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Abstract

Microservice architecture is the mainstream driver for cloud-native systems. It brings
various benefits to the development process, such as enabling decentralized develop-
ment and evolution of self-contained system parts, facilitating their selective scalability.
However, new challenges emerge in such systems as the system-holistic quality assur-
ance becomes difficult. It becomes hard to maintain the desired system architecture
since many teams are involved in the development process and have greater auton-
omy. Without instruments and practices to coordinate teams and assess the system as
a whole, the system is prone to architectural degradation. To face such challenges, var-
ious architectural aspects of the system should be accessible to practitioners. It would
give them a better understanding of interconnections and dependencies among the
microservice they manage and the context of the entire system. This manuscript pro-
vides the perspective on uncovering selected system architectural views using static
code analysis. It demonstrates that holistic architectural views can be effectively derived
from the system codebase(s), highlighting dependencies across microservices. Such
new perspectives will aid practitioners in making informed decisions when intending
to change and evolve the system. Moreover, with such a new instrument for system
holistic assessment, we quickly realize that human experts must cope with another
problem, the evergrowing scales of cloud-native systems. To elaborate on the topic, this
manuscript examines how static analysis outcomes can be transformed into interactive
architectural visualizations to assist practitioners in handling large-scale complexities.

Keywords: Microservices, Software Architecture Reconstruction, Interactive Visualization,
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1 Introduction

Modern software systems that require scalability or aim at servicing a broad audience
likely target cloud-native capabilities and thus utilize microservice architecture [1]. While
existing infrastructure and development frameworks greatly simplify the design and devel-
opment of such systems, there is a lack of instruments to analyze the system [2] to make
informed decisions for the evolution of such systems or help developers understand the
big picture of the overall system.

Architects typically prescribe a system design blueprint that is distributed across
various development teams that implement microservices individually and let them inter-
play over closely coupled endpoints or messaging. The development teams are typically
assigned to manage a few microservices exclusively [3] and establish an in-depth knowl-
edge of these; however, they are unaware of other microservice details beyond recognized
endpoints or events and likely do not see implicit dependencies across microservices [4, 5].

Throughout the maintenance and evolution, there is no holistic system view [6, 7],
which would be used by developers to understand the interconnections, similarities, and
dependencies across microservices in the system. We would need to involve multiple
teams to reconstruct a holistic system perspective to enable a broader system analy-
sis. Moreover, since individual microservices change often, such a process would need
to be performed periodically, which becomes expensive to perform manually. Without a
system-centered perspective, there is no straightforward mechanism to verify if the pre-
scribed architectural properties hold in the implemented system. The ability to derive a
system-centered perspective of the currently developed system version would serve as an
important instrument to facilitate quality assurance throughout system evolution.

Furthermore, in common market settings prioritizing new system feature develop-
ment over quality maintenance, uninformed design decisions might greatly deteriorate
system design. Indeed, new features are visible to customers, but quality maintenance is
not something they value as much. Without a system-centered view to observe changes
performed by individual teams, architects will easily lose track and let the system quality
go downhill towards architectural degradation.

In previous works [8-13], we investigated inter-service dependencies, architectural
properties, and the big picture details of systems based on microservices. Such informa-
tion detail helps practitioners understand the system as a whole since they usually manage
a particular system part (i.e., selected microservice). We investigated static analysis to
reconstruct such information from systems codebase(s). Such a process can quickly recon-
struct up-to-date documentation about the system. With advancements in this challenge,
a visual perspective is necessary to engage practitioners. However, we quickly realized
that to effectively present extracted information to practitioners, established visualization
approaches do not fit the needs of cloud-native systems. Visual models for architectural
views need to cope with a large volume of information in these systems to render the whole
system, and established models have their limits.

To detail the perspective of deriving system-centered views. This manuscript addresses
the following research questions related to the depicted challenges of collecting informa-
tion and presenting them:



RQ1. Is it feasible to use static code analysis of individual microservices and to
combine the results to determine the holistic detail and dependencies of the
system?

RQ2. Given the state-of-the-art opportunities for architecture visualization, could
static analysis produce inputs to apply such visualization for microservice systems?

This manuscript brings the perspective of static analysis of microservices to recon-
struct the holistic system perspective. It details the intermediate representation of the
system, which results from the static analysis, and illustrates how components and high-
level code constructs extracted from individual microservices codebases could combine
to derive the big system picture. Using such intermediate representation, this manuscript
shows how conventional visual models can be derived for system documentation. Next, it
elaborates on gaps and the specific needs for such models for cloud-native systems. Con-
sequently, it illustrates how the same intermediate representation could feed alternative
visual models that use advancements in visual domains such as interactive visualization,
3D models, and augmented reality.

The main contribution of this manuscript is the overall perspective of microservice
system architecture reconstruction using static analysis with consequent information
visualization aiding in software architecture analysis. Such a comprehensive perspective
is missing in the literature because of gaps requiring diverse expertise, such as program-
minglanguages, cloud-native systems, software architecture, and visualizations. This work
provides comprehensive details about the process pipeline and shares proof-of-concept
open-source tools to aid with advancements in these efforts.

With microservice system architecture reconstruction in automated means, it
becomes possible to utilize and present obtained system information through vari-
ous visualization approaches. While established analysis tools use visual models pro-
posed long before microservices became the industry mainstream, one might question
whether recent advancements in data visualization might provide more effective mod-
els and means to analyze and understand the software architecture of such systems. This
manuscript provides a broad overview of visual models that might be relevant to the needs
of cloud-native systems. Based on promising visual models, it builds various proof of con-
cept models intended to aid with architecture analysis (i.e., understanding microservice
dependencies). It demonstrates that with the Software Architecture Reconstruction (SAR)
process in place, researchers and experts on visualization gain new promising instruments
to focus on constructing alternative visual models and assess them on realistic systems
rather than being burdened by the construction of system models.

To demonstrate the process a large third-party system testbench was used show how
the process can produce conventional models, but also derive models in augmented real-
ity or three-dimensional space. Moreover, with such results from proof-of-concept tools,



we discuss the practical impacts and implications of such model transitions. With the pro-
vided tools, we invite experts in visualizations to contribute to the microservice field with
novel models, allowing practitioners to perform common tasks more effectively.

The organization of this article is as follows: Section 2 discusses the background and
related work. Section 3 outlines the software architecture reconstruction process. This
is followed by details on architectural views and intended visualizations. A Case Study
in Section 5 elaborates on the approach to extract conventional architectural visualiza-
tion from a sample system. Consequently, the alternative visual models are elaborated in
Section 6. Answers to research questions and a discussion about our proofs-of-concept
can be found in Section 7. The discussion elaborates on the presented knowledge that
advances the discipline, the implications of the study, and its limitations. Finally, Section
8 draws conclusions and outlines future work.

2 Background and Related Work

Cloud-native systems are fueled by microservice architecture and a set of principles, stan-
dards, and guidelines [14]. These systems are typically large and complex or often seen as
enterprises. As these systems evolve, it is easy to lose track of the documentation and the
overall system view. When we aim to understand, document, and potentially improve an
existing software system’s architecture, we perform SAR [15, 16]. Such a process helps us to
understand the current architecture, document the system, assess quality (i.e., detect anti-
patterns or identify technical debt), plan evolutions, check compliance, or understand the
costs and resources needed for maintenance and upgrades.

We typically model or visualize the system architecture to understand its properties
and dependencies. However, software architecture means different things to different
experts. Consequently, architecture is best described by various architectural views [17].
Considering the size and complexity of cloud-native systems, conventional visual models
reach their limits, and we should research alternative opportunities for large data visual-
ization that could apply to software architecture. The following text elaborates on these
core perspectives.

A visual model of software architecture is a graphical representation or diagram that
illustrates the structure, components, relationships, and key aspects of a software system’s
architecture. Visual modeling is a way for experts and novices to have a common under-
standing of otherwise complicated ideas. By using visual models complex ideas are not
held to human limitations, allowing for greater complexity without a loss of comprehen-
sion. These visual models are used to communicate complex architectural concepts and
designs to various stakeholders, including developers, architects, project managers, and
other non-technical stakeholders. Visual models provide a clear and concise way to convey
the high-level and low-level aspects of a software system’s architecture.

2.1 Software Architecture Reconstruction (SAR)

Software architecture serves as the blueprint for systems by being the central focal point
of the system’s development and design. These systems must often be reconstructed to
determine if they were built accurately, which constitutes the essence of the SAR process.



Various works have described the SAR process. An example of it is the concept offered
by O’Brien’s [15], who defined architecture reconstruction as "the process by which the
architecture of an implemented system is obtained from the existing system". According
to these authors, the results of this process has three main utilities: (1) the evaluation of the
conformance of the as-built architecture to the as-documented architecture; (2) the recon-
struction of the architecture descriptions for systems that are poorly documented, or for
which documentation is not available; and (3) the analysis and understanding of the archi-
tecture of existing systems to satisfy new requirements and eliminate existing software
deficiencies.

The SAR methodology facilitates the extraction of a representation of software archi-
tecture from entities such as formal documentation or, predominantly, the source code
and runtime traces. It aids developers in gaining a clearer insight into the system in ques-
tion and also plays a key role in other tasks, such as architecture verification, conformance
checking, and trade-off analysis [16]. Additionally, SAR is particularly pertinent when
addressing challenges associated with the software architecture degradation that occurs
when a system architecture drifts away from the originally intended architecture due to
changes in the codebase.

In the context of microservices, the SAR process has profound importance. It has the
potential to derive the system-centric view and illustrate how the system works [16]. It can
provide broad architectural description of the system [18]. There is a significant difference
between monolith and decentralized systems like cloud-native microservices. Challenges
at the cloud-native level might not exist with monoliths. For each microservice exists a self-
contained codebase [19]. Different microservices are typically managed by different teams.
Additionally, every microservice might use different design conventions, frameworks, have
different library versions, or even operate on different platforms, making the SAR more
challenging for such systems.

There are three categorizations of SAR methods based on how the analysis is per-
formed [20]: Manual analysis, where a human inspects the system and handcrafts its
representation; static analysis, where the view is constructed from pre-deployment arti-
facts; and dynamic or runtime analysis, where a tool creates a view while the system is
running. It is important to highlight that even if the manual analysis does not use an
automated tool, it is a crucial step in suggesting a method or confirming the outcomes.

Dynamic analysis gains advantages from accessing live data, including performance
indicators and ongoing service interactions. For instance, tracing [21] can be used to
uncover system communication paths [14] to illustrate explicit system dependencies.
However, there is one major drawback. In order for these techniques to be effective,
the system must be deployed and we need comprehensive interaction with the system
either through complete test coverage or involve users, which might require production
deployment. Through dynamic analysis, we can identify system endpoints. But without
a thorough record of system interactions, we cannot capture a full view of the sys-
tem. This limitation can sometimes be underestimated, especially when juxtaposed with
static analysis. Dynamic analysis for this purpose would assume a comprehensive, up-
to-date testing infrastructure with complete system coverage, including newly developed
feature tests [22]. This is an unrealistic expectation, given quick microservice evolu-
tion turnarounds, delays in tests, and often time-related costs with testing. Using the



production-level system to extract traces would not solve the problem since users might
not use all system features. Furthermore, we would only know about potential issues when
it might be too late, and it could take days after changes are introduced to the codebase.

Therefore, although it is possible to implement dynamic analysis for the purposes of
this project, it will not be the method we focus on due to the limitations mentioned above.
Instead, we narrow our SAR to static analysis.

2.1.1 Static Software Architecture Reconstruction

Static analysis can be performed on a system before it is deployed, extracting information
from existing artifacts that would otherwise have to be manually analyzed. In particular,
analyzing a program’s codebases has played a part in formal verification of a system’s cor-
rectness [20, 23, 24]. It has been used in automatically generating test cases for a program,
for example, by identifying points for performance analysis instrumentation [25] or by
extracting and analyzing an abstract syntax tree to identify all execution paths that need
to be tested [26]. Developers can also use static analysis to better understand a program
at a higher level. For example, UML models can automatically be generated by static anal-
ysis for legacy systems to better understand how to maintain or replace them [27], and it
is integral in identifying code clones [28-30]. Static code analysis has also been applied
in the realm of microservices. It has been used to identify calls between microservices
to generate security policy automatically [31]. Also, it has been used to analyze mono-
lithic applications to recommend cuts for converting to microservices [32]. In generating
a service dependency graph, Esparrachiari et al. [33] posit that source code analysis is not
sufficient since the deployment environment may impact the actual dependencies, which
the given deployed module has. However, our goal is different from theirs; we do not nec-
essarily target every possible call in a system for dependency detection; rather, we find
the calls that are part of the application’s business logic and, for this purpose, the source
code contains sufficient information. Pigazzini et al. [34] reconstructed the architecture
of microservices-based systems parsing Java source files and Docker/Spring configura-
tion files with the goal of identifying cyclic dependencies between microservices. However,
they mainly focused on the identification of the anti-patterns. Rahman et al. [35] followed
a similar approach to parsing the code but developed a tool named "MicroDepGraph"! to
visualize the call graph between microservices.

Source code is not the only artifact available for static analysis. It is important to
mention that many core artifacts like maven or docker files are typically included in the
codebase and can be used for static analysis. Ibrahim et al. [36] use a project’s Dockerfiles
to search for known security vulnerabilities of the container images being used, which they
overlay on the system topology extracted from Docker Compose files to generate an attack
graph showing how a security breach could be propagated through a microservice mesh.
This allows the creation of a centralized security concern for the system, but since it does
not extend to source code, it cannot include security flaws in the programs deployed in the
containers, only flaws with the images themselves. Another static source of information is
in the API definitions. Mayer and Weinreich use API definitions generated by the Swagger
tool as input to their architecture generation system. Still, their system is also dependent
on runtime data extracted from calls between services [37].

IMicroDepGraph https://github.com/clowee/MicroDepGraph
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Another approach to pre-runtime SAR is to embed a source of information in the
microservices as part of their development. For example, Salvadori et al. [38] propose
creating semantic microservices that expose information about their resources, allowing
them to be automatically composed. In this way, a centralized view of microservice com-
munication is always available. However, this method depends on using a fundamentally
different approach to development and cannot be used to analyze existing codebases.

2.2 Architectural Views

As mentioned at the beginning of this section, there exist different meanings for software
architectures to different experts. Each expert might come with distinct viewpoint on the
system [18]. Each viewpoint may govern one or more architectural views comprising a
portion of an architecture description. Such architectural views [17, 18] capture certain
system qualities or aspects. Selected views are elaborated by the 4+1 architectural view
model [39] (that can be generalized to the N+1 model [40]) involving logical view, process
view, development view, physical view, and scenarios, which do not have a visual format.

The ability to reconstruct effective architectural views of a system constitutes the
foundation for successful SAR [41]. Specifically, in the case of SAR applied to microser-
vices, Rademacher et al. [16] have considered four views (domain, technology, service, and
operation) as their comprehensive perspectives.

Each of these views focuses on particular aspects within the system. And, they also
interconnect with one another. For instance, the service view intersects with the domain
view, detailing which data entities are linked to endpoints. Subsequently, the technology
and domain views reveal where these data entities persist.

The process of construction of these views, according to Walker et al. [41] has a key
point based on the fact that each view is an aggregation of smaller views, each illustrat-
ing a disparate microservice. In other words, a fully centralized perspective of the system’s
architecture can be constructed by aggregating views from each microservice that is seen
as operating within its bounded context [42-44]. These views can be contrasted with the
cloud-native approaches proposed by Carnell et al. [14] when building microservices. It is
highlighted in chapter 3 of their book that in order to ensure proper microservice develop-
ment there are different roles involved. These roles are intended to focus on different parts
of the system.

Moreover, other perspectives can be involved, such as security audit. Expecting a sin-
gle person to master each of these roles and their unique perspectives is impractical. Each
role should have its own specialized architectural view and be able to evaluate the system
both at the microservice level and holistically. These specialized views have been defined
as logical view, process view, deployment/physical view, data view, security view, implemen-
tation view, development view, and use case view [45]. However, not all views can be easily
extracted, such as the use case view.

A problem of visualization may seem like a minor one, but it directly affects the view’s
intended purpose as an artifact to help a stakeholder to quickly understand how dedi-
cated parts interact with each other in a large system and to allow them to visually identify
potential problems with the architecture or to identify drift from the originally-intended
architecture. Visual models can influence the efficiency with which practitioners analyze
and understand the system view the model is displaying.



The following two different approaches employed these concepts for visual modeling
of enterprise systems’ architectures:

2.2.1 Traditional View Modeling

Zhou et al. [46] sought common visualizations for enterprise architectures. Their study
indicates that the most commonly used modeling languages for enterprise architectures
are ArchiMate, followed by UML, Business Motivation Model (BMM), and BPMN, among
others. The main emphasis of enterprise architectures is on business processes. Archi-
Mate has derived a number of concepts from UML but focuses mostly on services rather
than objects, which is the case of UML. The advantage of ArchiMate is that it describes
large systems, while UML does small modeling by showing greater details. However, both
ArchiMate and UML operate in the 2D space.

Zhou et al. [46] highlight frameworks of the enterprise architecture practice. The
Open Group Architecture Framework (TOGAF) is the most frequently used framework for
enterprise architecture, further extended by the architectural development method using
ArchiMate. It is typically modeled at four levels with different specializations: Business,
Application, Data, and Technology, which to some extent correspond to the architectural
views described by Rademacher et al. [16]. However, we should note that the business
architecture levels are not covered by Rademacher et al. [16]. This architecture involves
motivation, organization, and asset mapping, which, although encoded in the system,
primarily influence the implementation’s motivation.

With regard to hierarchical approaches, the C4 model (Context, Containers, Compo-
nents, and Code) is worth mentioning as a practical approach for software architecture
modeling [47]. It is a hierarchical model consisting of four levels of abstraction, ranging
from the high-level system context to individual code elements. It is used for a variety
of system types, including microservices. While it does not prescribe a method of anal-
ysis, its key feature is important for analysis tools to follow, such that it allows varying
levels of abstraction for the users to see. Such a hierarchical analysis is useful, especially
for microservices, as it allows views of the system as a whole and inspection of individual
services.

2.2.2 Alternative Visualization for Software Architecture

Alternative visualization practices have emerged for software architectures [48, 49]. Shahin
et al. [48] categorize alternative visualization as graph-based visualization involving
graphs showing nodes and links similar to ontologies. This approach was the most
common approach we identified in the microservice literature. Another approach is a
notation-based visualization such as UML or SysML. However, matrix-based approaches
also exist [50]. They can act as a complementary representation of a graph. Among others,
metaphor-based visualization uses familiar physical world contexts (e.g., cities, islands, or
landscapes).

Shahin et al. [48] noted that these visualizations often serve a specific purpose. They
mentioned that most of the time, it is architecture recovery, which we call SAR in this arti-
cle. The second most common purpose is architecture evolution, followed by architectural
evaluation, impact analysis, general analysis, synthesis, implementation, and reuse.
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Fig.1 The “software city” metaphor represents an application’s package structure as a collection of buildings. In
this visualization, packages are shown as flat green and blue boxes. The purple boxes on top symbolize the classes,
and the yellow lines between them represent communications, with their width indicating how often calls are
made. [51]

Fig. 2 Software components can be displayed using the “software island” metaphor, showing components and
their inter-dependencies. Islands represent bundles, packages are represented as colored regions on the island,
the classes are represented as buildings on the regions, the ports near the island represent the package exports
and imports, the arrows between ports represent dependencies. The island on the right imports packages from
the island on the left.[52]

The 3D space has also been assessed in the literature. To make the system more
understandable using a visual metaphor, Virtual Reality (VR) and Augmented Reality (AR)
methods have been explored for software architecture visualization. One example is the
"software city"; software packages are represented as buildings and their dependencies
as streets. Fittkau et al. [51] implemented the software city metaphor in virtual reality as
shown in Fig. 1, while Steinbeck et al. [53] present a more advanced and scalable derivative
called EvoStreets, which gives a better view of the software’s hierarchical makeup.

Schreiber et al. [52] proposed a related visualization method more closely applicable
to a microservice architecture, shown in Fig. 2. Their approach shows individual soft-
ware modules as "islands" in an ocean displayed in AR. Software packages and classes
in each module are represented as regions and buildings on the module island, and,



Fig. 3 Semantic information is a candidate for being displayed in large, three-dimensional graphs due to the
natural connections between the elements.[60]

importantly, module imports and exports are displayed as ports that connect the differ-
ent islands. While this approach has only been used on monolithic applications, the island
metaphor is very suitable for displaying the relationships between independent modules
in microservice architecture.

The problem of large data sets and visualizations has been recognized by Adrienko
et al. [54]. Visualizations that represent individual entities suffer from overplotting. It has
been proposed that multiple views be coordinated [55] to cope with such a problem, but
it is rarely used in commercial systems. Such a principle could complement and greatly
improve the C4 model [47]. A similar principle is also used in provenance tracking [56]
where we move in one model in time and plot another as we move.

Large microservice-based systems are prime candidates for being visualized using
VR/AR. The VR-EA tool from Oberhauser et al. [57] is an attempt to visualize larger enter-
prise applications. Instead of doing dynamic or static analysis to extract a model, VR-EA
uses modeling tools as inputs to generate a 3D VR view in the virtual reality of business
processes and their relationships with enterprise resources. This approach can provide a
comprehensive view of the enterprise system, as it can show a large group of intercon-
nected components. However, it depends on a set of models that must be custom-created
to capture the relationships and complexities inside the large system, requiring manual
creation of additional configuration and artifacts.

Virtual reality was used by Ma et al. [58] to monitor a distributed set of servers,
visualizing each server as a physical machine in the same VR room. Although the moni-
toring capabilities were limited to system resource usage, the tool showed that physically
disparate systems could be virtually collocated to provide a centralized view of a system.

More generally, large systems beyond software architecture have been explored in vir-
tual reality. For example, Toumpalidis et al. [59] used augmented reality to visualize data
from IoT networks. A user could see a summary of a device’s data overlaid on that device.
This experiment showed that AR is useful for displaying and aggregating distributed data.

Three-dimensional visualizations can also be employed to visualize complex infor-
mation relationships. Halpin et al. [60] use virtual reality to display the relationships
between patent registrants as shown in Fig. 3, and Royston et al. [61] use a similar
idea to display connections from social media sites. Neither of these approaches uses
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a specific visual metaphor; instead, they opt to display their contents as simple graphs
in three-dimensional space. These examples have a common structure with microser-
vice architectures, as microservices architecture can be viewed as a network of services
communicating with each other based on semantic relationships.

Moreover, Moreno-Lumbreras et al. [62] have suggested using VR to visualize develop-
ment metrics and analytics in three-dimensional space. Acquiring a broad range of aspects
and views for this kind of visualization may be regarded as similar to architectural recon-
struction. They analyzed and compared the comprehension of metrics in code reviews
when aided by VR or 2D visualization. However, no results are available yet.

The perspective of system evolution could be well addressed by dynamic graph visu-
alizations. A dynamic graph visualization considers the challenge of representing the
evolution of relationships between entities in readable, scalable, and effective diagrams.
Becket al. [63] provide a broad survey. Apart from static graph visualizations with node-link
and matrix representations, dynamic graphs can be represented as animated diagrams or
as static charts based on a timeline. Such graphs can find a great fit with system evolution
and provenance tracking. Yet the study noted the greatest challenge with visual scalability
followed by extended data dimensions and interaction.

A broader introduction to visual graphs and metaphors and empirical user evaluations
is provided by Burch et al. [64]. While recommendations exist for graph drawing to make
it faster and more reliably explorable, many studies are still ongoing to uncover how well
users perform specific tasks. The work guides the design and application of graph visu-
alizations. Apart from other perspectives, it suggests interpretation, graph memorability,
and graph creation. The study illustrates time-varying graphs, various representations,
tracking, colo-codes, interactive features, aesthetics, metaphors, augmented reality, and
other perspectives used across disciplines. Many of the presented advancements would
greatly suit the microservice domain, and current tools greatly lack such advancements.

2.3 Microservice visualization in the industry

Microservice development comes from practitioners, and research tends to come later, so
publications about microservices are still limited in a lot of areas. Thus, grey literature may
hold valuable insights that academic literature simply cannot provide yet [6].

Amazon provides a solution called X-Ray console?. The provided approach is a map
visual representation that consists of service nodes that serve requests, upstream client
nodes that represent the origins of the requests, and downstream service nodes that rep-
resent web services and resources used by an application while processing a request (as
depicted in Fig. 4). The X-Ray console provides embedded views that enable the user to
view service maps and traces of applications’ requests.

SIMulate Interactive Actor Network VIsualiZation (Simianviz) created a simplified Net-
flix service interconnection based on http://netflix.github.io/. It provides an interactive
visualization technique for the system®. Fig. 5 shows the service graph representation of
the system. It illustrates service dependencies in the whole system and enables the user

2https: /laws.amazon.com/xray/
3http://simianviz.surge.sh/netflix
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to reconstruct the services communication graph to analyze different topologies. How-
ever, such a topology view is not particularly useful in debugging where a specific service

is experiencing an issue.
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Fig. 4 Amazon X-Ray console an industry tool for microservices visualization highlighting connected sectives
and real time information from response times.

Fig. 5 Simianviz created a simplified Netflix service interconnection based on http://netflix.github.io/. It pro-
vides an interactive visualization technique and shows the service graph representation of the system.
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3 Software Architecture Reconstruction of Microservices

Microservice architectures essentially operate on a decentralized basis, and that is why
some methodologies as Heroku’s 12-factor app [14, 19, 34] recommend that each one of
them be self-contained with its own codebase and database in order to improve evolu-
tion, scalability, and dependency management. However, being decentralized does not
mean that they are isolated; in fact, the microservices interact using interfaces or message
queues. Therefore, there is an interdependency among microservices, although generally
a loose one, and given that these interactions occur via interfaces, a prominent depen-
dency often lies in the endpoint names and the parameters that symbolize data or transfer
entities.

In the realm of domain-driven development [1, 16], each module encompasses a
bounded context [14], that offers a limited perspective of the system holistic data model,
which is called context map. Frequently, these bounded contexts exhibit partial overlap
with other modules via specific data entities and this overlap can serve as a compo-
nent to derive the system-wide perspective. Additionally, interactions between services,
like REST/RPC endpoint calls, provide another element to factor into our considerations.
These two basic strategies are illustrated in Fig. 6.

3.1 Software Architecture Reconstruction Process

The SAR process we have used involves a static-code analysis of each microservice’s
codebase. In this aspect, each one of those microservices follows the enterprise architec-
ture standards of the layers of communications where it has a separation of component
types in Controller, Service, and Data Repository. Moreover, this process is organized into
four main phases: extraction phase, construction phase, manipulation phase and analy-
sis phase. In order to better understand these phrases, next sections briefly describe their

details.
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Fig. 6 Illustration of microservice dependencies used to combine microservices. Yellow area highlight indicates
overlap across two microservives. Each microservice highlights 3-layered architecture with data entities, services
and controller endpoints
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3.1.1 Extraction phase

The extraction phase constitutes the initial phase of our process, where we use Abstract
Syntax Trees (AST) analyzed from the code. As its name indicates an AST is a tree repre-
sentation of the abstract syntactic structure of the code and is used as the base for other
methods. We navigate this tree in order to extract call graphs (calling relationships between
subroutines in a program) from the recognition of method calls. Methods at the top are
potential endpoints; moreover, frameworks commonly supplement these endpoints with
extra details (such as HTTP methods, constraints, etc.) that indicate the endpoint (i.e., in
the form of annotations or external files). Upon identifying these endpoints, we evaluate
their parameters and follow the calls down through the controllers, services, and reposi-
tories to the referenced and involved data entities. Then, it is possible to identify the types
of these components by evaluating the corresponding attributes in the AST and the call
graph originating from the endpoint. We can also detect inter-relationships among the
entities within a microservice codebase and extract the foundational data structure. From
areverse perspective, we identify the data entities that specific endpoints interact with and
by exploring the call graphs, we uncover associated constraints, clear policies, conditions,
branching paths, and iterative loops. Specific focus is placed on the data entities because
by evaluating their attributes and methods, we can discern interconnections among the
entities within a particular microservice codebase, allowing us to unveil the foundational
data framework.

3.1.2 Construction phase

The construction phase utilizes outcomes from the previous phase. Here, the
microservice-specific details are transformed into a first level of intermedia representa-
tion. This stage utilizes components pinpointed during the exploration of call graphs. We
enhance these identified components by integrating additional information that could be
present at the component definition layer. For example, REST controller endpoints might
stipulate access permissions [65, 66]. It is necessary to point out that paying attention
to components corresponds to the microservice development practice [14], which means
that the microservice will always process data and provide endpoints.

The intermediate representation, which is constructed, is the Component Call Graph
(CCQ). It is created by adding additional properties to each component, like its type and
its properties [67], with connections implied by calls. Figure 7 shows an example of the
CCG. The type of each component is specified at the top between brackets. The properties
that are extracted from each type are different, as can be seen in the cards attached to each
component. The inclusion of these properties turns the call graph into a CCG, giving us a
more profound insight into each component’s role in the system for the upcoming phase.
When we create individual CCGs for every endpoint, they collectively represent a single
microservice. Similarly, as we identify components, we can also recognize external calls
because they are executed via clearly defined interfaces or constructs [13]. These REST
calls can then link to other external microservice endpoints based on a matching method
signature, providing a broader view of the system’s interdependencies.

Therefore, by gathering components and integrating their call sequences, types, and
properties, we produce the CCG intermediate representation of the microservice in the
form of JSON.
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3.1.3 Manipulation phase

The manipulation phase, the third phase of our process, focuses on connecting several
intermediate representations of microservices.

As previously described, our approach leans on two primary elements: the integra-
tion of overlapping data entities and interactions between microservice endpoints. This
methodology is illustrated in Fig. 6. Yet, these techniques can be expanded upon, such as
incorporating details from build and deployment scripts. Additionally, event-driven meth-
ods involving message brokers, like Kafka or Messaging Queues, can be assimilated into
this phase. The merging process begins with entity matching, where we search for entities
from different modules that show a subset match in properties, data types, and poten-
tially names. We employed natural language processing techniques for this matching,
specifically the Wu-Palmer algorithm [68]. Subsequently, by combining all the pertinent
microservices, we extract the unified data model, also known as the context map. Through
these matched entities, we further establish data and control dependencies.

A second element is based on interactions between services. Initially, we pinpoint all
endpoints, their parameter types, and accompanying metadata [66]. We then locate the
remote procedure calls embedded within these methods. After identifying them, we pair
these entities, craft a comprehensive system service perspective, and enhance the unified
model that emerged from the preceding approach.

The outcome of our manipulation phase is an integrated intermediate graph in the
form of CCG that represents the entire system. This expanded viewpoint sets the stage for
subsequent analysis, equipped with insights into the unified data model, dependencies
between services, and a comprehensive list of system service endpoints. While it pro-
vides a holistic view, it also preserves details specific to each microservice. This includes
its defined boundary with intersecting areas, technological data, and a cumulative index
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Fig. 8 Construction process of our approach presented in this manuscript indicates indivisuakl inputs and
phases to derive intermediate representation of the system and confect it into a visualization

of technologies, categorized by layer, in the unified view. Finally, because each microser-
vice encompasses information about its construction, deployment, and operation, this
consolidated view can produce a graph illustrating interconnected deployments.

3.1.4 Analysis phase

The analysis phase constitutes the last step of the SAR process and involves drawing con-
clusions about the entire system. In essence, any form of deduction could operate with
the intermediate system representation. For example, we could detect design smells or
security policy violations [66, 69]. If we want to reason about the system, we want to do it
with the information extracted from the most current version. This most current version
resides in the codebase and can be extracted automatically using static code analysis in a
continuous integration pipeline.

Figure 8 shows the whole process. Once the system’s intermediate representation
is constructed, we can move to architecture visualization. Having an intermediate rep-
resentation that contains necessary information from the microservice system unlocks
endless visualization possibilities. According to the needs of DevOps, developers, archi-
tectures, stakeholders, or others, a visualization based on the same JSON intermediate
representation can be created.

A holistic visualization of the system is ideal for reporting, aiding navigation, and
enhancing understanding. In this aspect, the present article narrows its focus to our newly
introduced architectural visualization process, which we will delve into in the subsequent
section.

4 Software Architecture Reconstruction and Microservice
Visualization

Many means can be used to articulate the reconstructed system architecture to stake-
holders such as architects, developers, or DevOps. However, appropriate visualization
can speed up comprehension of the reconstructed system and lead to expedited assess-
ments of dependencies, bottlenecks, architectural smells [69][70] (i.e., poor design choices
and anti-patterns), or consistency errors. This manuscript considers deriving conven-
tional architectural visualization and questions whether alternative visualization could
dedelivered for microservices that could improve their architectural analysis.
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The SAR process may result in multiple architectural views. However, limiting our
attention to a few views for a proof of concept is sufficient. Thus, we should consider the
most suitable views for microservices that support a system-centric perspective.

Mayer and Weinreich [71] identified that supporting a view of service APIs and their
interactions should be one of the most important goals that a tool designed for microser-
vice analysis should achieve. Rademacher et al. [16] suggests focusing on the service view
as it defines the microservice’s APIs and the inter-service calls between them. Furthermore,
this view is also relevant for developers seeking to understand the system’s operation.
Besides this suggestion, they also focused on the domain view, since it defines the domain
model used by the microservice system. It is also known as the canonical model or context
map. This view is necessary because microservices do not depend on a formal specifica-
tion of a domain model. Instead, each service operates on its own bounded context, which
operates on the subset of entity attributes it needs [72].

Both service and domain views give a view of the system architecture as-is, show-
ing the communication between the services and the state of the domain entities in use.
These views can be used as documentation for developers and DevOps. Architects can
compare the current architecture against the planned system architecture and detect devi-
ations. They can also use it as a tool to assess warnings to detect if the architecture has
drifted from the original plan [73] and help them to make informed decisions to mitigate
evolution issues.

Given the above reasons, this work will focus specifically on domain and service
views. Alshuqayran et al. [74] identified that communication and integration is the most
microservice challenge in the literature. The domain and service views aid in identify-
ing the list of microservices that can be called from a specific one. Also, they assist in
identifying domain classes that are exchanged among microservices during inter-service
calls, which can be instrumental in addressing communication and integration chal-
lenges. Additionally, Gortney et al. [10] found that the most commonly extracted model
through dynamic practices is the service dependency graph, and this graph can be directly
extracted from the service view.

Given the same intermediate representation of a microservice system can be used for
arbitrary view, we will use these two views to illustrate different visual models. Similar to
the static analysis approach detailed in Section 3, we implement various proof of concept
visualization tools that use our intermediate representation.

4.1 Practitioner Needs in Microservice Architecture Analysis

Bushong et al. [2] performed a systematic mapping study on microservice analysis and
architecture evolution, highlighting practitioners’ intents to improve system qualities or
detection of issues. With system evolution, inadequate solutions can be applied to the
system due to the rush and market demands, which might introduce technical debt and,
eventually, architectural degradation where the actual system architecture deviates from
the prescribed one. Microservice architecture analysis can be performed to assess various
system qualities, including security or performance. Change impact analysis or root cause
analysis is another common task.

No matter the viewpoint (Section 2.2), practitioners need quick access to information
to make informed decisions. They need a white-box approach to analyze the architecture.
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The lowest level might be manual code review; however, models bring great simplification
to the assessment process and abstraction. Static visual models can bring the abstrac-
tion [63, 64]; however, the quantity of information for microservices might be a concern
as known across fields [54, 55], leading to clutter and difficult navigation. In our work,
we focus on the service view and domain view, and we detail the common purposes and
expectations from such views.

A service view provides a high-level overview of the various microservices that make
up the entire system. This view highlights the relationships, interactions, and dependen-
cies between different microservices. The service view in microservices architecture helps
practitioners understand the modular and distributed nature of the system. It should illus-
trate the key components and their connections within the microservices ecosystem. In
such a view, practitioners find information to enhance design, manage, and optimize the
system. They need to identify microservices and their boundaries, perform dependency
analysis (i.e., change impact, error propagation), and find potential points of failure such
as too many dependencies, cycles, etc. A large amount of service dependencies may cause
performance issues or worsen resilience, scalability, and fault tolerance. So, the man-
agement of dependencies across microservices is a fundamental task to make informed
decisions. They might also need to manage the cardinality of dependencies or identify
potential bottleneck microservices.

Well-suited service view visualization should enable practitioners to understand the
system overview with an abstraction that gives a navigable access to individual microser-
vices to observe their endpoints, interconnection and dependencies. Thus, it should be
easy to find and identify microservice, assess its connections, and inspect cardinality of
dependencies. Since microservice connections could easily clutter, a distinction like color
codes could help the observability. Sucessful view would thus offer navigation capabili-
ties such as zooming and searching within the graphical system modal allows for swift
recognition of properties. This facilitates easy access to essential details without causing
distractions during identification.

The domain view focuses on understanding and modeling the business domain within
which microservices operate. Practitioners perform various tasks related to view to ensure
that the architecture aligns with business requirements to support business processes
effectively. Microservices operate with their own business domains. However, to plan
evolution, it is important to understand the decompositions in the centered view, espe-
cially since microservices domains partially overlap, forming dependencies. Practitioners
need access to individual microservice domain models, see overlaps, and have access
to the holistic perspective. It is important to highlight that the source code has limited
detail of the domain view, and thus, it only provides approximation through individual
microservice data models or the overall context map of the system (merge models through
overlaps).

Appropriate visualization of the domain view would likely stand on established mod-
els that emerged from UML such as class diagrams that show data entities, their attributes
and associations. However, such visual model has spacing limits and thus, one large
model might not give the desired perspectives. Alternatively, a more fitting approach might
involve an interactive view that reveals data entity names and provides attribute details
when necessary. However, it remains essential to explicitly represent the relationships
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between the entities in some way for effective presentation. Moreover, subviews might fit
the needs of practitioners for selected microservices which could bind with the service
view as suggested by related work on multiple coordinated views [54, 55].

5 Case Study Part 1: Deriving Conventional Visualization

To evaluate the proposed SAR methodology, we executed the process to generate ser-
vice and domain views for microservices-based systems. Additionally, the implementation
provides a rudimentary visual representation of these architectural views.

The objective of this study is to furnish a detailed guide to implementing the intro-
duced SAR process for constructing architectural views. Additionally, it involves imple-
menting conventional models to visualize the extracted views and evaluating the usability
and challenges associated with their application.

5.1 Software Architecture Reconstruction Implementation

We implemented a prototype tool Prophet®. Prophet performs static code analysis on Java-
based source code, identifying the component-based constructs intrinsic to Spring Boot
and Enterprise Java.

To extract the necessary system information to construct the service view, we need
two things in general: first, to detect the endpoints of each service, and second, to detect
the calls made from one service to another using these endpoints. Software frameworks
often provide utilities for quickly defining these endpoints in code. In our case, Prophet
identifies endpoints, detects remote method calls in the microservice code, and provides
them with access to the CCG. Prophet recognizes common constructs such as REST tem-
plates, etc. Once the endpoints and calls are collected for each service, Prophet matches
the calls to system endpoints based on the relative endpoint URL, the HTTP method,
and parameters. The result is a call graph representing the system, showing how the
services interact.

Moreover, the visualization approaches leverage the suggested CCG intermediate
representation, established through the SAR process using a REST API. Beyond visualiza-
tion, this intermediate representation serves to facilitate system analysis. For instance, it
enables the identification of design flaws or security policy violations, as demonstrated in
previous studies [66, 69].

To extract system information to determine the domain view, Prohet identifies data
entities, their properties, and their relationships. Data entities use framework utilities and
can be identified similarly to endpoints. Having entities identified, we can consider their
properties and relevant data types. Identified property data types can reveal relationships
the entities have with each other. These relationships have three different components,
which we extract using code analysis: the types involved in the relationship (i.e., the enti-
ties that are on either side of the relationship), the multiplicity of the relationship, and the
directionality of the relationship. Identifying the types is done based on the type names
of the entities’ fields. The multiplicity can be determined by whether or not the field is

4The code for the Prophet utility can be found at GitHub https://github.com/cloudhubs/prophet-utils,https://github.com/
cloudhubs/prophet-utils-app,https://github.com/cloudhubs/prophet
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a collection, and its directionality can be determined by whether or not there is a corre-
sponding field in both of the entities involved or in only one entity. Considering a single
microservice codebase, we can derive a microservice-bounded context.

Using the bounded contexts for each microservice, merging the bounded contexts can
generate a combined canonical model for the entire system. Since the services should be
operating on some of the same entities, the entities in each microservice can be merged by
detecting if they have the same or similar names. Different services may have different pur-
poses for the entities they share, and so may retain different fields from each other. Fields
with the same or similar names and the same data type are merged into a single field in
the merged entity, while non-matching fields from all the source entities can be appended
to the merged entity. The result represents the scope of all entities used in the system.

5.2 Considered System Benchmarks

To demonstrate visualization approaches for the purpose of this manuscript and on a
large, realistic system, we adopted two test benches. The Teacher Management System
(TMS)® consists of three microservices, and the limited size allows us to embed com-
plete SAR visualization examples in this article. For demonstration of a real-world system,
TrainTicket®[75] is used (originating from the ICSE conference). The TrainTicket was
designed to emulate a real-world microservice system consisting of 41 microservices and
over 60,000 lines of code. It is written in Spring Boot, uses MongoDB as its database,
and follows cloud-native practice with containers, routing, etc. The frequent use of the
train-ticket microservice in literature [76, 77] highlights its importance. It serves as a key
benchmark to test and evaluate new methods, including the one we have introduced in
this study.

5.3 Conventional architectural visualization and its properties

The conventional approach to visualizing service and domain views operates in two-
dimensional space. The service view represents microservices as nodes and particular
service calls as edges. An example output of the result of this analysis on the TMS testbench
is shown in Fig. 9. It can be observed on Figures 4 and 5 that represent industry tools.

Shttps://github.com/cloudhubs/tms2020
Shttps://github.com/FudanSELab/train- ticket
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Fig. 10 Domain view derived from the TMS benchmark. These entities are aggregate definitions from partial
entities in each microservice’s bounded context.

The domain view is a perfect fit for the UML class diagram that represents the scope of
all entities used in the system, as shown in Fig. 10 for the TMS system.

These results on the TMS system demonstrate a system-centric perspective extracted
from the microservice codebase. Since this article focuses on visualization aspects, we next
consider deficiencies and limits of obtained results.
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Fig. 11 The service view from a large microservice testbench TrainTicket [75]. Connections between services
become difficult to decipher as the system size grows.

5.4 Challenges in Conventional Architectural Visualization

The biggest shortcoming of the conventional two-dimensional graph representation is
its visualization ability; it quickly runs into scaling problems. We discovered that the
visualization breaks down when analyzing systems larger than a few microservices. A two-
dimensional space only has so much area available to display a graph, which fills up
quickly and becomes unintelligible. This limitation is not surprising; as the number of ser-
vices in a system increases, the potential number of connections between them increases
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at a much faster rate. There is only so much space in a two-dimensional layout to arrange
these connections, and thus the visualization becomes cluttered and unwieldy. We discov-
ered this problem when analyzing larger systems; Fig. 11 shows service view output on the
TrainTicket testbench (41 microservices), which becomes difficult to understand ”.

Visualization directly affects the view’s intended purpose as an artifact to help a stake-
holder to quickly understand how microservices interact in a large system and to allow
them to visually identify potential problems with the architecture or to identify drift from
the originally intended architecture. As the graphs become cluttered, this kind of quick
visual analysis becomes less feasible, as it takes more time to understand what the graph is
displaying. A visualization solution based on two-dimensional diagrams simply does not
scale well with the number of microservices in a system.

The related problem is that of navigating the displayed graphs. While a small system
can be displayed on a single page without much issue, the output requires users to nav-
igate larger graphs using the mouse scroll wheel and does not provide for zooming in or
out, nor any other method of viewing multiple levels of abstraction, an important feature
of microservice architectural analysis as seen in, e.g., the hierarchical C4 model [47]. This
limited method of navigation creates a problem since there is no way to step back and
get a broad view of the system, nor can the user quickly drill into a specific region of the
microservice mesh. It can take time and effort to find the area of interest in the displayed
graph, and it may not be as insightful if developers cannot easily relate what they are look-
ing at to the rest of the system. Again, this directly impedes the original goal of the quick
and intuitive analysis.

Another problem is that the information about each microservice’s API is not easily
accessible. The endpoints are only displayed on the edges that point to the node. The user
must mentally reconstruct what the API looks like for a particular service by finding all of
the incoming edges and identifying their labels. This is extra work for the user, which is
also detrimental to the goal of quick visualization, and the difficulties with navigation, as
previously mentioned, compound the task.

The final problem with the conventional visualization is its inability to display how the
microservices interact with each other when servicing actual requests from users. Its visu-
alization is completely static; the connections between services are there, but there is no
information on how those connections are utilized. This also hinders the goal of provid-
ing at-a-glance visualization of a system; the static view of the connections provides only
a partial picture.

On the other hand, they appreciated the system overview along with an interactive
display of endpoints in services and more easy-to-follow links across services.

6 Case Study Part 2: Deriving Alternative Visualizations

Conventional visualization uses static graphs represented by rendered two-dimensional
space as established models sourced from UML or SysML. This poses multiple challenges
to visualization ability since we need an approach that scales better with system size.
Alternative approaches should better cope with the quantity of information in microser-
vices. Exiting surveys proposed various approaches [63, 64] to visualize large graphs, and

"TrainTicket service view full image is available at https://zenodo.org
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this domain is no different. Apart from abstraction and scalability to large microservices
comprising ten or hundreds of microservices, interactivity should be provided to navigate
through the information and details. An effective solution should provide readable dia-
grams that make it faster and more reliably explorable information; in our case, it might
be dependencies across microservices, their cardinalities, and bottleneck services. To sup-
port the search for properties, the visualization should be easily navigable and should be
able to traverse multiple levels of abstraction.

Given our SAR infrastructure that extracts necessary system information to derive ser-
vice and data views. We can experiment with and evaluate alternative visual models. We
first considered an augmented reality visual model for the service view, as it brings alter-
native space, navigation, and interaction means. Consequently, with feedback from the
augmented reality prototype, we looked into a more traditional approach using a web-
based solution with interactive models that emerged from data science and visualization
of large graphs. We describe these two in the following subsections.

6.1 Service View in Augmented Reality with a 3D Model

The service view is the most applicable view for understanding the system-centric per-
spective and the system operation. In previous work [11], we adopted this view to explore
the benefits of a three-dimensional visual scheme considering the conventional visual
model. For that objective, an AR medium was used because it is natively three-dimensional
and lends itself to control schemes based on natural movement. This combination holds
potential for use in displaying and navigating complex systems such as microservices. We
approached the visualization by using a 3D graph functioning within AR. Since we had
automated the SAR process (Section 2.1) and recreated the service view in 2D, we used the
same data for a 3D graph in AR.

The use of AR for software visualization is well-acknowledged, and it’s been employed
to illustrate monolithic software systems in different manners. We expanded the exist-
ing 3D visualization techniques to a higher level of abstraction beyond a single piece of
software to an entire distributed microservice system.

For the system-centric perspective, it is necessary to present a high-level system visual-
ization. In the context of microservices, the objective is to visualize their interrelationships.
However, it’s crucial to maintain clarity in the view, especially as the number of ser-
vices increases. Quickly understanding the high-level structure should be prioritized in all
system-centric perspectives. Furthermore, it is essential that users should be able to infer-
act with the view and navigate through the microservice system both at a high level and
a lower level of detail centered around a few services. In this context, the high-level view
corresponds to the overall structure of the system, while the low-level view is focused on
individual services and their immediate neighbors. Minimizing the transition time from a
high to a low level of detail facilitates the understanding of the system and the roles the
individual services play in it.

Based on our AR microservice visualization strategies, we formulated a proof-of-
concept tool named Microvision, dedicated to presenting the service view. Microvision is
fundamentally structured around two primary components: the main graph display, and
the API viewer.
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The Graph display projected in AR presents an abstract 3D graph view of the microser-
vice system allowing to have a quick view not only of the system but also its services and
connections. As shown in Fig. 12 each microservice is represented as a node and exists
an edge from one node to another if there is a call between two microservices. Nodes are
spread out to avoid clustering in any part of the graph. By selecting a node, its connec-
tions are highlighted, showing only those neighbors it interacts with. This emphasizes the
selected node’s relationship with surrounding nodes.

The API view is designed for a detailed view, showing the endpoints of a chosen
microservice. In Fig. 13, when a microservice is selected, an API box appears listing its
endpoints. This list is not shown initially to avoid overwhelming users with excess data.
Endpoints are marked by their path and HTTP method. Tapping an endpoint reveals more
details, like the method behind it and its parameters and return type.

Based on the elements presented above, it is possible to propose that our proof-of-
concept, Microvision®, overcome the limitations of the conventional 2D visualization. We
developed a 3D visualization based on AR that offers better scaling with the number of
services than a 2D diagram. In addition, we demonstrated navigation and control through
the reconstructed microservice system architecture because the graph is displayed in AR
and is easily traversed by natural movement.

81ts code is available at GitHub https://github.com/cloudhubs/microvision
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6.1.1 Assessment and Challenges

To assess the AR model approach’s advantages in a practical setting, we used a realistic
microservice system benchmark and applied our static analysis to obtain an intermediate
representation of the system. We extracted the full system and also considered a subset
to make it represent a smaller system sample. From the results, we first generated a sam-
ple conventional 2D model involving established practices, and then we derived an AR
model for our prototype. To receive extensive feedback on AR model benefits and limits
requires interaction with practitioners on sample use cases relevant to the system under-
standability or system architectural specificity. Thus, we intended to conduct a controlled
experiment involving microservice practitioners. However, such a study requires broad
details and explanations beyond the scope of this manuscript. Thus, we developed a pro-
tocol and performed the study separately. We provide comprehensive details of this study
involving 20 practitioners through a separate publication [78] and share the important
outcomes from such a study in the context of this manuscript.

When we assess decentralized system architecture, we typically need to recognize
dependencies across microservices but also service cardinality (the degree of dependency
between microservices) or bottlenecks (most dependant microservices among the whole
system). Our study showed that the AR model enables novice practitioners to perform
the detection of microservice dependencies, as well as experts do it. Such tasks are com-
mon when we make system changes or change impact analyses intending to understand
involved parts of the system. Our study also showed that the AR model, given it operates
in 3D, fits large systems better so that tasks can be performed more effectively; however,
there is no large impact on the small system. Following the same for the experience level
significance of practitioners, the analysis showed that the conventional 2D tool requires
more experienced participants in order to detect the dependency of a system. With regard
to other tasks, such as the identification of service cardinality and bottlenecks, our study
showed that both conventional and AR models performed equivalently.

The study showed that conventional 2D models are not more applicable to common
architecture analysis tasks than what AR models can offer. Participants also responded
that the conventional approach is less easy to use or understand and more relevant to a
larger system. The AR model also enables faster extraction of information. However, the
conventional model seems to be better suited to finding all the information needed to
make a task conclusion.

Practitioners have provided useful feedback on the AR model prototype for the ser-
vice dependency graph. Such feedback can help researchers to build more robust tools
supporting such visualization. They indicated that the difficulty with AR is that they must
move a lot around the graph, and they considered it impractical that microservices have
fixed locations that cannot be relocated. They lacked a zooming feature and indicated that
color codes could improve the perception, especially when colors could be customized.
They found it hard to search, given no search feature was provided. Another suggestion
was to consider the orientation or direction of dependencies. We must also consider that
an additional device is necessary to navigate the AR model. While effective, it is not prac-
tical as developers expect integration with their development environment. Interactivity
adds great value, but users expect common browsing features like search, which are not
implicit in alternative models. Interaction with a team becomes hard as everyone has
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their own view, and similarly, information transfer is difficult given the disjoint between
development and interaction environment.

In support, the participants suggested that the AR model provides simpler dependency
tracking and improves their understanding of the system by showing an overview picture
of the system and clear dependencies between services. However, it is crucial to empha-
size that for Augmented Reality (AR) to attain success, it must integrate numerous features
and standard expectations based on feedback. For example, users expect a fast and inter-
active view with efficient search and filter capabilities. In the next section, we are going
to describe an alternative solution to the mentioned limitation based on an interactive
visualization.

6.2 Web-based Interactive 2D and 3D Models

The interactive visualization allows the user to manage, select, customize, and section
the information contained in the architectural views according to their needs and objec-
tives. By enabling users to engage directly with the visual display, information becomes
markedly more accessible. For instance, if a user wishes to navigate to a particular
microservice or entity and is familiar with its name, searching becomes expedient com-
pared to scanning through entities sequentially. Manipulating the visual graph—whether
by repositioning a node relative to others or rotating the entire view—enhances the pre-
sentation of information for individual users. Isolating and emphasizing a particular
segment of the view can be especially beneficial for certain users.

We implemented a prototype ° that is able to visualize the service view of a system
based on the intermediate representation extracted during SAR. Moreover, it is capable of
representing the visualization using a graph in two formats: 2D and 3D. Figures 14 and 15
show examples of these formats of interactive visualization of the service view respectively.

The prototype is designed to enhance user interaction and visualization. It grants users
arange of actions for seamless navigation and information retrieval, detailed as follows:

1. Zoom Functionality: Users can effortlessly zoom in and out of the graph for a more
detailed or broad view.

2. Node Relocation: Users can relocate a node, representing a microservice, to a differ-
ent place on the graph using the drag-and-drop feature.

3. Microservice Search: An efficient search tool allows users to quickly find a microser-
vice by its name.

4. Microservice Filtering: Users can filter by a specific microservice, with the system
highlighting only its neighboring microservices.

5. Detailed Microservice Information: By clicking on a microservice, users can view
comprehensive details including both its dependencies and dependent microser-
vices.

6. Connection Information: Clicking on a connection between microservices reveals
detailed information about that specific link.

7. Diverse Feature Visualization: To aid visualization, the prototype presents features
in various forms:

* Node Representation: Nodes are depicted in diverse shapes to denote their type
—service, database, or API.

https://github.com/cloudhubs/ArchitectureVisualizationPOC

26


https://github.com/cloudhubs/ArchitectureVisualizationPOC

Fig. 14 2D service view interactive visualization showing TrainTicket benchmark with anonymized microservice
names

MS-&
o -9

Fig. 15 3D service view interactive visualization showing TrainTicket benchmark with anonymized microservice
names

* Connection Highlight: Hovering over a node automatically highlights its con-
nections, offering users a clear and immediate visual cue.

By integrating these features, the prototype not only ensures a more intuitive and
efficient user experience in managing and navigating microservices and their intercon-
nections but also effectively overcomes the limitations of the AR mechanism to search and
filter mentioned in the previous section.
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Fig. 16 Sub-Context map for Train-ticket benchmark showing selected data entities

6.2.1 Preliminary Assessment and Challenges

The introduction of these web-based models is derived from the need to address chal-
lenges posed by both AR and traditional visualization approaches. These web-based
models offer practical features that address the requirements identified in previous studies
for practitioners.

Moreover, we are conducting a study and share our preliminary evaluation results of
these web-based interactive models. In a user study, we considered a similar setting to
the previous assessment with the same microservice system benchmark and its interme-
diate representation of the system. This allowed us to populate both prototypes. In total,
24 practitioners were given two system sizes to assess randomly (complete and a subset
system) for 2D and 3D tasks with anonymized microservice names and asked to identify
various dependencies.

Practitioners were able to accomplish tasks with similar correctness with both models,
while the 2D solution enabled them to accomplish tasks faster. Their perception was to
recommend the 2D solution, possibly given their familiarity with 2D models.

Practitioners highlighted the benefits of possible node rearrangement as a very pos-
itive usability feature. However, they also mentioned that with the rearrangement, other
nodes repositioned, which was not appreciated. Practitioners noted the benefits of search,
filtering, and tracking. The on-demand access to information was positively rated. How-
ever, the color codes of nodes and dependencies would sometimes end up with light colors
that were hard to read; they pointed out that zooming in a node detail could be disorient-
ing. Also, they observed that zooming and panning were not necessary for their tasks. They
highlighted that arrows of dependencies should be more significant than small.
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6.3 Other Considerations on Visualization

In other instances, a different approach of a context map visualization prototype was
implemented '°. The scope of the context might be too broad, and a sub-context map
might be a better approach to limit the necessary detail. The idea of this approach is that
the user selects a subset of microservices she/he is interested in, and details only related
to these services are rendered. As an example, consider that an architect calls in five teams
that need to meet and discuss system extension, and they select five relevant microser-
vices to render their details. The sub-context view then renders the entities of the five
selected microservices and combines them to get a relevant perspective. This aids experts
in grasping the interrelations between selected microservices, their selected neighbors,
and the intertwining of data models with dependencies. Such a feature proves advanta-
geous, especially in scenarios where the given system encompasses a vast array of entities
and microservices. A representative example of a sub-context map can be observed in
Figure 16.

Mode v
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Nodes above
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e
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Fig. 17 3D service view interactive visualization with anti-pattern detection. In this case a cyclic dependency is
highlighted.

Using such models renders more convenience for additional extensions that can
augment the user experience or attention to detail. Detecting anti-patterns is a known
approach to mitigate architectural degradation [79]. Using the service view of a large sys-
tem to identify anti-patterns manually would be a difficult task. At the same time, using
an automated approach at the microservice level, it might still be difficult to explain what
the anti-pattern relates to. In order to expedite this task, we implemented a proof-of-
concept ! that extends the interactive 3D visualization with the possibility of highlighting
a subsection of the service view in which anti-patterns that occur according to user-
defined thresholds. High-coupling microservices, cyclic dependencies in the inter-service
call, and bottleneck microservices can be identified. Figure 17 shows an example of cycle
dependency anti-pattern highlighted.

10https://github.com/cloudhubs/graal_mvp
Hhttps://github.com/cloudhubs/mvp
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7 Discussion and Research Questions Answers

The development of the research has been guided by two main research questions pre-
sented at the beginning of this article. These questions are a result of the limitations that
we find in the state of the art regarding the analysis of microservice architectures. Our
results are nothing more than a research attempt to solve these limitations.

In our study, we utilized two architectural views reconstructed from the microservice
system codebase using static analysis. These views provide a system-centric view and
serve as up-to-date and aligned documentation facilitating observation of system evolu-
tion, addressing major challenges indicated by Bogner et al. [6]. It is important to note
that architectural views are not the only valuable product of the research project. The
reconstruction process produces a system-holistic intermediate representation suitable
for broader system reasoning. This representation can facilitate the integration of decen-
tralized microservices, enable verification, or serve as a communication medium between
stakeholders such as architects, developers, and DevOps.

Our research employs the SAR approach along with a basic prototype to demonstrate
the ability to use static analysis to attain a comprehensive and updated view of a system
and its documentation effectively addressing RQ1.

In the extraction phase of the SAR methodology, information is gathered from each
microservice using static code analysis. Following this, the construction phase compiles
the extracted information and integrates additional data from the component definition
layer. Various Component Call Graphs (CCGs) are created at this stage, each containing
detailed information about individual microservice components. External calls connected
to other microservice endpoints are identified based on their method signatures, provid-
ing initial insights into system dependencies.

The subsequent manipulation phase consolidates all CCGs into a single graph that rep-
resents the entire system. This phase unifies all contexts into a comprehensive data model,
offering an exhaustive view of the system and its interconnected elements.

Our tool seamlessly moves through these phases, generating a detailed JSON inter-
mediate representation of the system. For real-world validation, a third-party system
benchmark was applied to our developed prototype tool. The results allowed the creation
of diverse visualizations that clearly depicted the complete details of the system and its
dependencies.

In order to answer RQ2, we implemented proof-of-concept tools for SAR of microser-
vice systems and demonstrated that various visual models can be derived related to the
state-of-the-art opportunities for architecture visualization. These views might be subject
to further analysis with regard to efficiency in serving practitioners in their tasks. With any
successful SAR process, no matter the method, whether performed manually, statically, or
dynamically, in the context of microservices, the next logical question to ask would relate
to appropriate visualization formats.

While the domain of large data visualization holds vast potential, practitioners often
have specific expectations. We intended to use the intermediate representation formed in
the prior phase as input for diverse visualization tools. Numerous visualizations represent-
ing the system from unique perspectives are available, each serving different purposes and
users and each having distinct benefits and limitations.
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It's crucial to develop visualizations that aptly represent the system’s diverse aspects
for various users involved in the microservice architecture, such as customers, stakehold-
ers, DevOps, and developers, among others. Another significant research area is defining
a standard for the intermediate representation of a microservice architecture. This task
is challenging as this representation must encompass extensive information about the
system to support the creation of detailed and informative visualizations.

Promising direction to the microservice needs to bring the approach of multiple coor-
dinated views [54, 55]. In our case, the service view could be interconnected with the
domain view. For instance, the selections of microservices in the service view could
directly plot the subcontext map in the domain view, and likely, more opportunities exist
when moving in time, which is well suited for visual models incorporating evolution (i.e.,
provenance tracking [56])

Addressing these challenges and establishing a widely accepted standard will greatly
enhance the efficiency and clarity of visualizations, allowing for a more unified and
focused approach to visualizing microservice architecture.

Specific models might be designed for a particular quality or system perspective. Archi-
tectural views might need to be migrated into multi-modal and contextual perspectives,
letting the user navigate into the necessary detail or select a specific perspective. At this
point, we did not assess any dynamic perspective in which the system operates; however,
hypothesizing another dimension—the dimension of time—in the architectural visualiza-
tion is inevitable. An architectural view that includes time will be able to show the system
evolution changes, deviation from the original goals, and the changing characteristics of
the dynamic system.

Various important questions remain concerning the visualization of code changes,
performance statistics, or economic impacts. All these questions will drive further innova-
tion. Even though we did not address these challenges, we believe that our work provides
the fundamental cornerstone to start the discussion at the academic and industrial level
since better diagnostics will facilitate system maintenance and sustainability and make
broad spectra of system assessments much easier aka security analysis or root cause
analysis.

7.1 Limitation

In discussing the findings of our research, it’s essential to acknowledge the limitations that
accompanied the study. Recognizing these limitations not only provides transparency but
also guides future research endeavors by highlighting areas for further exploration and
improvement. In this section, we will delineate the specific limitations encountered during
our research.

In the first place, our prototype tool is restricted to microservices written in Java using
the Spring Boot framework. It will be recommended that its capability expand to sup-
port various programming languages. Additionally, our tool cannot detect event-driven
communication between microservices, like connections using JMS, Kafka, among others,
which are widely used.

Our proof-of-concept is also limited to generating only two architectural views of the
system - the service view and the domain view. The visualizations tested were solely based
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on these two views. Enabling the representation and visualization of diverse views would
offer a more multifaceted analysis of the system.

Furthermore, we considered microservice dependencies, which often change with
evolution. Thus, their observability and management are important to prevent bottle-
necks and thus mitigate architectural degradation. However, the study did not examine
the broader evolution aspect of microservice architecture, a crucial element in identifying
software architecture degradation. It’s essential to infuse time into our prototype, allowing
it to represent the system’s evolution.

We tested various visualizations based on an intermediate representation from static
code analysis. However, by developing a tool that performs dynamic analysis while main-
taining the same JSON intermediate representation structure, all existing visualizations
could be seamlessly utilized. This enhancement would allow for a more flexible and
extensive analysis of the system.

Lastly, while we compared 2D, 3D, and AR visualizations, we did not explore visualiza-
tions utilizing virtual reality, leaving room for further exploration in this domain.

8 Conclusions

Cloud-native systems are currently used by a broad number of companies. Yet, they all
must deal with the same challenges that remain open for such systems. The challenge
considered in this work is related to the missing system-centric view. We elaborated on
it in the context of SAR performed on the decentralization nature of these systems using
static analysis. While such a process has various goals, we target system visualization as an
instrument to engage practitioners in a "beyond their microservice" view to help with an
illustration of microservice dependencies in the overall system.

We illustrate that static analysis can aid with the extraction of various architectural
views and bring the benefits of never-outdated documentation and quick instruments aid-
ing informed decisions. The specifics of cloud-native systems were elaborated on in the
context of architectural perspective visualization and illustrated using data from estab-
lished third-party system testbench. Multiple tool prototypes were generated and offered
to the community in an open-source format for extensions and experimentation. The tools
provide more insights into the needs for successful visualizations, such as coping with
large numbers of microservices or interactive features while not omitting practitioners’
expectations (i.e., search features or integration with their workstation),

With the illustrations in this work, we motivate practitioners in alternative methods
that could aid in interpreting microservice system details, not requiring complex assess-
ment of the source code or system execution to generate traces. However, it must be noted
that we only provide a proof of concept, and production-ready solutions will need to deal
with platform heterogeneities.

In future work, we aim to create a detailed intermediate representation of the system
that includes time for evolution analysis. We will also explore generating this representa-
tion through dynamic analysis and compare its visualization results. Plans include inte-
grating other dependencies, such as Event-Driven (i.e., messaging systems), and further
experimenting with hierarchical and interactive visualization.
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