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G W N e

Abstract: Test coverage is a critical aspect of the software development process, aiming for overall
confidence in the product. When considering cloud-native systems, testing becomes complex since
we deal with multiple distributed microservices that are developed by different teams and may
change quite rapidly. In such a dynamic environment, it is important to track test coverage. This is
especially relevant to end-to-end (E2E) and API testing since these might be developed by teams
distinct from microservice developers. Moreover, indirection exists in E2E, where the testers see
the user interface but do not know how comprehensive their test suits are. To ensure confidence in
health checks in the system, mechanisms and instruments are needed to indicate the test coverage
level. Unfortunately, there is a lack of such mechanisms for cloud-native systems. This manuscript
introduces test coverage metrics for evaluating the extent of E2E and API test suite coverage for
microservice endpoints. It elaborates on automating the calculation of these metrics with access to
microservice codebases and system testing traces. It delves into the process and offers feedback with
a visual perspective, emphasizing test coverage across microservices. To demonstrate the viability of
the approach, we implement a proof-of-concept tool and perform a case study on a well-established
system benchmark assessing existing E2E and API test suites with regard to test coverage using the
proposed endpoint metrics. The results of endpoint coverage reflect the diverse perspectives of both
testing approaches. API testing achieved 91.98% coverage in the benchmark, whereas E2E testing
achieved 45.42%. Combining both coverage results yielded a slight increase to approximately 92.36%,
attributed to a few endpoints tested exclusively through one testing approach, not covered by the
other.

Keywords: microservices; end-to-end testing; API tests; test quality

1. Introduction

Microservice architecture empowers practitioners to build scalable software systems
by breaking them down into a collection of loosely coupled interacting services. Each
service, responsible for a specific business capability, can be independently developed and
deployed, facilitating faster development and deployment cycles, easier maintenance, and
enhanced scalability.

Ensuring the robust functionality and seamless user experience of applications is
crucial in software development. This necessitates the use of two distinct testing approaches:
E2E testing [1], which assesses the entire application workflow by simulating real user
interactions, and API testing [2], focused on verifying the reliability of the application’s
backend through direct interactions with its APIs [3]. Striking a balance between these
approaches is essential for achieving comprehensive test coverage and delivering high-
quality software products.
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Conventional testing methods in this area struggle to effectively manage the com-
plexities posed by microservices-based systems [4]. These systems have attributes such as
distributed nature, continuous architectural evolution, dynamic infrastructure provisioning,
and hidden complexities. This makes it challenging for conventional testing strategies since
applications are broken down into smaller, interconnected microservices and deployed
across various environments. Several studies highlight the absence of assessment method-
ologies to accommodate the microservice and distributed approaches [5,6]. This shift in
paradigm requires a comprehensive reassessment of testing methodologies to ensure that
microservice distributed systems meet the desired quality standards.

Testing microservice systems using either of these approaches stands with the same
challenges in calculating the testing coverage for their components. In E2E testing, con-
cealing microservice and endpoint calls within user interface interactions weakens the
connection that links user interactions to the underlying endpoint calls in the system. Addi-
tionally, maintaining the sequence of testing steps proves challenging [7], especially in API
testing, where deviations may occur, testing APIs designed for calls through other APIs
exclusively. In essence, both approaches interact with an interface—either the user interface
in E2E testing or the program interface in API testing. Both conceal the underlying logical
system structure, presenting challenges in testing all possible scenarios. These challenges
are compounded by testers’ lack of knowledge about specific services, leading to difficulties
in estimating the testing coverage for their tests [8].

Recognizing the extent to which a microservice system’s individual tests involve
specific microservices is crucial for testers to gain insights into system coverage and test-to-
microservice dependencies. E2E tests interact with the system through the user interface,
mediating interactions to the microservice endpoint level [9,10]. API tests interact through
direct individual endpoint calls or composite calls that include multiple such endpoint calls.
Associating tests with impacted microservices and their endpoints provides testers with
insights into the comprehensiveness of their test suites in covering all system endpoints.

This paper aims to establish metrics for calculating the coverage of endpoints in E2E
and API test suites, their individual tests, and microservices. It introduces a practical
method and measurement approach through a case study. The automated approach
proposed maps individual tests to system microservices and their endpoints, aiding testers
in achieving test design completeness. By providing detailed knowledge of test-to-endpoint
associations, this approach enables testers to better understand their test suite coverage
and identify less apparent gaps. This paper extends our prior work [9], which aimed to
establish metrics for calculating the coverage of endpoints in E2E test suites. The current
paper offers a comprehensive assessment of testing approaches and includes an additional
perspective on coverage calculations for API testing. Moreover, it brings a new case
study illustrating differing coverages between these two types of tests, which gives more
insight into how such tests stand when delivering a comprehensive perspective in terms of
endpoints. Furthermore, it shows how a combined test coverage perspective could ensure
better confidence in the system'’s health.

This paper makes the following contributions in the context of microservices:

¢ Expanded the proposal and evaluation of three metrics (Microservice Endpoint Cover-
age, Test Case Endpoint Coverage, and Complete Test Suite Endpoint Coverage) for
assessing endpoint coverage in both E2E testing and API testing.

® Process of calculating metrics and implementation of proof-of-concept tool.

® A practical case study is deriving and validating the coverage metrics in a large
microservice system benchmark.

* Dataset encompassing comprehensive endpoint coverage across both testing method-
ologies for the system benchmark.

The subsequent sections of the paper are structured as follows: Section 2 provides

an elaboration on related work, while Section 3 describes the methodology, metrics, and

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86



Version February 16, 2025 submitted to Journal Not Specified 30f22

process. Section 4 presents a detailed case study, followed by a discussion in Section 5 and
threats to validity in Section 6. The paper is concluded in Section 7.

2. Related Work

As emphasized by Horgan [11], comprehensive test coverage metrics play a crucial
role in testing strategy efficacy. This notion is further supported by Whalen et al. [12],
who emphasize the importance of black-box testing and the utilization of formal software
requirements to thoroughly assess test suite effectiveness.

As software development progresses towards cloud-native architectures and microser-
vices, new complexities arise in the testing landscape. Staats et al. [13] and Rajan et al. [14]
explore requirements coverage metrics and their pivotal role in improving fault detection.
This need for refined coverage metrics, accurately capturing the nuances of modern sys-
tems, is echoed in innovative approaches to REST API testing by Corradini et al. [15] and
insights into branch coverage within continuous integration by Grano et al. [16].

Various studies have identified the lack of assessment techniques for microservice sys-
tems. A systematic literature review by Ghani et al. [5] concluded that most articles focused
on testing approaches for microservices lacked sufficient assessment and experimentation.
Jiang et al. [6] emphasized the need for improved test management in microservice systems
to enhance their overall quality.

A recent survey by Golmohammadi et al. [17] presented the results of their systematic
mapping study on testing REST APIs. They also emphasized the importance of having the
right metrics to evaluate the effectiveness of the API testing and classified the state-of-the-art
metrics into three types: coverage criteria, fault detention, and performance. Additionally,
Waseem et al. [18] conducted a survey and revealed that unit and E2E testing are the most
commonly used strategies in the industry. However, the complexity of microservice systems
presents challenges for their monitoring and testing, and there is currently no dedicated
solution to address these issues. Similarly, Giamattei et al. [19] identified the monitoring
of internal APIs as a challenge in black box testing microservice systems, advocating for
further research in this area.

To address these gaps, it is crucial to develop an assistant tool that improves system
testing and provides appropriate test coverage assessment methods. Corradini et al. [20]
conducted an empirical comparison of automated black-box test case generation approaches
specifically for REST APIs. They proposed a test coverage framework that relies on the
APl interface description provided by the OpenAPI specification. Within their framework,
they introduced a set of coverage metrics consisting of eight metrics (five request-related
and three response-related), which assess the coverage of a test suite by calculating the
ratio of tested elements to the total number of elements defined in the API. However, these
metrics do not align well with the unique characteristics of microservice systems. They do
not take into account the specific features of microservices, such as inter-service calls and
components like API gateway testing.

Giamattei et al. [19] introduced MACROHIVE, a grey-box testing approach for mi-
croservices that automatically generates and executes test suites while analyzing the in-
teractions among inter-service calls. Instead of using the commonly used tools such as
SkyWalking or Jaeger, MACROHIVE builds its own infrastructure, which incurs additional
overhead by requiring the deployment of a proxy for each microservice to monitor. It also
involves implementing communication protocols for sending information packets during
request-response collection. MACROHIVE employs combinatorial tests and measures the
status code class and dependencies coverage of internal microservices. However, compared
to our proposed approach, MACROHIVE lacks static analysis of service dependencies,
relying solely on runtime data. In contrast, our approach extracts information statically
from the source code, providing accurate measurements along with three levels of system
coverage.

Ma et al. [21] utilized static analysis techniques and proposed the Graph-based Mi-
croservice Analysis and Testing (GMAT) approach. GMAT generates Service Dependency
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Graphs (SDG) to analyze the dependencies between microservices in the system. This 10
approach enhances the understanding of interactions among different parts of the microser- 12
vice system, supporting testing and development processes. GMAT leverages Swagger 1
documentation to extract the SDG, and it traces service invocation chains from centralized 1
system logs to identify successful and failed invocations. The GMAT approach calculates 14
the coverage of service tests by determining the percentage of passed calls among all the s
calls, and it visually highlights failing tests by marking the corresponding dependency s
as yellow on the SDG. However, GMAT is tailored to test microservices using the Pact 1
tool and its APIs. In contrast, our approach introduces three coverage metrics that focus e
on different levels of microservice system parts, emphasizing endpoints as fundamental 1
elements of microservice interaction. While our approach doesn’t consider the status code 15
of each test, combining GMAT with our proposed approach could offer further insights for 1
evaluating microservice testing and assessment criteria. 152

Dynamic analysis supplements static analysis by utilizing instrumentation to capture s
and scrutinize the runtime actions of programs. This method is essential for identifying s
breaches of properties and understanding program behavior, as highlighted by Ball et al. 15
[22]. The advent of NVBit, as introduced by Villa et al. [23], enhances the functionalities of s
dynamic binary instrumentation, enabling tailored error detection, bug identification, and 1
performance assessment. This approach holds particular relevance in cloud-native systems, 1
where continuous monitoring of endpoints and components in distributed architectures is s
critical for upholding system integrity and efficiency. 160

In essence, the field of software testing is experiencing a significant shift propelled 1
by the embrace of cloud-native architectures and microservices. This shift calls for a e
comprehensive approach that merges E2E testing and API testing, forming the foundation 16
for the creation of thorough coverage metrics tailored to the distinct intricacies of these 1
systems. This paper addresses the gap in assessment techniques for microservice testing by 16
introducing test coverage metrics and designing an analytical tool capable of evaluating 1
microservice systems, quantifying and visualizing their test coverage. 167

3. Test Coverage Methodology 168

The objective of this methodology is to assess E2E and API testing suites in achiev- 1
ing coverage of endpoints within microservices-based systems. Although these testing 17
approaches may appear distinct, this methodology outlines a generalization technique for 1n
calculating the test coverage of both. Additionally, it elucidates the specificities of how 1
these approaches differ in their modes of interaction. 173

To calculate test coverage for endpoint components in a microservice system, it in- 17
volves retrieving information on both the static endpoints declared in the system’s source s
code and the dynamic endpoints actually tested during test suite execution. Subsequently, it 17
compares these two sets of information to derive various metrics of test coverage. Thus,
this methodology employs static and dynamic analysis techniques to extract the necessary 17
information for both testing approaches. 179

Both static and dynamic information necessitate more specific extraction methods. 10
Extracting static endpoints involves applying analysis techniques to the source code, which 1
either requires customization for the programming language used, or the adoption of a 12
polyglot technique capable of accommodating multiple programming languages in a more s
abstract manner, as demonstrated in [24,25]. Conversely, extracting dynamic endpoints 1
requires analyzing traces and log information generated by specific systems such as Jaeger 1
and Skywalking. 186

This methodology elaborates on each step without being tightly bound to any par- 1
ticular programming language or technology. This makes it sufficiently generalized to be 1
applicable across different system setups while also being specific enough to provide clear e
instructions on the required attributes and techniques for calculating test coverage. 190

The rest of this section presents our proposed metrics and automated approach, 1
outlining its stages for extracting the data required for calculating the metrics over systems. 1
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3.1. Test Coverage Metrics

While testing involves test suites, each test suite contains test cases that represent a
series of steps or actions defining a specific test scenario. We introduce three metrics to
assess the coverage of endpoints in microservice systems: microservice endpoint coverage,
test case endpoint coverage, and complete test suite coverage. These metrics are described
in detail below:

* Microservice endpoint coverage: determines the tested endpoints within each microser-
vice. It is obtained by dividing the number of tested endpoints from all tests by the
total number of endpoints in that microservice. This metric offers insights into the com-
prehensiveness of coverage for individual microservices. The formula for microservice
endpoint coverage is:

s

ms(i) = ‘Ems(i)‘

Cms(,-)— the coverage per microservice i,
Eﬁﬁ?ﬁ? - the set of tested endpoints in microservice i,

Enns(i) - the set of all endpoints in microservice i.

¢ Test case endpoint coverage: gives a percentage of endpoints covered by each test case.
It is calculated by dividing the number of endpoints covered by each test by the total
number of endpoints in the system. This provides insights into the effectiveness of
individual tests in covering the system’s endpoints. The formula for test case endpoint
coverage is:

[Eiait)

Ctest(i) = ‘Um_tatal E (
)

;
msj)‘

Ciest(i) - the coverage per test i,

E;‘:f(eg - the set of tested endpoints from test i,
m_total - the total number of microservices in the system,

m_total

U Enns(j) - the set of all endpoints in the system.
j

* Complete Test suite endpoint coverage: determines the test suite overall coverage of
the system by dividing the total number of unique endpoints covered by all test cases
in the test suite by the total number of endpoints in the system. It provides insights
into the completeness of the test suite in covering all endpoints within the system. The
formula for complete test suite endpoint coverage is:

t_total ptested
| Ui Etest(i ) |

| U]r‘nJDtal Ems(j)|

Csuite - the complete test suite coverage,

Csuite =

7

m_total - the total number of microservices in the system,
t_total - the total number of tests in the test suite,

t_total
U Efsg{ffl) - the set of all tested endpoints from all tests,
i
m_total

U Enns(j) - the set of all endpoints in the system.
j
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3.2. Clarification Example

To provide further clarification, consider a system consisting of three microservices
(MS-1, MS-2, MS-3), each with two endpoints, with a test suite composed of two tests
(Test-1, Test-2), as depicted in Figure 1 for E2E test suite. In the example, the tests interact
with endpoints through the user interface, which triggers the initiation of endpoint requests
passed through the API gateway component. The example demonstrates that Test-1 calls
two endpoints, one from MS-1 (E1.1) and one from MS-2 (E2.1). On the other hand, Test-2
calls two endpoints from MS-2 (E2.1, E2.2), and E2.2 has an inter-service call to endpoint
E3.1 in MS-3. The identical illustration can be depicted in Figure 2 for the API testing suite.
It showcases the same interactions; however, the calls are made directly through the API
gateway component instead of the user interface.

L oEL]
o2 MS-1 | =]
[ \ E2.1

oE2l
Eoo | MS2 -

E2E Test Suite

8po7 82IN0S

O
‘11 E3.1
O—
O E3.2

Ms-3 | _|

[ API Gateway

[ Testers Realm

(] [ User Interface
——/ y )

Developers Realm }

Figure 1. E2E Calculation Clarification Example
Applying our metrics on both test suites, we can calculate the microservice endpoint
coverage (Cp(;)) for each microservice. For MS-1 and MS-3, only one out of their two

endpoints is tested throughout all tests, resulting in a coverage of 50% (Cpng(1) = Cns(3) = %)
for each. However, for MS-2, both of its endpoints are tested at least once, leading to a

coverage of 100% (Cpg(2) = %).

L E1.1
° O
= Test-1 MS-1 <
c?) o E1.2
D
Q { \O E2.1 g
o 3
—=0—1__ ) o
g \l‘ E3.1 %
g oO="uor )
S MS-3
g O E3.2 <
<
( Testers Realm )
[ Developers Realm ]

Figure 2. API Testing Calculation Clarification Example

Next, we calculate the test case endpoint coverage (Ciegy()) per each test. Test-1 covers
two out of the six endpoints in the system, resulting in a coverage of approximately
33.3% (Crest(1) = %). Test-2 covers three distinct endpoints, resulting in a coverage of
50% (Ciest(2) = %). It is important to highlight that Test-2 contains an inter-service call to
endpoint E3.1, as shown in our approach.
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Finally, we can calculate the complete test suite endpoint coverage (Cgyite) Of the 23
system. Out of the six endpoints in the system, four distinct endpoints are tested from the 2.
two tests. This results in ~ 66.6% coverage (Csyite = %). 240

3.3. The Metrics Extraction Process 241

To automatically collect the data for calculating the test coverage metrics, we propose 2
to employ a combination of static and dynamic analysis methods. 243

The static analysis phase focuses on examining the source code to extract information 2
about the implemented endpoints in the system. The dynamic analysis phase involves s
inspecting system logs and traces to identify the endpoints called by the automation 2
tests. By combining the data obtained from both analyses, the approach applies the 2
proposed metrics to generate the endpoint coverage, and then it provides two visualization s
approaches to depict the coverage over the system representation. This process involves s

the following four stages as illustrated in Figure 3: 250
Stage 1. Endpoint Extraction From Source Code (Static Analysis). 251
Stage 2. Endpoint Extraction From Log Traces (Dynamic Analysis). 252
Stage 3. Coverage Calculation. 253
Stage 4. Coverage Visualization. 254

Stage 1
{ Endpoints | SN K
| _O E ! Graph ,Cf E
! y
G prazazs _"_O_ 7/ Stage 3 Stage4 o7 i Visualization |
Coverage | Visualization
Stage 2 Calculation ymTT T =N
age =
S N
I Endpoints | ' Service List g=5 !
' ! ' Visualization )
o) ] -
JED
Figure 3. The proposed approach overview
We will delve into the details of each stage to demonstrate the approach. 255
3.3.1. Stage 1: Endpoint Extraction From Source Code (Static Analysis): 256

This stage aims to comprehend the offerings of the system implementation concerning 2
the declared endpoints ready for consumption. Our approach applies a static analysis 2z
approach to the system’s source code to extract the employed endpoints in each microser- 2s
vice (Epg(;))- Static analysis refers to the process of analyzing the syntax and structure of 0
code without executing it in order to extract information about the system. As depicted 2
in Figure 4, initially, microservices can be divided and detected from the system codebase. 2
Each microservice’s codebase is then processed by the endpoint extraction process, which 2

produces the endpoints corresponding to each microservice. 264
g MS-1 | Endpoints |
Q : O :
% Endpoints o AMS s Coverage
o Extraction | ™= | - '— | Calculation
3 1 |
3 O
MS-N \ /!

[ R —

Figure 4. Stage 1: Static analysis flow
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The identification of API endpoints typically relies on specific frameworks or libraries'.

This ensures consistency in metadata identification. Code analysis extracts metadata at-
tributes about each endpoint, including the path, HTTP method, parameters, and return
type. However, identification of endpoints can be performed across platforms as demon-
strated by Schiewe et al. [24] or accomplished by frameworks like Swagger”

As a result, a list of endpoints is generated and organized according to the respective
microservice they belong to. This comprehensive list of endpoints becomes one of the
inputs for our coverage calculation process, where it combines the output of the dynamic
analysis flow.

3.3.2. Stage 2: Endpoint Extraction From Log Traces (Dynamic Analysis):

The objective of this stage is to identify the endpoints invoked by the test suites during
runtime. We utilize dynamic analysis to identify the endpoints called during the execution

of each test case in test suites (Efg::?g It also identifies the microservices containing these

tested endpoints (E;elzt(%i). The analyzed system is executed to observe its runtime behavior

and transactions. This analysis involves running multiple tests and capturing the traces
that occur, as illustrated in Figure 5.

’ N 7 N
N \ 1 H \
) — ! Traces ! ! Endpoints !
3 Test. | = Traces T i o B Coverage
Execution | ! ' Filtration | i i
b ' ) Filtration i ] Calculation
ke ! | | (en] S
- = Test-N
Test-N ! -Test NEZE ) VA ;
N ’ Y 4

\ —————— RL L L Ll »

Figure 5. Stage 2: Dynamic analysis flow

The dynamic analysis flow sketched in Figure 5 has two main responsibilities. Firstly,
it takes the tests (i.e., E2E tests and API tests) and executes them sequentially. During the
execution of the tests, traces are generated, capturing the interactions with the system.
These traces are sent to a configured centralized logging system (i.e., SkyWalking, Jaeger),
which stores them in its own storage, or an externally configured data storage solution (i.e.,
Elasticsearch), enabling analysis and further processing. Secondly, the process calculates
the delta of the produced traces to identify the traces relevant to each executed test. This
can be achieved in various ways, such as recording a timestamp from the start of a test’s
execution to its completion, retrieving the traces after each test execution and calculating
the difference based on the latest track record, or sending a dynamically generated trace
before and after the execution of each test to mark the start and end. In our approach, we
have employed the first strategy, as it avoids unnecessary processing and complexity at
this stage.

The extracted test trace sequences corresponding to each test undergo a traces filtration
process that filters and identifies the traces related to endpoints. This may involve queries
to the trace storage to return specific trace indexes in the data. For instance, the SkyWalking
tool marks the traces involving endpoint calls and makes them accessible under an index (in
particular, sw_endpoint_relation_server_side index). Additionally, centralized logging
systems encode the data records using Base64® when sending them to external storage like
Elasticsearch. Therefore, this step may include an additional decoding process if needed to
detect the endpoints. These endpoint-related trace records contain information about the
source and destination endpoints involved in the call relationship.

An example, in the Java Spring framework, annotations such as @RestController and @RequestMapping are
commonly used.

Swagger: https://swagger.io

3 Base64: https:/ /developer.mozilla.org/en-US/docs/Glossary /Base64
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As a result, a list of endpoints is generated and organized according to the respective
test suite they belong to. This list of endpoints becomes the second input for the coverage
calculation process, where it is combined with the output of the static analysis stage.

3.3.3. Stage 3: Coverage Calculation:

During this stage, we determine which of the system endpoints have been accessed
throughout the test suites and which ones have not been accessed. Therefore, this stage
combines the extracted data from the previous two stages to calculate the three metrics
of coverage (Crs(i), Crest(i)s Csuite)- This stage follows the Set-based approach to solely
account for the uniqueness of endpoints and their correspondence through the preceding
stages.

A challenge arises when matching the extracted system endpoints from the source
code with those extracted from the traces. Since traces contain invoked endpoints
with arguments’ values (e.g., http:/ /xxx.com/10), while those identified by static
analysis hold parameter types and names (e.g., http://xxx.com/id: Integer). A
similar challenge has been accounted for when profiling systems using log analysis
and matching log lines with logging statements in the source code [26]. The source
code contains a log message template with parameters, and execution logs contain
a message with values from the execution context, which is not a direct match (i.e.,
source code log.info(’calling {a} from {b}’) vs. a contextual log statement
’calling for from bar’ where both a and b are interpreted). Zhao et al. [26] have
identified all code log statements to extract templates that could be matched using
regular expressions to identify and match the parameter types whose values are
present in the log output.

In our approach, we employ signature matching to solve the challenge. It
involves comparing the endpoint method signature with the data and parameters
exchanged during REST call communication to detect and verify the authenticity
and matches of the requests. Thus, to determine which system endpoints were called
by the test, we consider the comparison of extracted attributes of the endpoints
(such as path, request type, and parameter list) from the source code with the REST
calls extracted from the test traces. This matching process helps to establish the
coverage levels and determine which endpoints were invoked by the tests.

The calculation of Cpq(;) involves categorizing and dividing the number of tested

endpoints (Stage 2) by the number of declared endpoints for each microservice (Stage 1).

For Ciegy(;), the calculation entails extracting, for each test case, the number of endpoints
covered (Stage 2), and dividing it by the total number of endpoints in the system (Stage
1). This computation reveals the percentage of coverage that a test case achieves across
the entire system’s endpoints. Finally, Csyjte is determined by dividing the total number of
distinct endpoints covered by all test cases in the test suite (Stage 2) by the total number of
endpoints in the system (Stage 1).

3.3.4. Stage 4: Coverage Visualization:

While microservice architecture primarily caters to large systems, it is essential to
provide a user-friendly presentation to assist practitioners in easily comprehending the
coverage within the familiar context of the system. Therefore, this approach provides a
centralized visualization of the coverage calculation by offering two methods for visualizing
these coverage metrics. The first displays a list of microservices, with each microservice
showing its endpoints. Covered endpoints are marked in green, while missed endpoints
are marked in red, as demonstrated in Figure 12a. The second representation utilizes
the service dependency graph, where microservices are represented as nodes, and the
dependencies between them are shown as edges. The nodes in the graph are color-coded
based on the coverage percentage, allowing users to visually observe the coverage on the
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holistic system view depicting service dependencies, as exampled in Figure 12b. These
visualization techniques help in interpreting the two metrics of Cyq(;) and Cyegy(;)- Thus,
these coverage calculations and visualizations provide valuable insights into the extent of
test coverage achieved by automation frameworks in the context of microservices, enabling
users to visually assess the effectiveness of their testing efforts and identify areas that
require improvement.

3.4. Methodology Discussion

This methodology elucidates the interplay between static data analysis and dynamic
data analysis, which are pivotal for calculating testing coverage metrics. Its design ensures
versatility for polyglot systems, offering detailed guidelines without strict adherence
to any specific programming language or technology. This flexibility facilitates broad
applicability across diverse system configurations while maintaining specificity in guiding
the calculation of test coverage. Consequently, implementation details may vary between
system environments to accommodate the methodology effectively.

However, challenges arise when reconciling information extracted from static and
dynamic phases, as they exhibit distinct characteristics. Mismatched endpoint signatures
between source code and traces can occur due to discrepancies in trace values aligning with
defined types in the code. Consequently, the methodology acknowledges and addresses
this challenge to ensure accuracy in matching extracted data.

Despite differences in communication layers between E2E testing and API testing
—where E2E testing traverses various layers from the user interface to API-gateway to
endpoints, while API testing focuses on specific endpoint calls that may pass through API-
gateway directly— the methodology remains applicable for calculating testing coverage
in both scenarios. By extracting traces generated during execution, regardless of the com-
munication layers traversed, the methodology captures comprehensive endpoint testing
coverage. Moreover, its flexibility enables focused analysis of testing specific communica-
tion layers, thereby highlighting inter-service communication calls and distinguishing tests
passing through the API-gateway from those bypassing it. This distinction underscores the
importance of the API-gateway as a filtration point, particularly for enforcing cross-cutting
aspects such as security authentication.

Furthermore, implementing this methodology across both testing approaches offers
substantial assurance of system health from diverse perspectives. Each approach targets
distinct testing strategies to ensure system testability, such that E2E testing focuses on user
scenario perspective, while API testing emphasizes functionality reliability.

4. Case Study

In this section, a case study is conducted to showcase the feasibility of the proposed
automated metric calculation approach. The objective is to provide testers with insights that
enhance system coverage and testability. This is achieved by implementing the proposed
approach and its stages to extract the necessary data for calculating the three coverage
metrics. The case study involves integrating data extraction from the system source code
with log traces generated during the execution of both E2E and API test suites.

This case study considered an open-source system benchmark and utilized an existing
E2E test suite and API test suite designed for the same system. A proof of concept (POC)
was developed to illustrate the automation of the proposed metrics calculation, which was
employed to assess the provided test benchmarks. The complete data analysis phases with
their results are published in a dataset*. This dataset contains the complete calculations of
the metrics.

4 Dataset: https://zenodo.org/records/ 10553186
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4.1. Proof of Concept (POC) Implementation

This section describes the implementation of a POC” to showcase the four phases of
the proposed approach. We focused on statically analyzing Java-based project source codes
that use the Java Spring Cloud framework, an open-source framework that is widely used
for building cloud-native applications. It provides developers with a comprehensive set of
tools and libraries to build scalable and resilient applications in the Java ecosystem.

For the endpoint extraction from source code (Stage 1), we utilized the open-source
JavaParser library [27]. It allowed us to parse Java source code files, generate an Abstract
Syntax Tree (AST) representation, and traverse it to detect spring annotations such as
@GetMapping and @PostMapping. We extracted the relevant attributes once the endpoints
were detected.

For the endpoint extraction from log traces (Stage 2), we focused on extracting the
skywalking generated logs and traces from Elasticsearch, which is widely adopted as a
central component in the ELK (Elasticsearch, Logstash, Kibana) stack [28]. We used the
Elasticsearch Java High-Level REST Client [29] which offers a convenient way to interact
with Elasticsearch. It provided a QueryBuilder class to construct queries for searching and
filtering data, such as creating a query to retrieve the logs that are between specific start
and end timestamps.

Stage 1

/, --------- \\

! spring !

| |

:‘ &’3 Java /; ] Stage 3 Stage 4

‘- g Maven | |~ )

Stage 2 — 9: :
T TTTTTI s ~ =’Java : )
| _Skvwalking "
| H [—
. % elastic :

Figure 6. Frameworks Considered in the POC

Then, the POC performs the coverage calculation (Stage 3). It utilized Apache Maven,
a build automation tool for Java projects, to execute the test suites of Selenium [30] and
Gatling [31]. After that, it integrates the results of the two stages” outcomes of static and
dynamic processes and applies the proposed metrics. For the coverage visualization (Stage
4), we provided the two visualization approaches discussed earlier. We employed React
framework to implement a web application® that presents the information in an expandable
list view for easy navigation. To integrate with the service dependency graph visualization,
we utilized the Prophet library’, an open-source project that generates the graph from
source code. Additionally, we utilized the visualizer librarys, which offers a tailored 3D
microservices visualization for service dependency graphs. The summarized frameworks
for each stage are depicted in Figure 6.

POC Source Code: https:/ /github.com/cloudhubs/test-coverage-backend
Coverage Visualizer: https://github.com/cloudhubs/test-coverage-frontend
Prophet: https:/ /github.com/cloudhubs/graal-prophet-utils

3D Visualizer: https://github.com/cloudhubs/graal_mvp
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4.2. Benchmark and Test Suites

To ensure unbiased testing of our application, we utilized an open-source testbench
consisting of the TrainTicket system and associated test suites.

TrainTicket [32,33] is a microservice-based train ticket booking system that is built us-
ing the Java Spring framework. It uses the standard annotations for defining the endpoints
and uses the RestTemplate Java client to initiate requests to endpoints. This benchmark
consists of 41 Java-based microservices and makes use of Apache SkyWalking [34] as its
application performance monitoring system.

In order to run the TrainTicket system and execute tests on it, certain configuration
fixes were necessary. To address this, a fork” of the TrainTicket repository was created,
specifically from the 1.0.0 release. This fork incorporated the necessary fixes and a de-
ployment script. TrainTicket integrates with Elasticsearch, allowing our POC to utilize
SkyWalking to forward system logs to Elasticsearch for additional processing and analysis.

For the test suites, we utilized an open-source test benchmark!’ published in [35].
This benchmark aims to test the same version of the TrainTicket system. It contains 11
different E2E test cases using the Selenium framework and 26 API test cases using the
Gatling framework.

4.3. Ground Truth

To validate the completeness of our approach, we performed a manual analysis to
construct the ground truth for the test benches. The complete results of the ground truth
are published in the open accessed dataset*. This involved manual extraction of the data
related to the first two stages in our proposed process in Section 3.3, as follows: endpoint
extraction from source code and endpoint extraction from log traces.

For Stage 1, we validated the endpoints extracted during the static analysis by manu-
ally inspecting the source code of the microservices’ controller classes. This allowed us to
identify and extract information such as the endpoint’s path, request type, parameter list,
and return type. This process extracted 262 defined endpoints in the TrainTicket testbench
codebase.

For Stage 2, we verified the endpoints identified during the dynamic analysis by
reviewing both the E2E (Selenium) and API (Gatling) test suites. Given that E2E tests
primarily involve Ul-based interactions and do not explicitly mention endpoints, we
conducted a manual analysis of the logs generated by these tests stored in Elasticsearch.
The logs contained encoded details about source and destination endpoints, which we
decoded and filtered to compile a list of 171 unique endpoints invoked during E2E tests
and 495 unique endpoints included during API tests. These unique endpoints encompass
non-actual system endpoints, such as API gateway mediator calls, which will be filtered
out in the next steps.

4.4. Case Study Results

We began the execution by running the deployment script to set up the TrainTicket
system on a local instance. Subsequently, our POC executed the test cases from the provided
test benchmarks, generated the list of called endpoints, and calculated the test coverage
according to the described metrics for each of the E2E and API tests separately. The
execution of the POC takes a few seconds to extract the data and calculate the metrics.

In terms of evaluating the completeness of our POC, this case study confirmed that
we captured all the endpoints declared in the ground truth. The POC successfully captured
all 262 implemented endpoints in the system, demonstrating the completeness of the Stage
1 outcome. For Stage 2 completeness, the POC extracted all 171 endpoints during E2E tests
and 495 unique endpoints during API testing. The execution of the POC and the detailed

9 TrainTicket: https:/ /github.com/cloudhubs/train-ticket/tree/v1.0.1

10" Test benchmark: https:/ /github.com/cloudhubs/microservice-tests
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Figure 7. Test case Endpoint Coverage in the E2E testing Benchmark (Cieq(7))

coverage metrics calculations (Stage 3) are outlined in the following subsections, including
both E2E testing using Selenium and API testing using Gatling.

4.4.1. End-to-End Testing Results (Selenium)

The results of the experiment execution on the E2E tests benchmark revealed a total
of 171 unique endpoints extracted from a set of 953 log records* generated during the
execution of the test cases, out of which 119 endpoints are actual endpoints within the
system, and 52 endpoints are related to API gateway calls.

Through the complete data extraction, we calculate the complete test suite coverage to
be approximately 45.42% (Cgyite = % ~ 45.42%). The summary statistics for the metrics
calculations are provided in Table 1.

The calculation of Cyeg(;) shows that the maximum coverage achieved by a test case
in the study is approximately 15.27%. This was observed in the Booking test case, which
made 53 calls to 40 unique endpoints in the system. On the other hand, the minimum
coverage is approximately 1.14%, which occurred in the Login test case that only called
three endpoints. The analysis shows that the average test case endpoint coverage is approx-
imately 7.29%, while the most common coverage among the test cases is approximately
7.25%. This coverage was observed in the following five test cases: AdminConfigList,
ContactList, PriceList, AdminStationList, and AdminTrainList. Figure 7 illustrates
the endpoint coverage achieved by the 11 test cases, along with the average coverage for
better measurement.

The calculation of Cy,(;) reveals that the maximum coverage is 100%, observed in the
ts-verification-code-service, which has two endpoints covered by the test cases. On
the other hand, the minimum coverage is 0%, indicating that test suites completely missed
testing any endpoints in the following four microservices: ts-wait-order-service, ts-preserve-

Table 1. End-to-End Summary Statistics of Coverage Metrics

Metric ‘ Coverage (%)
Csuite 45.42

Minimum Average Maximum Mode
Cms(i) 0 44.5 100 25
Crest(i) 1.14 7.29 15.27 7.25
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Figure 8. Microservice Endpoint Coverage in the E2E testing Benchmark (Cms(i))
The numbers in parentheses indicate the total number of endpoints in each ms.

other-service, ts-notification-service, and ts-food-delivery-service. The average microservice
endpoint coverage is approximately 44.5%, while the mode statistics show that 25% is the
most common coverage, observed in the following four microservices: ts-travel2-service,
ts-payment-service, ts-route-plan-service, and ts-order-other-service. The complete calculations
for each microservice are illustrated in Figure 8.

4.4.2. API Testing Results (Gatling)

The outcomes of the experiment execution in the API tests benchmark unveiled a
total of 495 distinct endpoints extracted from a collection of 1902 log records* generated
during the test case execution. Among these, 241 endpoints correspond to actual endpoints
within the system, 249 endpoints are associated with API-gateway calls that are not actual
endpoints in the system, and 5 endpoints deviate from the correct API signature in declared
the system, as detailed in Table 2.

Additionally, we manually retrieved endpoints from the API tests implementation
since they are explicitly referenced in the source code of the tests in contrast to the case in
E2E tests. This enables us to perform additional validation with API testing for endpoints
do not appear in the logs but may be integrated into the tests source code. This revealed
that two microservices (ts-wait-order-service and ts-food-delivery-service) are slated for testing,
but they do not surface in the logs due to misconfigurations in the TrainTicket testbench
system. Consequently, this highlights an additional aspect that our methodology can reveal
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Table 2. API testing’s Endpoints Mismatched with System Signatures

Mis-matched Endpoint | Reason
ts-consign-price-service/api/v1/consignpriceservice/ Expected
consignpricec@GET POST method
ts-auth-service/api/v1/users/login@GET Expected
POST method
ts-security-service/api/v1/securityservice/ Expected
securityConfigs@DELETE 1 parameter
ts-assurance-service/api/v1/assuranceservice/types@GET | Expected
'/ assurances’

ts-assurance-service/api/vl/assuranceservice/assurances/ | Mis-spelled
orderid/{id}@GET ’ /assurance’
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Figure 9. Test case Endpoint Coverage in the API testing Benchmark (Cieg(7))

by comparing the expected coverage derived from the endpoints in tests with the actual
coverage derived from the logs. Through the complete data extraction, we calculate the
complete test suite coverage to be approximately 91.98% (Csyite = % ~ 91.98%). The
summary statistics for the metrics calculations are provided in Table 3.

The computation of Cyeg(;) indicates that the highest coverage attained by a test case in
the study is around 12.21%. This was evident in the OrderService test case, which covered
32 unique endpoints in the system. Conversely, the minimum coverage is approximately
0.76%, observed in the LoginModule test case that only invoked two endpoints. The analysis
reveals that the average test case endpoint coverage is about 3.55%, with the most common
coverage among the test cases being around 1.90%. This coverage was observed in the
following five test cases: BasicService, NotifyService, OrderListAdmin, Security,
and TravelList. Figure 9 illustrates the endpoint coverage achieved by the 26 test cases,
along with the average coverage for better measurement.

The calculation of Cp,q(;) discloses that the maximum coverage is 100%, which is also
the most prevalent coverage for 32 microservices in the system. Conversely, the minimum
coverage is 0%, signifying that the test suites entirely overlooked testing any endpoints

Table 3. API Testing Summary Statistics of Coverage Metrics

Metric \ Coverage (%)
Csuite 91.98

Minimum Average Maximum Mode
Cons(i) 0 91.77 100 100
Ctest(i) 0.76 3.55 12.21 1.90
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Figure 10. Microservice Endpoint Coverage in the API testing Benchmark System (Cyy(;)
The numbers in parentheses indicate the total number of endpoints in each ms.

in the following two microservices: ts-wait-order-service and ts-food-delivery-service. The
average microservice endpoint coverage is approximately 91.77%. The detailed calculations
for each microservice are depicted in Figure 10.

4.5. On Combined E2E and API Test Coverage

While E2E tests ensure that the user-facing aspects of the system work as intended, the
API tests validate the functionality and communication between backend services. Combin-
ing the coverage generated from both test suites is expected to yield a more comprehensive
overview of the assurance or confidence in the system’s health at the granularity of system
endpoints. Such combined tests ensure that endpoints are responsive and touched by at
least some tests.

When a problem is detected, it is still relevant to perform both E2E and API tests
as they help isolate the issue. For instance, they can determine whether it’s a frontend,
backend, or integration problem, making debugging and fixing more efficient. Combining
E2E and API tests creates a robust testing strategy that addresses different aspects of the
system, leading to improved reliability and faster identification of issues. Thus, for such a
perspective, a combined test coverage becomes relevant to the comprehensive evaluation
of the system.

In terms of microservice endpoint coverage (Cp,(;)), the combined approach only
increased the coverage of the ts-assurance-service microservice, reaching 100% coverage
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compared to the 88.88% achieved with API testing coverage and 22.22% achieved with s
E2E testing coverage. This improvement is attributed to E2E tests successfully covering a s
misconfigured endpoint of ts-assurance-service/api/v1/assuranceservice/assurances/types@GET sz
in the API tests. However, the coverage for the remaining 40 microservices in the system s
remains unchanged from API test coverage. 539

Conversely, the combination of Cyg ;) in both E2E and APT test coverage involves s
a simple appending process since each test suite serves a different purpose with distinct sa
testing objectives from the API test and E2E test. Thus, this shows a more comprehensive s
list of tests and their attached coverage of the system. 543

The complete test suite endpoint coverage (Csyite) €xperienced a slight increase to s
approximately 92.36% (Cgyite = % ~ 92.36%) after combining the endpoints from E2E s
and API tests. This contrasts with the individual coverage percentages of 91.98% for API s
and 45.42% for E2E. The intersection between endpoints covered from each of these two s
testing approaches was calculated, as depicted in Figure 11. It reveals that both the E2E and s
API test suites collectively covered a total of 118 endpoints. Moreover, the E2E test suite s
specifically covered an endpoint (ts-assurance-service/api/vl/assuranceservice/assurances/  ss
types@GET) that was not addressed by the API test suites. Conversely, the API test suites  sx
covered an additional 123 endpoints that were not included in the E2E test suite’s coverage. sz
Consequently, in total, the TrainTicket system had 21 endpoints that were not addressed by sz
either of the test suites. 554

TrainTicket(262)

21

1
118 123

Selenium(119)

Figure 11. Combined Endpoint Coverage in the E2E and API tests Benchmark

4.6. Coverage Visualization 555

The metrics calculations are visualized using two visualization approaches (Stage 4), ss
as shown in Figure 12a and Figure 12b. One has a service list view, and the other provides s
a holistic service dependency overview in the context of endpoint coverage. The service s
list view consists of multiple expandable lists to present a comprehensive display of all s
microservices within the system, as depicted in Figure 12a. Each expandable list header s
includes the microservice name and its coverage percentage, while the body exhibits the s
paths of endpoints associated with that microservice. This visualization employs red-green s
color coding, such that covered endpoints are highlighted in green, and uncovered ones are  ss
marked in red. For instance, the ts-config-service microservice shows an approximate  se
coverage of 83.33% from the E2E test suite, missing only one (GET@/api/v1/configservice/  ses
welcome) out of six endpoints. In contrast, the ts-contacts-service has an approximate ses
coverage of 62.50%, with two out of seven endpoints remaining untested. 567

On the other hand, the service dependency view utilizes a 3D graph visualization rep-  se
resenting the complete service dependency graph of the system, as illustrated in Figure 12b.  se
Nodes represent microservices, and edges denote dependencies between microservices. s
This approach introduces four color codes based on microservice coverage percentages: red  sn
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ts-config-service

83.33% Coverage

GET /api/v1/configservice/configs

POST /api/v1/configservice/configs

PUT /api/v1/configservicse/configs

DELETE /api/v1/configservicse/configs/{configName}
GET /api/v1/configservicse/configs/{configName}

GET /api/v1/configservice/welcome

ts-contacts-service }

62.50% Coverage

GET /api/v1/contactservice/contacts

POST /api/v1/contactservice/contacts

POST /api/v1/contactservice/contacts/admin
DELETE /api/v1/contactservice/contacts/{contactsld}
PUT /api/v1/contactservice/contacts

GET /api/v1/contactservice/welcome
GET /api/v1/contactservice/contacts/account/{accountld}

(a) Expandable list view shows microservice endpoints list

ts-contacts-service

ts-config-service . ) )
ts-admin-basic-info-service

.
’ hvts—price—service
-
ts-admin-route-service . .
® ts-admin-travel-service
@
ts-station-service ts-basic-service
»
?g ’\ ts-
ts-route-service ?
w* ;
ts-rebook-service
® ts-travel-service
ts-order-other-service ts-seat-service | ts-route-
ts-admin-order-service @ - . e )
. ts-payment-service 4 ts-preserve-other-service
¢ @

ts-order-service

B 0-69% M 70-79% 80-89% [ 90-100% MS Coverage

(b) 3D interactive visualizer shows service dependencies (cropped view)

Figure 12. Microservices endpoint coverage visualization (full pictures®)

for 0-69%, orange for 70-79%, yellow for 80-89%, and green for 90-100%. For example, the
node corresponding to ts-config-service is highlighted in yellow, indicating its coverage
of 83.33%. In contrast, the node for ts-contacts-service is marked in red, representing



Version February 16, 2025 submitted to Journal Not Specified 19 of 22

its coverage of 62.50%. This 3D graph visualization provides a dynamic representation of
service dependencies along with their respective coverage statuses.

5. Discussion

Our approach brings a promising solution to maintaining system reliability through
better assurance of E2E and API test suit completeness. It contributes to the continuous
reliability and quality assurance of decentralized microservice systems. In addition to
integrating both testing methodologies, our approach, in contrast to existing literature,
takes into consideration specific features of microservice architecture, including inter-
service communication and components such as API gateway testing. Many existing
studies overlook these microservice-specific characteristics. Furthermore, our approach
offers three levels of granularity, enabling developers and testers to identify and benefit
from the specific parts requiring modification as the system evolves. Our assessment results
indicate a positive impact on establishing connections between different tests and system
endpoints through automated means. Such tracking provides valuable insights for testers
in managing change propagation to the testing infrastructure, as they directly indicate
co-change dependencies between specific microservices or endpoints and particular tests.

Combining E2E testing with API testing provides an even more comprehensive per-
spective on system coverage. However, it is essential to consider the context in which the
approach is applied, recognizing that the user interface in E2E testing may not interact with
all middleware endpoints. This can be reflected in the provided metrics, indicating that
the E2E test might not achieve 100% coverage. This prompts the question of whether the
remaining endpoints signify the presence of the Nobody Home smell [36], indicating missing
wiring from the user interface, or if they represent outdated or dead code.

On the contrary, API tests in our study covered a substantial portion of these endpoints,
resulting in higher coverage compared to E2E tests. Nonetheless, API testing could include
tests of deprecated, removed, or unused endpoints from the user interface perspective, as it
directly points to API endpoints for testing. Nevertheless, the advantage of API testing is
rooted in its static source code, which encompasses the tested endpoint APIs. This enables
the approach to identify directly declared endpoints within the API test suite source code.
The approach can cross-reference the declared endpoints in API test suites with those
extracted from the system source code, pinpointing those that no longer exist in the system.
Moreover, analyzing the log traces to distinguish covered endpoints from direct user calls
(via the user interface or direct API calls) versus those covered through inter-service calls
(from another microservice) adds an extra layer of validation. This aids practitioners in
ensuring the design and exposure perspective of each endpoint in the system.

Furthermore, considering the nature of the testing approaches in the case study,
the API tests exhibited higher coverage in microservices and complete test suite metrics,
while the metric of test case endpoint coverage showed lower coverage per test case. This
discrepancy arises because API tests executed a larger number of test cases, each consuming
fewer endpoints, while E2E test cases consumed more endpoints each but constituted a
smaller number of test cases in the overall test suite.

It is worth noting that microservices often implement isAlive/welcome endpoints for
health checks. Some libraries, like Hystrix, can automatically generate these endpoints,
while others may implement them manually. In the case of TrainTicket, 39 endpoints were
implemented that were not utilized in the user interface since rendering them meaningless.
However, they are considered for testing in the API tests. Verifying these endpoints can
ensure that the system is correctly initialized.

6. Threats to Validity

In this section, we address the potential validity threats to our approach. We adopt
Wohlin’s taxonomy [37], which encompasses construction, external, internal, and conclu-
sion threats to validity, as a framework for our analysis.
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A potential construction validity threat arises from the dependency on static analysis
for endpoint extraction and dynamic analysis of centralized traces generated by tests. It
includes missing or non-standard source code and a lack of support for centralized traces,
which can hinder our approach.

Our POC is currently implemented for specific programming languages and frame-
works. However, it is important to note that the methodology itself is not limited to these
specifications. It can be adapted and applied to other languages and frameworks, mitigat-
ing construction threats related to dependencies. Moreover, asynchronous messaging poses
a potential risk to test execution by causing ghost endpoint call trace events. To mitigate
this threat, potential approaches include disabling asynchronous services or conducting
repeated test executions to minimize the impact.

Internal validity threats arise from potential mismatches between the extracted end-
point signatures from the source code and the traces. Although overloads are infrequent,
inaccurate matching may occur due to trace values not aligning precisely with the defined
types in the code. For example, if a trace contains an integer in the URL, it may match with
an integer parameter type even if the corresponding endpoint has a string parameter type.
Moreover, Multiple authors collaborated to ensure accurate data and calculations. They
independently verified and cross-validated the results, rotating across validation processes
to minimize learning effects.

To address external validity threats, our case study utilized a widely recognized open-
source benchmark to evaluate its endpoints coverage using our proposed approach. Still,
it is important to acknowledge that the results and conclusions drawn from this specific
benchmark may not fully represent the entire range of microservices systems that adhere
to different standards and practices.

One potential conclusion validity threat is that our tool was tested on an open-source
project rather than an industry project. However, we aimed to address this by selecting an
open-source project that employed widely-used frameworks in the industry. Furthermore,
to ensure the reliability and consistency of our results, we performed the case study in
multiple environments and confirmed that the outcomes remained consistent.

7. Conclusion

Test coverage is an important part of software development. The lack of tools to
provide feedback on test coverage leaves an open gap for cloud-native and microservice-
based systems. This work proposes endpoint-based metrics for E2E and API test coverage
of such systems. Moreover, it illustrates an automation approach to extract such metrics
and evaluates the approach through a proof-of-concept implementation assessed on a case
study using a third-party system. Such a mechanism can provide testers with an important
perspective of how complete the test coverage is with respect to the number of endpoints
in the system that are involved in tests.

Furthermore, the presented approach establishes connections between tests and mi-
croservice endpoints at three distinct levels. It showcases the coverage of the entire suite
of tests on each individual microservice, the coverage of each test case across the entire
system endpoints, and the coverage of the entire suite of tests on the complete set of system
endpoints. Additionally, It demonstrated two approaches for visualizing microservice test
coverage within the holistic context.

The results of the case study highlighted distinct outcomes from both the E2E and
API test suites applied to the same microservice benchmark. The API tests exhibited a
high coverage percentage, which is reasonable given their focus on targeting specific APIs
in their testing. However, they lacked a realistic sequence of calls that mirror real-world
scenarios from the user’s perspective. Conversely, the E2E test suites established this
realistic chain of calls starting from the user interface through to the system endpoints.
Nevertheless, they demonstrated a lower test coverage percentage of the system. This could
be attributed to unused endpoints within the system user interface or insufficient tests in
the suites to cover the entire user interface scenario. Combining the coverage generated by
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both test suites is anticipated to provide a more comprehensive assessment of the system’s
assurance of endpoints. This is particularly relevant considering that each test approach
aims to achieve distinct objectives, and their integration can offer a more holistic view of
the system’s health and functionality coverage.

While there are missing tools in decentralized systems that could provide feedback on
test coverage for tests that involve the system as a whole if we resort to system endpoint
coverage, a feasible mechanism can be provided by automated means and still provide
relevant feedback. Yet, if endpoints provide a broad range of conditional executions, this
approach will have limited descriptive value since it only measures if an endpoint was
reached in test execution.

In future work, we aspire to explore the evolution of both the system and the test
suite, delving deeper into the details beneath endpoints. Furthermore, we intend to expand
our metrics to include a wider range of test paths within the endpoints. Additionally, we
envision conducting more comparative studies and integrating with existing literature to
provide more comprehensive instruments for the community.
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