Abdelfattah, Tomas Cerny, Jorge Yero, Eunjee Song, Davide Taibi; 697

visualization, Amr S. Abdelfattah supervision, Tomas Cerny; project administration, Tomas Cerny; funding acquisition, Tomas Cerny, 698

Davide Taibi. 699

Funding: This material is supported by the National Science Foundation under Grant No. 2409933 and Grant No. 349488 (MuFAno) 700

from the Academy of Finland. 701

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, 702

analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results. 703

References 704

1. Tsai, W.T.; Bai, X.; Paul, R.; Shao, W.; Agarwal, V. End-to-end integration testing design. In Proceedings of the 25th Annual 705

International Computer Software and Applications Conference. COMPSAC 2001. IEEE, 2001, pp. 166±171. 706

2. Ehsan, A.; Abuhaliqa, M.A.M.; Catal, C.; Mishra, D. RESTful API testing methodologies: Rationale, challenges, and solution 707

directions. Applied Sciences 2022, 12, 4369. 708

3. Sharma, A.; Revathi, M.; et al. Automated API testing. In Proceedings of the 2018 3rd International Conference on Inventive 709

Computation Technologies (ICICT). IEEE, 2018, pp. 788±791. 710

4. Bhojwani, R. Design patterns for microserviceto-microservice communication-dzone microservices, 2018. 711

5. Ghani, I.; Wan-Kadir, W.M.; Mustafa, A.; Imran Babir, M. Microservice Testing Approaches: A Systematic Literature Review. 712

International Journal of Integrated Engineering 2019, 11, 65±80. 713

6. Jiang, P.; Shen, Y.; Dai, Y. Efficient software test management system based on microservice architecture. In Proceedings of the 714

2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference, 2022, Vol. 10, pp. 2339±2343. 715

7. Jorgensen, A.; Whittaker, J.A. An api testing method. In Proceedings of the Proceedings of the International Conference on 716

Software Testing Analysis & Review (STAREAST 2000), 2000. 717

8. Raj, P.; Vanga, S.; Chaudhary, A. Cloud-native computing: How to design, develop, and secure microservices and event-driven applications; 718

John Wiley & Sons, 2022. 719

9. Abdelfattah, A.S.; Cerny, T.; Salazar, J.Y.; Lehman, A.; Hunter, J.; Bickham, A.; Taibi, D. End-to-End Test Coverage Metrics 720

in Microservice Systems: An Automated Approach. In Proceedings of the Service-Oriented and Cloud Computing; Papadopoulos, 721

G.A.; Rademacher, F.; Soldani, J., Eds., Cham, 2023; pp. 35±51. 722

10. Abdelfattah, A.S.; Cerny, T. Roadmap to Reasoning in Microservice Systems: A Rapid Review. Applied Sciences 2023, 13. 723

https://doi.org/10.3390/app13031838. 724

11. Horgan, J.R.; London, S.; Lyu, M.R. Achieving software quality with testing coverage measures. Computer 1994, 27, 60±69. 725

12. Whalen, M.W.; Rajan, A.; Heimdahl, M.P.; Miller, S.P. Coverage metrics for requirements-based testing. In Proceedings of the 726

Proceedings of the 2006 international symposium on Software testing and analysis, 2006, pp. 25±36. 727

13. Staats, M.; Whalen, M.; Rajan, A.; Heimdahl, M. Coverage metrics for requirements-based testing: Evaluation of effectiveness 728

2010. 729

14. Rajan, A. Coverage metrics to measure adequacy of black-box test suites. In Proceedings of the 21st IEEE/ACM International 730

Conference on Automated Software Engineering (ASE’06). IEEE, 2006, pp. 335±338. 731

15. Corradini, D.; Zampieri, A.; Pasqua, M.; Ceccato, M. Restats: A test coverage tool for RESTful APIs. In Proceedings of the 2021 732

IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, 2021, pp. 594±598. 733

Version February 16, 2025 submitted to Journal Not Specified 22 of 22

16. Grano, G.; Titov, T.V.; Panichella, S.; Gall, H.C. Branch coverage prediction in automated testing. Journal of Software: Evolution and 734

Process 2019, 31, e2158. 735

17. Golmohammadi, A.; Zhang, M.; Arcuri, A. Testing RESTful APIs: A Survey. ACM Trans. Softw. Eng. Methodol. 2023, 33. 736

https://doi.org/10.1145/3617175. 737

18. Waseem, M.; Liang, P.; Shahin, M.; Di Salle, A.; Márquez, G. Design, monitoring, and testing of microservices systems: The 738

practitioners’ perspective. Journal of Systems and Software 2021, 182, 111061. 739

19. Giamattei, L.; Guerriero, A.; Pietrantuono, R.; Russo, S. Automated Grey-Box Testing of Microservice Architectures. In 740

Proceedings of the 2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS), 2022, pp. 741

640±650. 742

20. Corradini, D.; Zampieri, A.; Pasqua, M.; Ceccato, M. Empirical Comparison of Black-box Test Case Generation Tools for RESTful 743

APIs. In Proceedings of the 2021 IEEE 21st International Working Conference on Source Code Analysis and Manipulation 744

(SCAM), 2021, pp. 226±236. https://doi.org/10.1109/SCAM52516.2021.00035. 745

21. Ma, S.P.; Fan, C.Y.; Chuang, Y.; Lee, W.T.; Lee, S.J.; Hsueh, N.L. Using Service Dependency Graph to Analyze and Test 746

Microservices. In Proceedings of the 2018 IEEE 42nd Annual Computer Software and Applications Conference, 2018, Vol. 02, pp. 747

81±86. 748

22. Ball, T. The concept of dynamic analysis. ACM SIGSOFT Software Engineering Notes 1999, 24, 216±234. 749

23. Villa, O.; Stephenson, M.; Nellans, D.; Keckler, S.W. Nvbit: A dynamic binary instrumentation framework for nvidia gpus. 750

In Proceedings of the Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, 2019, pp. 751

372±383. 752

24. Schiewe, M.; Curtis, J.; Bushong, V.; Cerny, T. Advancing Static Code Analysis With Language-Agnostic Component Identification. 753

IEEE Access 2022, 10, 30743±30761. https://doi.org/10.1109/ACCESS.2022.3160485. 754

25. Abdelfattah., A.; Schiewe., M.; Curtis., J.; Cerny., T.; Song., E. Towards Security-Aware Microservices: On Extracting Endpoint Data 755

Access Operations to Determine Access Rights. In Proceedings of the Proceedings of the 13th International Conference on Cloud 756

Computing and Services Science - CLOSER. INSTICC, SciTePress, 2023, pp. 15±23. https://doi.org/10.5220/0011707500003488. 757

26. Zhao, X.; Zhang, Y.; Lion, D.; Ullah, M.F.; Luo, Y.; Yuan, D.; Stumm, M. lprof: A non-intrusive request flow profiler for distributed 758

systems. In Proceedings of the 11th {USENIX} Symposium on Operating Systems Design and Implementation, 2014, pp. 629±644. 759

27. JavaParser Contributors. JavaParser. https://github.com/javaparser/javaparser, Accessed: 2024. 760

28. Amazon Web Services. ELK Stack. https://aws.amazon.com/what-is/elk-stack, Accessed: 2024. 761

29. Elastic. Java High Level REST Client. https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-high. 762

html, Accessed: 2024. 763

30. Selenium Contributors. Selenium. https://www.selenium.dev, Accessed: 2024. 764

31. Gatling Contributors. Gatling. https://gatling.io, Accessed: 2024. 765

32. Zhou, X.; Peng, X.; Xie, T.; Sun, J.; Xu, C.; Ji, C.; Zhao, W. Benchmarking microservice systems for software engineering research. 766

In Proceedings of the Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings, ICSE 767

2018, Gothenburg, Sweden, May 27 - June 03, 2018; Chaudron, M.; Crnkovic, I.; Chechik, M.; Harman, M., Eds. ACM, 2018, pp. 768

323±324. https://doi.org/10.1145/3183440.3194991. 769

33. FudanSELab. Train Ticket Wiki. https://github.com/FudanSELab/train-ticket/wiki, Accessed: 2024. 770

34. Apache Software Foundation. Apache SkyWalking Documentation. https://skywalking.apache.org/docs, Accessed: 2024. 771

35. Smith, S.; Robinson, E.; Frederiksen, T.; Stevens, T.; Cerny, T.; Bures, M.; Taibi, D. Benchmarks for End-to-End Microservices 772

Testing, 2023, [arXiv:cs.SE/2306.05895]. 773

36. Cerny, T.; Abdelfattah, A.S.; Maruf, A.A.; Janes, A.; Taibi, D. Catalog and detection techniques of microservice anti-patterns and 774

bad smells: A tertiary study. Journal of Systems and Software 2023. 775

37. Wohlin, C.; Runeson, P.; Hst, M.; Ohlsson, M.C.; Regnell, B.; Wessln, A. Experimentation in Software Engineering; Springer 776

Publishing Company, 2012. 777

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 778

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 779

people or property resulting from any ideas, methods, instructions or products referred to in the content. 780

	Introduction
	Related Work
	Test Coverage Methodology
	Test Coverage Metrics
	Clarification Example
	The Metrics Extraction Process
	Stage 1: Endpoint Extraction From Source Code (Static Analysis):
	Stage 2: Endpoint Extraction From Log Traces (Dynamic Analysis):
	Stage 3: Coverage Calculation:
	Stage 4: Coverage Visualization:

	Methodology Discussion

	Case Study
	Proof of Concept (POC) Implementation
	Benchmark and Test Suites
	Ground Truth
	Case Study Results
	End-to-End Testing Results (Selenium)
	API Testing Results (Gatling)

	On Combined E2E and API Test Coverage
	Coverage Visualization

	Discussion
	Threats to Validity
	Conclusion
	References

