
A Reconstructed Autoencoder Design for CSI
Processing in Massive MIMO Systems

Venkataramani Kumar∗, Dalyana Mercado-Perez†, Feng Ye†, Rose Qingyang Hu‡ and Yi Qian§
∗Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH, USA

†Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA
‡Department of Electrical and Computer Engineering, Utah State University, Logan, UT, USA

§Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Omaha, NE, USA
Emails: ∗tiruchirappallinarv1@udayton.edu, †{dmercadopere, feng.ye}@wisc.edu, ‡rose.hu@usu.edu, §yi.qian@unl.edu

Abstract—Massive multiple input multiple output (MIMO)
systems are integral to next-generation wireless technologies due
to their ability to meet the growing demands of throughput
and support a plethora of applications. An efficient operation
of massive MIMO requires accurate channel state information
(CSI). In a frequency division duplex (FDD) MIMO system,
the base station can rely on CSI feedback that user equipment
(UE) estimates from downlink CSI from orthogonal pilot se-
quences. Recently, artificial intelligence (AI), i.e., deep learning
approaches, have been introduced to compress and reconstruct
CSI matrices at UE and the base station, respectively. However,
these existing approaches still rely on channel estimation at the
UE side, which introduces additional errors in the autoencoder
design. To address these issues, we propose to implement the
autoencoder that processes the pilot sequences directly to avoid
excessive processing errors. Moreover, a higher compression
can be achieved due to the lower error. Evaluation results
demonstrate that the proposed scheme can significantly reduce
the communication overhead by using a higher compression
ratio while maintaining high CSI reconstruction performance in
addition to lower bit error rates compared to the existing deep
learning approach.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems
in millimeter-wave (mmWave) channels are the emerging
technologies in the fifth and future generations of wireless
networks due to their ability to serve multiple users simul-
taneously with higher throughput, spectral, and energy effi-
ciency [1]. However, for the successful implementation of such
systems, it is pertinent to ensure accurate and timely estimation
of channel state information (CSI) [2]. To address the absence
of channel reciprocity in frequency-division duplex (FDD)
MIMO systems usually, a base station usually relies on CSI
feedback from user equipment (UE) that can estimate down-
link channel properties from orthogonal pilot sequences [3].
However, the complexity of a massive MIMO system can
introduce extremely high overhead in communications if the
full CSI matrix is fed back. Since the massive MIMO CSI
matrix in mmWave channels demonstrates strong sparsity,
conventional approaches apply compressive sensing to reduce
the overall CSI representations [4]. Although the commu-
nication overhead can be reduced significantly, compressive
sensing demands substantial computing resources and time in
finding the spatial correlation in the compression process, and

also in solving optimization problems in the decompression
process [5]. In addition, compressive sensing relies on random
projection instead of fully understanding the channel structure.
Furthermore, the iterative algorithms reduce the speed of
the reconstruction process resulting in additional latency [6].
Similarly, signal-to-noice ratio (SNR) feedback-based channel
estimation scheme requires lower feedback overhead when
compared to the channel feedback [7]. Another salient feature
is its applicability to both time division duplex (TDD) and fre-
quency division duplex (FDD) systems. However, these meth-
ods can be inefficient in a massive MIMO system. Recently,
artificial intelligence (AI), i.e., neural network approaches,
have been proposed as a more computationally efficient way
to compress and reconstruct the downlink CSI presentations at
the UE and the base station, respectively, in an FDD massive
MIMO system [5], [8]. However, these classic autoencoder-
based CSI processing methods that try to reconstruct the
original inputs encounter a few issues. First, the traditional
approaches require a CSI recovery from pilot sequences, e.g.,
by using least square and maximum-likelihood method [9],
which introduce additional computational complexity at the
UE side. Meanwhile, the CSI used as the ground truth may
be inconsistent to the practical implementation due to the
imperfect channel recovery from the pilot sequence at the
UE side. Such inconsistency could further exacerbate the
reconstruction error the base station. Furthermore, due to the
relatively high dimension of the raw CSI representation, the
classic autoencoder designs have complex structures with high
floating-point operations per second (FLOPS).

In this work, we intend to address the aforementioned
challenges by reconstructing the CSI processing with a mod-
ified autoencoder design in a massive MIMO system. In
the proposed approach, the modified autoencoder takes input
of the received pilot sequences directly, instead of a fully
recovered CSI representation, and extracts the features that
are equivalent to the compressed CSI representations from the
existing compressive sensing and the traditional autoencoder-
based CSI processing methods, assuming perfect CSI recovery
from the pilot sequences. Such an equivalence is validated
as the CSI representations can be reconstructed at the base
station through the decoder part of the modified autoencoder.
Assuming imperfect CSI recovery from the pilot sequences,



the reconstructed process at the base station can eliminate the
inconsistency between ground truth for training the autoen-
coder and actual inputs in practice. Note that the modified
autoencoder design for CSI proposed in this work is different
from the traditional ones in two aspects. First, the input to
the encoder and the output from the decoding process are
not intended to be the same. The input to the encoder is the
received pilot sequence, while the output from the decoder is
the reconstructed CSI representations. Second, the modified
encoder is not necessarily for feature reduction, depending
on the length of the input pilot sequence and the targeting
compressed CSI representations. Nonetheless, the dimension
of the extracted features would still be lower than that of a
fully reconstructed CSI representation.

Our contributions in this work can be summarized as
follows. The deep-learning assisted CSI processing in massive
MIMO systems is reconstructed with a modified autoencoder
design. By eliminating the full CSI recovery process at the
UE side, the modified autoencoder enhances the consistency
between the training and practical implementation. Evaluation
results demonstrate that the proposed concept of reconstruction
can achieve comparable accuracy with a much less computing
complexity at higher compression ratio. The remainder of
the paper is organized as follows. Section II describes the
existing CSI estimation and feedback approaches. Section III
describes the deep learning channel estimation techniques
as well as our proposed scheme design. Section IV depicts
the evaluation results. The conclusion and future works are
outlined in Section V.

II. SYSTEM MODEL AND PRELIMINARIES

A. Studied system model.

For better illustration, the notations used in the rest of the
paper are listed in Table I. The operations, (·)∗, (·)T , (·)H ,
Tr(·), | · |, E{·}, and (·)† denote the conjugate, transpose,
conjugate transpose, trace, absolute operator, expectation and
matrix pseudo-inverse, respectively.

TABLE I: Notations used in this work.

Notation Remarks
Nt Number of transmitting antennas
Nr Number of receiving antennas
L Length of channel taps
Nc Number of subcarriers
yn Signal received at the nth subcarrier
xn Transmitted symbol

hr,m
Channel between the mth transmit
antenna and the rth receive antenna

XP Pilot signals
YP Received pilot signals
Ĥ Estimated channel state information

In this study, we consider a single-cell massive MIMO-
Orthogonal frequency division multiplexing (OFDM) with Nt

(Nt >>1) antennas at the base station (BS) and receiver
antenna at the user equipment (UE) as shown in Fig. 1. Since,
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Fig. 1: Overview of the studied system.

the OFDM comprises Nc subcarriers, the received signal the
nth sub-carrier can be written as

yn = ĥ
H

n vnxn + wn, (1)

where ĥ
H

n and vn refer to the channel frequency response
vector and the precoding vector at the nth subcarrier while
xn refers to the transmitted symbol and wn refers to the
white additive gaussian noise. The CSI matrix in the spatial-
frequency domain can be represented in the matrix form as
follows:

Ĥ = [ĥ1, ĥ2, . . . , ĥn]
H ∈ CNt×Nc . (2)

The BS computes the precoding vector vn ∈ CNt×1 through
singular value decomposition (SVD) based on CSI.

B. Preliminaries on Compression and Feedback Process

The downlink CSI matrix of such a system can be estimated
in compression and feedback processes. To begin with, a block
of pilot signals is transmitted by the BS to the UE in the
downlink channel. Note that each time slot is subdivided into
mini-time slots of which the first few are allocated for pilot
sequences [10]. Given a downlink pilot sequence, it is assumed
that the channel estimation can be performed by the UE using
channel estimation methods such as least squares [11], as
follows:

ĤLS =
1

XP
YP . (3)

Note that the channel estimation process is required in most
existing CSI feedback scheme designs. The ĤLS is then
compressed and fed back to the BS using the uplink channel.
The number of feedback parameters is (2NcNt). Excessive
feedback requires greater resources such as bandwidth. The
compression process is to reduce communication overhead.
However, the computational complexity in the channel esti-
mation increases proportionally with Nt [12]. In addition, the
downlink channel estimation at UE can increase processing
delay and reduces the time available for actual data transmis-
sion [13]. Depending on the compressing technology, the BS
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Fig. 2: Overview of the deep learning-based CSI estimation and feedback process.

reconstructs the downlink CSI matrix by decompressing the
feedback information.

C. Deep Learning based CSI Processing Techniques.

The traditional channel estimation schemes described previ-
ously suffer from two major drawbacks namely computational
complexity and channel overheads. Though the decomposi-
tion methods such as the QR-Gram Schmidt and QR-Givens
Rotation method optimizes the complexity, they still require
higher power and massive storage requirement [1]. Moreover,
due to the non-convex nature of the estimation problems,
it is challenging to develop analytical solutions. However,
machine learning techniques such as the Grechberg-Saxton
(GS) algorithm can be utilized to resolve non-convex and
non-linear problems. But, the performance of such algorithms
is unsatisfactory due to their higher iteration requirements
to compute the channel estimate. Such methods cannot be
frequently utilized in time-sensitive real-time applications [14].
The aforementioned challenges necessitate the need to utilize
deep learning techniques to estimate the channel.

For example, CsiNet is one of the first CSI sensing and
recovery mechanisms based on an autoencoder design [6].
As demonstrated in Fig. 2, the encoder design of CsiNet
comprises a convolutional layer and a dense layer. the input
to the encoder of CsiNet is the truncated sparsified Ĥ, e.g.,
from Eq. (2) in the angular domain, s.t.,

H = Fd Ĥ FH
a , (4)

where Fd and Fa are N̂c × N̂c and Nt ×Nt discrete Fourier
transform (DFT) matrices, respectively. In specific, the real
and imaginary components of H are applied separately as
inputs to the encoder. The 3×3 dimensional kernel convolves
with the inputs to generate two feature maps respectively.
The vectors, which are the reshaped feature maps, are applied
as inputs to the dense layer to generate an M-dimensional

codeword. Such compression or the transformation into code-
words is based on a compression ratio γ, e.g., 1/4 or 1/8 of
the original input size. The M-dimensional codeword (s) is
transmitted back to the BS. The decoder in the BS comprises
a dense layer and RefineNet units. The dense layer in the
decoder generates two outputs each symbolizing the real and
imaginary parts estimates of H. The generated outputs are
applied to the RefineNet units, a conglomeration of four
convolutional layers, with a kernel size of 3. We can see that
the second and the third layers of the RefineNet generate
8 and 16 feature maps while the final layer produces the
reconstructed channel matrix H′. Ideally, the RefineNets are
optimized to ensure that their outputs are almost the same as
that of the residual between its input and ground truth and can
be expressed as follows:

H′
res = H − H′

in, (5)

where H refers to the original channel matrix and H′
in refers

to initial estimated of H and H′
res is the expected residual.

A batch normalization layer is provided to every layer in the
network. It may be noted here that the rectified linear unit
(ReLu) is the activation function, s.t., ReLu(x) = max(x, 0).

There have been several CSI processing schemes developed
based on CsiNet [6], [15]. The salient features of CsiNet and
its variants are as follows. The encoder entirely relies on the
training data to understand the channel structure and with this
knowledge, it compresses the representations into codewords.
Similarly, the inverse transformation of the codewords into the
channel matrices performed by the decoder is non-iterative
and faster compared to the traditional approaches, e.g., com-
pressive sensing. However, the error difference between the
reconstructed and estimated channel increases with the com-
pression ratios. Our proposed work envisions reducing this
error difference even at more aggressive compression ratios.



III. SIMPLIFIED CSI PROCESSING SCHEME

A. Overview of the Proposed Scheme Design

An overview of the proposed simplified CSI processing
scheme is shown in Fig. 2. Three major functionalities can
be seen in our model namely the pilot processing, feature
extraction, and codeword generation. The first step is pilot
processing. The BS transmits a block of pilots proportional
to the Nt to the UE. Then, the UE executes the encoding
part to generate a compressed codeword. Compared to the
existing deep-learning-based approaches, our design mainly
simplifies the encoder part by eliminating the CSI estimation
process at the UE side. The direct processing of pilots ensures
that the channel is directly constructed at the BS thereby
reducing the resource utilization at the UE. Another salient
feature of our proposed scheme is the consideration of original
channels instead of the estimated channel matrix as the ground
truth. Such consideration will reduce the channel estimation
error between the estimated and reconstructed channels. The
codeword is fed back to the BS which is then decoded it to
construct the entire channel matrix.

B. Simplified Encoder Design

Without reconstructing CSI matrix at the UE side, the inputs
to the encoder are the reshaped received pilot sequences from
the BS. The first layer, which is the convolution layer, extracts
the features required to construct a complete CSI matrix using
a filter of size 3×3. Let P = [p1, p2, p3, . . . , pn] refer to the
received pilot sequence block while S = [f1, f2, . . . , fn] denote
the vector of extracted features fi, i ∈ N. The fully connected
layer with k neurons compresses the S to a lower dimension
output referred to as codeword s, denoted as follows:

s = fen(S). (6)

The γ of the encoder can be calculated as

γ = M/(2NtNc), (7)

where the denominator 2NtNc is referred to as the feedback
parameters.

C. Decoder Design

For a better analysis of the proposed concept of eliminating
CSI estimation at the UE side, the decoder part at the BS side
generally follows the existing scheme design. The first layer
in the decoder is the fully-connected layer with 2×Nt ×Nc

neurons. The codeword s when applied as input to this layer
results in the generation of two matrices of dimension Nc×Nt.
These two matrices serve as an initial estimate of the real
and imaginary parts of the original channel matrix H. The
RefineNets fine tunes the initial estimate to reconstruct the
channel matrix H’, s.t.,

H′ = fde(s). (8)

It may be noted here that RefineNet provides twin benefits.
To begin with, the output size of the RefineNet is the same
as that of the original channel matrix H. In addition to this,

it alleviates the vanishing gradient problem arising due to
the multiple non-linear transformations by providing shortcut
connections [6]. A batch normalization layer is provided to
every convolution layer and a sigmoid activation layer is used
to scale the outputs within the range [0,1].

D. Modified Loss Function

The end-to-end learning is adapted to tune the kernel and
bias values of both the encoder and decoder. The set of
parameters can be defined mathematically as, Θ = {Θen,Θde}.
The input is Hi, while the output is the recovered channel
at the BS is Ĥi. Mathematically, Ĥi = f (Hi; Θ) [6]. It may
be noted here that both inputs and outputs to this model are
normalized and their values lie in the range [0, 1]. Since the
output from the decoder part does not map directly to the input
to the encoder part, the loss function is modified to minimize
the mean squared error (MSE) between the reconstructed
channel matrix and the ground truth of channel matrix as
follows:

L(Θ) =
1

T

T∑
i=1

||f(Si; Θ)− Hi||22, (9)

where ∥ · ∥2 is the Euclidean norm and T is the total number
of samples utilized in the training set.

IV. EVALUATION RESULTS

A. Dataset and Evaluation Settings.

The dataset utilized for training and testing the model com-
prised pilot sequences and the original channel matrices. In our
work, we utilized the open-source channel matrix dataset [6].
The dataset was generated for two scenarios namely indoor
and outdoor using the COST 2100 channel. Each channel
was of dimension 32×32×2. In this work, we utilized indoor
datasets alone since the related work demonstrated better
performance here [6]. The dataset and settings are chosen the
same for comparing directly with the existing deep-learning
CSI processing scheme CsiNet [6], interchangeable with the
‘benchmarking approach’ in this section. Based on the channel
matrices, the corresponding pilot sequences were generated
using the classic approach [16]. Without further notice, the
settings utilized for the pilot generation are summarized in
Table II. The deep learning-based autoencoder designs were
implemented in the Pytorch environment on a workstation
running an 8-core Intel(R) Xeon(R) CPU @ 2.40 GHz, 32
GB RAM, and an Nvidia GTX 1080 Ti GPU card.

B. Evaluation Results

Our simplified autoencoder model was trained and tested
on the dataset comprising 50,000 samples. The dataset was
bifurcated into training and testing datasets each with 30,000
and 20,000 samples, respectively. The pilot sequences orig-
inally of size 256 × 32 × 2 were reshaped to 32 × 32 × 8
and applied as inputs to the first convolution layer of the
encoder. The input was convoluted with a kernel of size 3.
The fully-connected layer transforms the vectors obtained from
the previous layer into codewords of different dimensions (k)



resulting in different compression ratios (γ). For consistency
with the existing approach, the compression ratios considered
in this work were 1/4, 1/16, and 1/32. In the decoding part,
the codeword from the encoder is applied as input to the fully-
connected or dense layer to transform it back to the vectors of
suitable size. The multiple convolutional layers with a uniform
kernel size of 3, processes, refines and reconstruct the entire
channel. The epochs, learning rate, and batch size are set as
1000, 0.001, and 500 respectively. The existing approach for
comparison is built using standard settings of autoencoder,
where the output is mapped to the input for minimum error.
In the testing phase, it is assumed that the UE executes the
encoder part based on the received pilot sequence, or the
estimated CSI from the pilot sequence, using the simplified
and benchmarking approaches, respectively.

Fig. 3 depicts the normalized mean square error (NMSE)
of both simplified and benchmark approaches at different
compression ratios and at multiple SNR values. In general,
a simple examination of the results provides the following
inferences. First, the performance decreases with the decrease
in the SNR values. For instance, at SNR and γ of -20 dB, and
1/4 respectively the mean MSE of the simplified approach
stands at around -5 dB when compared to about -30 dB at
20 dB SNR. Second, the performance decreases with the
increase in the compression ratio regardless of the SNR.
For instance, at an SNR of 20 dB, the MSE values of the
simplified approach are approximately -35 dB, -30 dB, and
-27 dB at γ of 1/4, 1/8, and 1/32 respectively. In other words,
the accuracy of the channel reconstruction process decreases
with the increase in the compression ratio, and decrease in
the SNR. In terms of performance, our simplified approach
outperforms the benchmarking approach. For instance, at an
SNR of 20 dB and γ of 1/4, the NMSE of our simplified
approach is approximately -35 dB when compared to - 28dB of
benchmarking approach. The relatively better performance of
our approach can be attributed to the direct processing of pilot
signals. Fig. 4 depicts the bit error rate (BER) analysis of both
approaches at different SNRs. It may be noted here that the
transmitted data symbols are precoded using the zero-forcing
(ZF) method to reduce the BER [17]. The precoding improves

TABLE II: Simulation settings for the MIMO system.

Settings Remarks
Nt × Nr 32 × 32
Pilot spacing (P) 4
Pilot length 1 × 32
Subcarriers (K) 1024
Guard Interval (G) 0.25
Modulation (Mod) QPSK
Channel taps (L) 2
Normalized signal power 1
SNR [-20, -15, -10, 0, 10, 15, 20]
Compression ratio γ 1/4, 1/16, 1/32
Carrier frequency 2.412 GHz
# Samples 50,000

the accuracy and reliability of the transmitted symbols. From
BER evaluation results, it is feasible to draw two inferences.
To begin with, the BER decreases with the increase in SNR
regardless of the compression ratio. For instance, at γ of 1/4,
the BER of our simplified approach decreases from 0.037 at
-10 dB SNR to 0.026 at 10 dB. Furthermore, the decrease in
the BER decreases with the increase in the compression ratio.
For instance, at 15 dB the BER of our simplified approach is
0.022, 0.037, and 0.0461 respectively. In the future, we intend
to evaluate the BER by applying different precoding schemes
such as maximum ratio transmission (MRT).
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Fig. 3: NMSE of channel recontructions.
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Table III further compares the parameters, and FLOPS
of our simplified approach with that of the benchmarking
approach. Note that the number of FLOPs required by the
simplified approaches are higher than that of the benchmarking
ones at the same compression rates. It is mainly because the



TABLE III: Results of simplified autoencoder design and the benchmarking autoencoder design.

Compression
Ratio (γ)

Flops (M) Parameters (K) NMSE (dB) at SNR = 20 dB
Simplified
Encoder

Benchmark
Encoder

Decoder
Simplified
Encoder

Benchmark
Encoder

Decoder
Simplified
autoencoder

Benchmark
autoencoder

1/4 1.70 0.59 94.89 524.36 518.60 13.20 -33.43 -23.63
1/16 1.31 0.33 94.63 262.22 259.09 13.42 -29.07 -16.89
1/32 1.24 0.20 94.50 131.14 129.55 26.53 -26.20 -14.89

higher input dimension of the pilot sequence comparing to
the CSI matrix in the proposed approach. Although a higher
FLOP count indicates a greater complexity, the benchmarking
approaches require an extra step of CSI reconstruction, e.g.,
using Eq. (3), which introduces additional complexity that can
be more than the extra FLOPs in the proposed approach. The
exact complexity analysis will be conducted in the future work.
Meanwhile, the parameters in both these models are nearly
comparable. For example, the number of parameters in our
simplified encoder is 524.36 K which is comparable to 518.16
K in the CsiNet.

V. CONCLUSION AND FUTURE WORKS

The evolution of the MIMO relies on the ability to estimate
accurate CSI with lower computational complexity, reduced
and transmission overheads. The traditional approaches of-
fer channel estimation but suffer from high computational
complexity with the increase in the transmit antennas in a
MIMO system. The deep-learning assisted CSI processing
schemes have been introduced to address the issues. However,
the standard concept autoencoder used in these existing ap-
proaches introduces inevitable error due to CSI reconstruction
at the UE side. In this work, we proposed a simplified
structure that processes the received pilot sequences directly
as the inputs, which is compressed into a low-dimension
codeword. The codeword is decompressed at the decoder
to retrieve the channel. The modified autoencoder structure
can mitigate the CSI reconstruction error in the process. The
proposed model was validated on the same open-source dataset
used by the benchmarking approach. The evaluation results
demonstrated that the simplified approach can achieve a much
lower reconstruction error, hence a lower BER compared to
the existing one. Moreover, the simplified approach achieved
the same level of reconstruction accuracy with all the tested
compression ratios, while the benchmarking approach returned
much lower reconstruction accuracy given a higher compres-
sion ratio. In other words, the transmission overhead in the
feedback process can be effectively reduced with the schemes
developed in this work at a reduced NMSE when compared
to the benchmarking approach. In future work, more practical
scenarios will be evaluated to further optimize the simplified
autoencoder design. Evaluations will also be conducted on
hardware testbeds.
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