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Abstract—Microservices are the mainstream architecture when
designing cloud-native systems. The performance and elastic
scalability of such systems are the main attraction for many
vendors. Recent advancements improving microservice initial-
ization times are related to the ahead-of-time compilation, which
produces self-contained executables, significantly reducing load
times. Despite recent advancements and various benefits of cloud-
native systems, the evolution of such systems might be threatened
by a missing system-centered view. Such a view would guide
in a better contextual understanding of individual microservices
and their dependencies from the holistic system perspective and
aid developers in informed decisions to mitigate ripple effects.
One way literature has addressed this gap is by performing
Software Architecture Reconstruction (SAR), a process essential
for understanding, maintaining, and evolving software systems.
This paper questions whether instruments used to produce self-
contained executables for microservices can be utilized for SAR,
producing system-centered views. We propose a methodology for
such a process, implement a proof of concept tool, MicroGraal,
for the Java Platform, and assess it through a case study involving
a third-party microservice system benchmark. We uncovered
a system service dependency graph and a context map, comparing
the approach and obtained results with source code analysis.

Index Terms—Software Architecture Reconstruction, Mi-
croservices, Service Dependency Graph, GraalVM Native Image

I. INTRODUCTION

Using microservice architecture has been the de-facto stan-
dard approach in the industry for the last decade to build cloud-
native systems. This architecture provides considerable ad-
vantages to developers, including flexibility, scalability, and
facilitated deployment, as discrete parts of the system can be
independently designed, developed, and deployed.

However, developing and evolving microservice systems are
also known to be complex and error-prone [1]. The distributed

system nature lacks a holistic perspective [2]. This statement
is true both for a static code analysis approach and for the
developers contributing to the system, both of which typically
analyze only a single microservice at a time. We contend that,
in the era of microservices, traditional static code analysis
methods are inadequate, as the majority of issues arise from
the interactions between distinct microservices within the
system and thus remain undetected by these conventional ap-
proaches.

To address this challenge, researchers have proposed Soft-
ware Architecture Reconstruction (SAR) methods specifically
tailored for microservices [3, 4, 5, 6, 7]. SAR techniques for
microservices facilitate a deeper understanding of the system
by generating high-level architectural views [8] that concen-
trate on distinct facets, such as the service view, describing the
interaction among microservices and the domain view which
illustrates involved domain data. The SAR process is also
a necessary precondition for automated system assessments,
such as detecting microservice smells (i.e., cyclic dependen-
cies, etc.) apparent from the system’s holistic perspective.

The manual execution of SAR [3, 5] is both time-consuming
and susceptible to errors. Consequently, researchers have pro-
posed methodologies that employ static analysis of the source
code to address these challenges. However, there are instances
where developers may not have access to the source code, such
as if there are legal constraints or if the analysis is conducted
during deployment. Fortunately, the compiled representation of
numerous programming languages, including Java bytecode,
retains sufficient information to facilitate static analysis.

A successful SAR approach for microservices should ac-
commodate recent advancements in cloud-native infrastruc-
ture, where faster startup times and reduced memory footprints
are demanded. Specifically, there is a surge in the popularity



of ahead-of-time (AOT) compilation. GraalVM [9] introduced
a component: Native Image [10], which is a compiler for Java
bytecode that uses a combination of points-to analysis, AOT
compilation, and class initialization at build time to create
self-contained binaries which start quickly and execute with
a lower memory footprint compared to running on the Java
Virtual Machine (JVM). These capabilities make it a perfect
prospective for cloud environments. Moreover, contrary to
the just-in-time (JIT) compilation in a classical JVM, the
AOT compilation model of GraalVM Native Image gives
the possibility of creating custom static analyzers on top of
the compilation pipeline. GraalVM Native Image has been
getting a lot of attention in the industry lately: main Java mi-
croservice frameworks including Spring [11], Micronaut [12],
Quakus [13], and Helidon [14] all invested into developing
a first-class support making it easier to compile microservices
written in these frameworks into native images.

This paper considers the SAR of microservice systems
by utilizing Native Images of particular microservices. By
developing an analyzer on the foundation of a widely adopted,
industry-ready compiler, we can provide added value to the
Native Image community without necessitating the integration
of additional tools into their pipelines. On top of that, using
Native Image allows us to base the analysis on Java bytecode,
covering the case when source code is not available, e.g.
for legal reasons. In addition to such advancements, we
demonstrate that information extracted from Native Images
can be utilized by human experts through an interactive visual
perspective for the service view and domain view. These two
views combine to provide a holistic view of the system.

In summary, this paper contributes the following:

• It introduces a novel methodology for a static analysis-
based SAR for microservice systems using GraalVM Na-
tive Image to extract the service and domain views. Includ-
ing the analysis in a compiler allows its execution without
the need for additional tools. Moreover, the analysis is
based purely on Java bytecode, covering the case when
source code is not available, e.g. for legal reasons.

• It produces a proof-of-concept tool MicroGraal, targeting
SAR for Java-bases microservices, interactively visualiz-
ing two architectural views to aid developers in under-
standing their systems.

• It demonstrates the approach through a case study per-
formed on a well-established microservice benchmark.

This paper is organized as follows. Section II provides
background to related notions. Section III provides a related
work overview. Section IV details our methodology. Section
V provides a case study. Section VI provides discussion. In
Section VII, we discuss threads to validity, and, finally, we
conclude in Section VIII.

II. BACKGROUND

This section briefly introduces the SAR process, static
analysis, and GraalVM.

A. Software Architecture Reconstruction

Software Architecture Reconstruction has been well detailed
by O’Brien [15] as “the process by which the architecture of
an implemented system is obtained from the existing system”.
It is meant for evaluating the conformance of the as-built
to the as-documented architecture, reconstructing docu-
mentation, and analysis and comprehension of the system
architecture. SAR enables modifications of the architecture
to satisfy new requirements and eliminate existing software
deficiencies.

The reconstruction process aims to uncover particular ar-
chitectural viewpoints [3, 8] that frame stakeholder con-
cerns about an entity of interest. Such viewpoints govern
one or more architectural views comprising a portion of
an architecture description [8]. Among the example views
for microservices [3, 4] are domain concerns describing
the entities of the system along with the data sources; the
system’s implementation and operation technology aspects;
service operators describing the service models that specify
microservices, interfaces, and endpoints (i.e., service view
realized as service dependency graph); and the operation
focusing on service deployment and infrastructure, such as
containerization, service discovery, and monitoring.

The construction process has four phases [4]. It first aims
to gather the necessary artifacts that serve as information
input to the process, which might be relevant to the particular
perspective or view of the system. Next, we construct the
canonical representation of the perspective. We form an initial
intermediate representation and follow to the next phase to
combine particular perspectives to reconstruct more holistic ar-
chitectural details. Finally, this holistic detail is an instrument
serving for analysis to provide insight about a system. These
questions can relate to various concerns, including domain
models, dependencies, interaction, design quality, privacy, or
security aspects of the system.

B. Static Analysis

Static analysis is typically performed on program source
code to inspect it without execution. The analysis process
provides an understanding of the code structure to ensure that
the program code and its design follow expected quality or
standards. It can be involved throughout software development
to detect common errors or poor coding practices. Typically,
code quality tools use static analysis to build program inter-
mediate representation, which they use for pattern marching.
These patterns typically represent an anti-pattern associated
with common design errors or poor coding practices.

Static analysis can operate on source code or even the
bytecode or binary. Most commonly, for source code input, we
use parsers that produce program graph representations. For
example, Abstract Syntax Trees (AST) [16], Control-Flow
Graphs (CFG), and Program Dependency Graphs (PDG) [17].

Companies dealing with software security testing wade into
the “no source available” pool, where they might be looking
for an alternative input to source code. Bytecode is compiled,
high-level, machine-independent code that is meant to run on a



virtual machine, such as the Java VM or the .NET CLR. For
instance, Veracode1 claims their software bytecode analysis
has no lossy intermediate step back to the source code. It is
possible to decompile bytecode back to the source code to
run source code analysis. However, typically, when we have
access to source code, we also have access to the codebase,
which contains build, deployment (i.e., docker files), and con-
figuration files not necessarily available in bytecode analysis.

However, some platforms do not compile into a bytecode
and instead produce a binary. It can still be analyzed but with
difficulty while uncovering less detail about the original code
structures. The process is also known as binary analysis.

Most current static analysis approaches remain distant from
microservices, as they consider a single program or codebase.
On top of that, microservices build on well-established stan-
dards encapsulated through components, while static analysis
typically looks at the low-level language constructs despite the
current higher-level programming practices in various cloud-
based or enterprise-based development frameworks. Thus,
to properly and holistically perform static analysis for mi-
croservice systems, the analysis needs to recognize higher-
level programming constructs such as components, endpoints,
remote calls, etc.

C. GraalVM
GraalVM is a Java Virtual Machine (JVM) that uses the

Graal compiler [18] for just-in-time (JIT) compilation. Graal
is a compiler for Java written in Java that was designed
to be extensible and maintainable, thus making it easier to
develop complex optimizations and to access and comprehend
the source code of the compiler using modern, integrated
development environments. On top of that, GraalVM also
provides the Truffle Framework [19] using which one can
create and integrate other language runtimes for GraalVM,
such as Python, Javascript, and R [20].

1) Graal Intermediate Representation: Graal Intermediate
Representation (IR) [21] is graph-based and models both the
control-flow and the data-flow dependencies between nodes.
The IR for a given method is generated by parsing its bytecode.
It is in static single-assignment (SSA) form [17], i.e., all values
have unique static definitions. Using the SSA form speeds up
many compiler optimizations, such as constant propagation
or dead code elimination. The nodes in the IR are separated
into two groups: fixed and floating. Fixed nodes have a strict
ordering based on the control flow of the program. Floating
nodes represent values; they float around the fixed nodes and
are only loosely coupled to them. This design makes it easier
to apply optimizations such as global value numbering [22].

Consider the structure of Graal IR using the example code
snippet in Listing 1. The method abs computes the absolute
value of the parameter x. The corresponding Graal IR of
the method can be found in Figure 1. The control flow of
the program is denoted by the red edges connecting fixed
nodes and data flow is denoted by the blue edges connect-
ing floating nodes. The if node is connected with the

1Veracode: https://www.veracode.com, accessed on 05/05/2023.

condition < and has two output branches. Notice the ssa phi
node merging the two values of res coming from different
branches. It is associated with the merge node and has two
input branches corresponding to the two control flow paths
that are merged there.

void abs(int x) {
int res;
if (x >= 0) {

res = x;
} else {

res = -x;
}
return res;

}

Listing 1: Code snippet sample
illustrated as Graal IR in Fig. 1

Fig. 1: Visualized Graal IR

We base the analysis on the Graal IR as it is more high-
level compared to accessing the bytecode directly, and we can
leverage the whole infrastructure of the compiler. However,
our methodology is not limited to GraalVM and Graal IR,
alternatives such as ASTs could be used as well.

2) GraalVM Native Image (NI) [10]: A Java bytecode
compiler that uses a combination of points-to analysis, ahead-
of-time (AOT) compilation, and heap snapshotting to compile
applications into standalone binaries that have a significantly
faster startup time and lower memory footprint compared
to running on the JVM. NI works under the closed-world
assumption, i.e., all application classes must be accessible
during the compilation. While restrictive, this assumption
allows more aggressive optimizations. Dynamic features of
Java, such as reflection, have to be explicitly registered [23].

GraalVM Native Image has been lately getting a lot of
attention in the industry thanks to the benefits it can bring
for Java microservice applications deployed in the cloud.
Main Java microservice frameworks, including Spring [11],
Micronaut [12], Quakus [13], and Helidon [14] developed
first-class support making it easier to compile microservices
written in these frameworks into native images. All these
frameworks provide support that automatically generate the
necessary configuration. Therefore, even Spring applications
that are known to use reflection heavily can be compiled via
Native Image. On top of that, the AOT compilation model of
GraalVM Native Image allows us to integrate our analysis into
the compilation pipeline, which would be more complex with
a classical JVM.

III. RELATED WORK

Several studies have anticipated System Architecture Re-
construction (SAR) for microservice systems, but they differ

https://www.veracode.com


in their approaches. Some methods leverage the artifacts
produced during runtime to perform dynamic analysis, as
proposed by Al Maruf et al. [7]. They analyze telemetry data
to identify inter-service communication patterns and construct
a Service Dependency Graph (SDG), which is then used
to detect architectural smells in the system. However, these
approaches do not support the context map of the system, and
building the SDG from logged traces requires the system to
be operational.

Therefore, other approaches use certain artifacts that are
generated and available during the development phase to
implement hybrid analysis approaches. For instance, Mayer
et al. [6] combined static and dynamic analysis techniques to
extract the architecture of REST-based microservice systems.
They extracted static information using Swagger documenta-
tion to generate API descriptions of services and analyzed
dynamic data from log files, including incoming and outgoing
requests of each service instance.

Other approaches have taken a different direction and fo-
cused on manual analysis [3, 5] to build various models to
combine. Another alternative was to use static analysis. Cerny
et al. [24] and Walker et al. [4] examined the source code of
microservice-based systems. However, their method used Java
reflection APIs, which limited their ability to only analyze
Java-implemented systems. Likely, Das et al. [25] analyzed
both source code and bytecode for Java-based systems to
construct an SDG, which they then used to detect potential
RBAC violations. Although these methods successfully recon-
structed the architecture of systems, they are limited to specific
machines and languages, which restricts their potential use in
heterogeneous microservice systems.

Diving deeper into IR-based approaches, Schiewe et al. [26]
proposed a static analysis technique, Relative Static Structure
Analyzers (ReSSA), that shows great potential to transform
static code analysis practices. Their approach operates with
component types instead of low-level programming constructs,
constructing and utilizing an IR called Language-Agnostic
Abstract-Syntax Tree (LAAST). LAAST representation is
constructed from the source code’s AST. ReSSA introduced a
set of generalized parsers to detect specific component types.
These parsers can be system-specific parsers to better cope
with platform differences. The study demonstrated a unified
identification approach to determine system data entities and
endpoints for constructing SDG and the context map from
microservice-based systems.

Our proposed approach shares similarities with ReSSA’s
approach in utilizing an IR, but it has some significant differ-
ences. ReSSA’s technique requires access to the source code
of the system for analysis, which may not always be feasible,
particularly for support teams that only have access to the
deployable bytecode of the system. In contrast, our approach
operates over the Graal IR, which is constructed from the
bytecode. Additionally, ReSSA employs LAAST, a proprietary
intermediate representation that lacks sufficient support and
requires considerable effort to support other languages and fix
issues. For example, we are not aware of any visualization tool

for ReSSA similar to IGV for Graal IR. As they mentioned that
the user is also responsible for handling numerous edge cases
in the structure, such as the various possible ways the endpoint
URL could be defined in the call. Our proposed approach
employs Graal IR, which has the potential for industry usage
and support. Graal IR also captures semantic properties of the
system like data-flow dependencies between nodes, not just
the syntax, which makes it clearer and more promising for
extracting information in heterogeneous microservice systems.
Finally, ReSSA necessitates several parsers and specifications
to extract the required information.

IV. METHODOLOGY

For our microservice-aware SAR process, we follow the
assumption of “no source” available and use bytecode anal-
ysis via Graal IR as the input. Assumptions are made that
microservices use best practice design and are developed using
well-established frameworks that make use of components and
high-level design constructs. These are provided by current
frameworks, as they facilitate faster development. These as-
sumptions enable generalization when performing SAR, and
can simplify the process to matching components and high-
level constructs and their properties.

There are three phases in our process: (1) analyze the
Graal IR for every single microservice and detect high-level
constructs, (2) using the high-level constructs, reason about
the inter-microservice dependencies and build IR for two ar-
chitectural views (3) visualize the particular architectural per-
spectives of the system. Figure 2 illustrates the process phases.

In phase 1, to analyze the bytecode of a single microservice
via Graal IR, the Graal API is used to parse particular compo-
nents and high-level constructs that are commonly used across
development frameworks. In particular, components like the
entities, services, and controllers are recognized
and extracted with their details (i.e., endpoints, attributes,
etc.). It is also necessary to parse remote REST calls to
other microservices within the system, which are necessary
to detect dependencies between microservices. Section IV-A
gives more details.

In phase 2, the data extracted from phase 1 are transformed
for the creation of the service dependency graph and context
map, which represent the service view and the domain view.
In the construction of the service dependency graph, REST
calls are bound to endpoints via partial signature matching.

In order to provide a more clear representation of the
domain view of the system, entities across microservices are
combined based on their similarity in names and/or attributes.
It is common for microservices to share entity variations across
their microservice bounded context. By combining them, we
greatly clarify the structure of the system. More details on how
the data is merged are given in Section IV-B.

Finally, in the third phase, the constructed architectural
perspective IRs are used for visualizing the constructed ar-
chitectural perspectives. Our focus is the service view (service
dependency graph) and the domain view (context map formed
from individual entities of bounded contexts). The service
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Fig. 2: Illustration of the phases in our methodology where
each microservice’s Native Image is processed to detect high-
level constructs in the Graal IR and then connections across
microservices are linked to derive intermediate representations
of architectural views, which are then visualized.

dependency graph illustrates communication across microser-
vices. It enables users to obtain detailed insights into the
system without examining the code directly. It also illustrates
dependencies and potential architectural change propagation.
We detail this in Section IV-C.

Our methodology provides a comprehensive solution for
analyzing and visualizing complex microservice systems via
GraalVM Native Image in order to enable a high-level under-
standing of a system without delving into the codebase. As
a result, informed decision-making and system management
can be accomplished at a high-level abstraction of the system.

A proof-of-concept of our methodology has been imple-
mented for practical assessments. The resulting MicroGraal
tool allows us to assess the concept feasibility for microser-
vices implemented using the Java Platform. It also serves as a
reference implementation for SAR on GraalVM Native Image
and will enable replicating our findings in this work. The open-
source is shared with the community. The existence of the
MicroGraal tool allows us to illustrate examples in each next
sub-section that details the phases of our methodology.

A. Extraction of Data

To extract the data necessary to derive particular architec-
tural perspectives - the service and domain views - we parse
the bytecode of each microservice in the system using Native
Image to generate the Graal IR which serves as an input to the
analysis. We first assume that the two views are represented
by components of development frameworks. Then we analyze
each class in the microservice to identify such components

and other high-level constructs. This allows our methodology
to be reused across different systems.

To aid understanding of the Graal IR, Oracle developed
the Ideal Graph Visualizer (IGV)2 (see Figure 1), which can
help with matching nodes necessary to identify high-level
construct’ patterns in Graal IR. In the following text, we
introduce the extraction of important high-level constructs
from Graal IR. In particular, we discuss how to extract REST
calls, endpoints, and data entities.

1) REST Call Extraction: To extract REST calls, it was
necessary to identify their patterns in the Graal IR. The process
to identify these patterns involves inspecting the Graal IR in
IGV, comparing it with source code examples, and determining
which types of nodes contain specific information based on the
code structure. Graal IR can exhibit a virtually infinite range of
structures due to the unique composition of each method and
its contents, as well as the inherently complex mapping from
source code to compiler-level representations. This complexity
arises from the diverse ways programming constructs can
be expressed, the presence of various language features, and
the compiler’s role in optimizing and transforming the code
particularly in the lexical, syntactical, and semantic analysis
stages of the compilation process. Consequently, the method-
ology developed in this research focuses on capturing the most
prevalent patterns of REST calls encountered in the research
while providing the flexibility for future researchers to extend
the approach to additional patterns. Note that while identifying
the patterns is a manual process, it is done only during the
development of the analysis. The actual analysis execution is
automated.

Given the Java specifics, the process begins by re-
trieving a list of class objects from the microservice’s
ImageClassLoader, which is then filtered to only include
class objects belonging to the microservice’s base package.
From there, every class is broken down into its declared meth-
ods. For every method, a StructuredGraph containing its
IR can be created. Then the IR was traversed to locate the
node which contains the RestTemplate object commonly
used for REST calls.

The patterns we developed assume there is only one
RestTemplate call in the method. Querying the matched
nodes, one can extract details, such as the URL of the HTTP
request, the type of HTTP request (GET, PUT, etc.), the return
type of the REST call as well as if it were a collection of that
type, and what combination of class and method the call was
made in. The details of each REST call are stored in a custom
RestCall object respectively and appended to the list of
REST calls for that given microservice for the Graal analysis
system to handle.

2) Endpoint Extraction: Graal’s Meta and Compiler APIs
provide extensive utilities for extracting endpoints from con-
trollers. An AnalysisMethod object, which can be tra-
versed for extracting endpoint data, was used for fetching

2IGV: https://docs.oracle.com/en/graalvm/enterprise/20/docs/tools/igv/, ac-
cessed on 05/05/2023.

https://docs.oracle.com/en/graalvm/enterprise/20/docs/tools/igv/


HTTP requests, return types, and parameters. To capture the
return type for an endpoint, the Reflection API was adopted as
an intermediate step between Graal IR and our custom objects.
For other required attributes, several conditions were handled
based on Spring’s annotations for mapping. For example,
the RequestMapping annotation required additional im-
plementation to ensure the target endpoint path was accurate.
Upon GraalVM compilation, a single CSV file containing each
controller’s endpoints for a provided microservice is generated.

3) Entity Extraction: To extract the entities from a given
microservice, each class, along with the methods and the fields
for that class, is considered. The class, fields, and methods
are all extracted from their internal representation used by the
Graal compiler. In the case of many Java frameworks, the
classes, methods, and fields can be checked for annotations
which indicate an entity along with its details. This various
annotations coming from the Java Persistence API, Spring,
Lombok, or other frameworks can be considered along with
methods generated which are consistent with an entity class. In
some cases, the methods must be checked because annotations
have been processed during compilation before Graal’s IR
analysis begins. Once an entity class has been identified, the
entity name as well as each field, including the field name, the
type, and all annotations with particular settings, are extracted
into an intermediate representation for a given microservice;
we use JSON format for this representation.

When the analysis of a microservice is finished and the
extraction of information is complete, a CSV file containing
all the extracted REST calls and their details is created, and
the same is created for endpoints. A third file is also generated
- a JSON file with all entities extricated as well as their
respective fields and annotations. These files are read by the
phase 2 for the creation of domain and service views.

B. Transformation of Data

Using the high-level structures, constructs, components,
and their contextual details extracted using GraalVM Native
Image, we next pay attention to the relationships between these
extracts. The aim of this consideration is to form particular
system views such as the domain and the service view. In par-
ticular, we construct the context map and service dependency
graphs which serve as illustrations of these views. For the
transformation of the data process, users must supply a JSON
list of microservices, which for every microservice includes
the microservice name, base package, and base directory.
As discussed in further sections, our utilized microservice
benchmark was manually input into our JSON file. Note that
the necessity to manually supply this JSON file is purely an
artifact of our current prototype. This step could be automated
in the future, for example by interacting with the build system
to fetch the data.

1) Service Dependency Graph: Extracting REST calls from
each microservice includes the URL, HTTP method, destina-
tion microservice (if present in the URL), and if there is a body
parameter. Endpoint parsing will have subsequent information
such as the HTTP method, the URL, and parameter types.

Therefore the linking can be achieved using the URL, HTTP
method, microservice name (if it can be parsed from the REST
Call), and if there is a body parameter to match the REST call
to the endpoint in the microservice. One thing to note is that
the URL is matched from a REST call to an endpoint without
the use of path parameters. This is because of the limitation
of finding the names of the path parameters from the REST
Calls. Therefore, the matching of URLs only match the hard-
coded parts of the URL and deletes the path variables. The
URL is a complete match only on the hard-coded sections of
the string.

After the linking process completes, the service dependency
graph is complete and stored as a JSON with all the microser-
vices listed as nodes, and all REST call/endpoint pairs placed
within their respective links for the visualizer to read.

2) Context Map: In order to transform the extracted data
entities into a more comprehensive perspective, bounded con-
text data models are formed and used to derive a system
context map. Extracted entities are associated according to
relationships to form data models within each microservice.
In addition, inter-service entity models are merged based on
entity similarities.

The process considers every microservice we point to via
the configuration file that phase 2 requires. In the case of
Java, each microservice is packaged as a Java Archive that
has a well-defined structure of compiled classes libraries, and
resources, which needs to be accessed when converting to the
Graal IR and analyzing it (i.e., /BOOT-INF folder).

The entities from every microservice are extracted and
collected to serve as references for possible parts of a re-
lationship between entities. Every microservice is iterated
over again, extracting the fields from every entity within a
microservice. These fields are compared against the list of
entities extracted previously to check for a type match, which
indicates a relationship between the two entities. If there is a
match, the multiplicity of the relationship is recorded based
on the number of fields and if those fields are a collection.
Furthermore, the relationships extracted are one-sided (A to B
is different from B to A) and thus have to be combined to form
a full representation of the multiplicities of that relationship.

The following step is to merge data models across microser-
vices to create a context map for the entire system. Since
multiple microservices may operate in the same domain, some
bounded contexts may contain the same entities. Additionally,
different bounded contexts may have different purposes for
the entities they share, which means they may retain different
fields from each other. To accomplish this, the following
merging rules are applied to the entities and their fields:

• Entities are merged by determining if they have the same
or similar names. We utilize the WordNet project [27] to
detect similarities in names.

• Fields that have the same data type and the same or similar
names in the merged entity are merged.

• Non-matching fields from both entities can be appended
to the merged entity.



Finally, the list of merged entities and their relationships is
used to create a JSON schema to represent an intermediate
representation of the context map.

C. Visualization of Data
The architectural view IRs of derived views would not

serve much purpose unless constructed information becomes
easily accessible. For this reason, we consider interactive
visualizations that provide capabilities for reconstructing a
service dependency graph and context map.

1) Service Dependency Graph: With the formed service
dependency graph intermediate representation, it is possible
to approach visualization. A collection of nodes, node labels,
and directed links represent this graph. The nodes represent
individual microservices, and the labels above each node
display the name of the microservice.

The users may interact and select each node and open
a window that displays information about the microservice,
such as that microservice’s dependents and dependencies. The
dependents of, for example, microservice A, are any microser-
vices that make calls to microservice A. The dependencies of
A would be any microservice that A makes outbound calls to.
Microservices that make no calls and receive no calls to other
microservices have no links and thus float around the graph.

The directed links are a visual representation that show the
direction of the REST call from source to target. When the
user clicks on a link, a window pops up that lists the source
microservice, the target microservice, and all the REST calls
that occur from source to target.

The application also allows users to grab nodes and drag
them around the three-dimensional (3D) space, as well as pan
and rotate the camera to better orient themselves and view the
graph from different perspectives.

A snapshot of service dependency graph reconstruction is
visible in Figure 3.

Fig. 3: Service Dependency Graph for Train-ticket benchmark

2) Context and Sub-Context Maps: Based on the analysis
of data entities, the JSON-based context map is visualized in
a web-accessible (react-force-graph-3d and three.js) format.
Once processed, all context map entities are displayed as
CSS3DObject nodes in a 3D, customized with each entity’s
associated fields and types. Links between nodes are contex-
tual and hoverable with the cursor, revealing the multiplicities
between different entities.

Our interactive visualization allows for creating sub-context
maps by selecting certain microservices. This assists practi-
tioners in understanding how a microservice’s direct neighbors
and data model overlap with dependencies. The this feature is
beneficial for use cases where a provided system contains a
significant number of entities and microservices. An example
of a sub-context map is depicted within Figure 4.

Fig. 4: Sub-Context map for Train-ticket benchmark
Included Microservices: ts-travel-service, ts-travel2-service, ts-travel-
plan-service, ts-common.

V. CASE STUDY

To assess the reliability of our SAR process, we have
implemented a prototype tool MicroGraal3 following our
methodology. This prototype was prioritized towards compo-
nents using the Java Spring Platform, which is well-adopted
in the industry. In addition, we utilize a fork of GraalVM
Native Image4 as the base for our analyzer because the AOT
nature of Native Image allows us to access the whole compiled
application, extract the Graal IR out of the relevant methods,
and perform static analysis on top of them. For the 3D
visualizations that can be seen in the figures in this paper, we
developed Graal Microservice Visualization Platform (MVP)5.

A well-established community benchmark called train-ticket
[28] was used for the assessment. Train-ticket is comprised of
microservices that were devised by different frameworks and
languages, such as Java, NodeJS, Python, and Go. Based on
our static analysis method, we only assessed Java Spring Boot
microservices, and all other microservices were excluded from

3Prototype: https://github.com/cloudhubs/graal-prophet-utils, accessed on
11/01/2024.

4Graal Fork: https://github.com/cloudhubs/graal, accessed on 11/01/2024.
5Graal MVP: https://github.com/cloudhubs/graal mvp, accessed on

11/1/2024.

https://github.com/cloudhubs/graal-prophet-utils
https://github.com/cloudhubs/graal
https://github.com/cloudhubs/graal_mvp


our analysis. As a result, 42 Java microservices from train-
ticket v1.0.06 were considered in our analysis.

The analysis of one train-ticket microservice using Micro-
Graal takes 15 seconds and has 850 MB RSS on average when
running on a MacBook Pro 2018 with 2.9 GHz 6-Core Intel
Core i9 processor and 32 GB of main memory with macOS
Sonoma 14.2.1. We report averages as the analysis runs of
individual microservices follow the same pattern and there
were no outliers.

A. Reliability of GraalVM

In our study, we ensured the reliability of our approach by
conducting a manual analysis of the train-ticket benchmark.
This manual analysis process involved three authors, where
two authors extracted the data and one validated the data by
examining the source code. Additionally, we used a tool from
a related work by Walker et al.[4] that implemented source
code-based analysis to achieve automated SAR. We ran this
tool on the same version of the benchmark that we examined
in this case study and compared its results with ours in the
following subsections. We created the service dependency
graph and context map for the testing system, taking into
account several special cases specific to the Java Spring
Framework. Our generated dataset7 contains information on
the extraction of entities, where we also performed a statistical
evaluation of the given components in the train-ticket system.

B. Service Dependency Graph

Our prototype was executed to produce the service depen-
dency graph from the benchmark by analyzing REST calls,
endpoints, and their connections. The outcomes of the manual
process, the proposed method, and the source code-based tool
are presented in Table I. This table provides a comparison of
the number of calls and endpoints and how they collaborate
in constructing the service dependency graph.

TABLE I: Service Dependency Graph Data Analysis

Numbers/Approaches Manual MicroGraal Rel. Tool [4]

REST Calls 146 146 146

Endpoints 261 261 261

Request Pairs in SDG 142 123 114

Links in SDG 90 82 82

Our analysis depicts that our prototype successfully ex-
tracted all REST calls and endpoints from the system. It is
worth noting, 4 of the REST calls have URLs that point to
nonexistent endpoints in the system. In terms of the number
of calls participating in the service dependency graph, our
prototype missed 19 pairs of calls and endpoints that were
expected to be present in the service dependency graph. How-
ever, these 19 pairs did not impact the number of links between

6Train-ticket: https://github.com/FudanSELab/train-ticket/tree/v1.0.0, ac-
cessed on 11/1/2024.

7Dataset: https://zenodo.org/record/7902018#.ZFXrVy2B1YI, accessed on
05/05/2023.

microservices. Our prototype was able to extract 82 out of the
90 links in the service dependency graph, as each link can
contain multiple calls between the involved microservices.

A more thorough investigation into the 19 missed pairs
reveals that 11 of them were not captured because their
URLs were assigned to a variable within a conditional branch
(i.e., if-else), which our prototype did not cover. Additionally,
the remaining 8 pairs were not formed because their calls
contained the body parameter in a pattern that our prototype
was not designed to handle. Moreover, the 8 missing service
dependency graph links were a result of the previously men-
tioned missed pairs.

Comparing the results with those of a source-code-based
tool, we found that we were able to extract all the endpoints
and calls, and both approaches identified the same number
of 82 links in the service dependency graph. However, our
method showed improvement in the number of matched cal-
l/endpoints pairs in the service dependency graph, as it was
able to extract 9 more pairs than the source-code approach.

C. Context Map

In the constructed context map analysis, our prototype was
utilized to generate a context map from the benchmark by
extracting entities and their relationships with each other. The
outcomes of the manual process, the proposed approach, and
the source code-based tool are presented in Table II. This table
provides a comparison of the entities and relationships in both
the bounded context and in the context map after the merge
process is executed.

The analysis of the context map data indicates that our
prototype was able to construct a complete context map in
terms of the number of entities and relationships, except for
one entity that was missed across all microservices. However,
this entity did not contain any relationships and was identified
as merged in the manual analysis, so it did not impact the
resulting context map.

Upon inspecting the context map data, we found that the
ts-common and ts-delivery-service utility pack-
ages were incompletely parsed due to compatibility issues
between the provided JAR and native image. As a result, it was
not possible to retrieve entity fields within these microservices
and they were omitted. However, the entity names remained
available and were used to identify links between them and
other microservices’ entities in the system. The missed entity
was the Delivery entity, which was not identified. However,
since ts-delivery-service did not participate in any
relationships, it did not affect the analysis. Moreover, although
the VerifyResult entity was extracted, it was extracted
from the ts-rebook-service microservice project, where
the Maven file was configured to compile its file, and not from
the microservice where it was defined, ts-common. Using
this data, we were able to construct a holistic context map
that includes entity attributes, entity names, and multiplicities
between entities.

By comparing our results with the source code-based tool,
we observed improvements in all the extracted data. Specifi-

https://github.com/FudanSELab/train-ticket/tree/v1.0.0
https://zenodo.org/record/7902018#.ZFXrVy2B1YI


cally, the source code-based tool failed to construct a complete
context map. It missed 4 relationships and 9 entities in the
bounded context, while our prototype only missed 1 entity.

TABLE II: Context Map Data Analysis

Numbers/Approaches Manual MicroGraal Rel. Tool [4]

Entity Bounded Context 117 116 108

Relation Bounded Context 43 43 39

Entity Context Map 84 84 76

Relation Context Map 24 24 20

When including our extraction of ts-common, our ap-
proach to extracting entities correctly extracts 116 of 117
entities and 43 of 43 relationships before the combination of
entities as well as 84 of 84 entities and 24 of 24 relationships
after the combination of entities. When using microservices
that produce JARs that can be parsed by MicroGraal, our tool
is 100% accurate when compared to manual analysis. Our
approach identifies more entities and relationships both before
and after the condensation of entities than the related source
code analysis tool listed.

VI. DISCUSSION

Static analysis tools are commonly used by developers to
assess the quality of their code and system design at an early
stage. However, when it comes to microservice systems, these
tools are still in their infancy and there is currently a market
gap that needs to be addressed. Developing static analysis tools
and visualizations for microservice systems makes it easier
to identify inappropriate patterns in their design. Finding and
fixing such issues leads to an improvement of the overall
quality of such systems.

To ensure effective static analysis, it is crucial for any
tool to establish a robust intermediate representation of the
system at the outset, regardless of the type of system being
analyzed. This serves as a foundational step in achieving the
goal of uncovering various architectural views through the
Static Analysis Review process.

However, it is important to note that static analysis alone
cannot provide a complete system-centered perspective. It is
essential to consider other perspectives as well, such as the
system runtime, dynamic analysis, infrastructure details, team
organization, and the development process. Only by taking all
these perspectives into account can we obtain a comprehensive
understanding of the system and achieve our quality goals.

In the context of microservice systems, current tools priori-
tize dynamic analysis, such as OpenTracing, due to the ease of
dealing with system polyglots. However, the management of
system tracings introduces complexity and can only provide a
black box perspective of the system. Furthermore, dynamic
analysis requires user interaction or comprehensive testing
to generate traces, and this does not come free of charge.
Not many companies will prioritize visible (functional) sys-
tem additions over invisible (quality) solutions, which could
introduce technical debt and lead to architectural degradation.

Relying solely on dynamic analysis necessitates the use of
infrastructure resources to test new versions of microservices.
However, these tests may be limited in scope and rely on
outdated test suites, leading to the inefficient use of time
and resources with significant energy footprints. Requiring
dynamic analysis tests for every new commit to a microservice
can lead to prolonged periods between the introduction of
errors and their identification. This inefficiency hampers the
development process and can significantly impede the ability
to address issues quickly and effectively.

Static analysis offers advantages to cope with the previously
mentioned setbacks because it does not require a running sys-
tem to provide insights into the system’s architecture, changes,
and qualities. This makes it a closer and more accessible tool
for developers, offering early feedback on code changes. By
placing a single microservice in the context of other connected
neighboring microservices, static analysis allows developers
to reason about change propagation, impact, and implications.
This approach can help mitigate ripple effects and identify
potential issues early in the development cycle. Moreover,
static analysis enables direct comparison to previous versions
of the system, a capability that dynamic analysis does not
possess. Overall, static analysis offers a powerful tool that
can aid in managing complex microservice architectures and
promoting high-quality software development practices.

Our work is foundational to the microservice-aware SAR
as it demonstrates that static analysis can uncover reliable
architectural views. The combination with GraalVM is a wise
decision as it goes beyond the Java Platform. The integration
of other language runtimes becomes possible with Truffle [19],
which could potentially address the current greatest weakness
of static analysis: its limited applicability to monoglot sys-
tems. Still, there is a long path as components across other
frameworks would need to be recognized. It must also be
seen in the context of low-level virtual machines [26], which
are unsuitable for SAR as they operate with low-level con-
structs. Microservices use high-level constructs and framework
components; thus, architectural views should reflect both these
since developers are familiar with them in their code.

VII. THREATS TO VALIDITY

1) Internal Validity: In our approach, the JAR files for
microservices must be compatible with Native Image to parse
entities. In the train ticket, the ts-common microservice had
to be extracted manually to access all information within it.
However, this can be mitigated by extracting the classes or
fields present within other entities and extrapolating this to
find the ts-common entities.

Our approach is limited to the identification of HTTP calls
made with the RestTemplate class. Other ways HTTP re-
quests are made could be parsed, such as to HttpClient or
HttpURLConnection libraries. The REST call extraction
can be improved by implementing detection of the pattern
that we currently miss in train-ticket, which is when there
is conditional branching that determines what URL or its part
is to be passed or appended into the RestTemplate HTTP



request. Though in train-ticket, this pattern does not result in
missed links between microservices; in other systems, if this
pattern was encountered, links could be missed if there are
no other REST calls present in the source microservice to the
same target microservice to still create the link.

There are limitations to what we are able to extract from
the REST calls. We are not able to determine the REST call
body parameters types because we were unable to retrieve
that information from the Graal IR. For path parameters, it
is complicated to trace through the intricate structures of the
IR to identify what may be path parameters included in the
URLs of REST calls. Because we do not identify if there
are path parameters we do not find their types. For these
calculations, the act of traversing an AST would be beneficial
because these high-level values are more easily identifiable
compared to Graal IR. The inability to extract REST call body
parameter types could be a result of our lacking expertise and
knowledge of traversing Graal IR and using the Graal API to
obtain information rather than it being actually impossible to
obtain. However, an overload of REST endpoints is typically
not supported by containers.

The patterns our approach currently addresses are catered to
that of the method structure, its code content, and the ways of
making HTTP requests in train-ticket. A future improvement
would address other common ways methods and calls may be
executed and structured that may not be in train-ticket so that
the same HTTP request information can still be extracted.

When matching endpoints to REST calls in a system, it
only matches the hard-coded part of the URI. Therefore,
any unique information that separates two endpoints by path
parameters could compromise the matching of a REST Call
to an endpoint. This is a rare scenario as the endpoints would
also have to have the same HTTP Method, and both have a
body present. Another scenario similar to this is to have two
endpoints, one with a path parameter in the middle of a URI
and one that is hard-coded such that when the path parameter is
filtered out it is the same as the URI. For example, if there is a
URI with this structure /A/{B}/C and one with this structure
/A/C the matching will cut out the parameter ”B” therefore
matching the same URI. Assuming they have the same HTTP
method and have a body is taken into consideration as well.

The destination microservices are found by checking if the
microservice name is in the hostname or in the URI path.
However, in some cases that are not train-ticket, this might
not work. Therefore, in more general approaches this might
have to be disabled.

2) External Validity: Our proof-of-concept has been eval-
uated on a single system benchmark and naturally might be
biased to constructs utilized in this benchmark. We aimed to
avoid this bias by targeting general constructs used in the
Java Spring Framework. Thus, new systems might require
adjustments in pattern matching. The intent of the case study
was to demonstrate the feasibility of microservice-aware SAR
on Native Images rather than to deliver a production-level
solution. Custom extensions to the process to detect new
patterns, new situations, and new frameworks are expected

from community adoption. This is supported by open-sourcing
our proof-of-concept.

To enable the reproducibility of this work, its assessment,
and comparison with alternative works, we share our dataset
of detected endpoints, REST calls, and entities in our case
study. This can serve the scientific community in further
advancements beyond the goals of this work.

An issue that our visualizer has pertains to older hardware,
which can encounter performance issues if the provided mi-
croservices are excessive in size. As a result of these large
microservices, it can be difficult to interact with the full
context map and service dependency graph.

VIII. CONCLUSION

With the prevalence of microservice systems, it is important
to abstract them with important information accessible in a
system-centric view to understand the system, identify issues,
and maintain the system. Because of the size of most microser-
vice systems, an automated and scalable solution is needed.

This paper elaborates on microservice-aware SAR method-
ology utilizing recent advancements in improving microservice
initialization times. GraalVM Native Image has been used to
demonstrate the feasibility of the process and reliability of
produced results when compared to a manual review of source
code. Our proof-of-concept tool MicroGraal demonstrates that
Native Images can be analyzed to produce two important
architectural views for microservice systems, the service and
domain views. In a case study using a third-party system, we
demonstrated promising results to build service dependency
graphs and context maps that can assist practitioners in making
informed decisions and act as the foundation for advancements
in static analysis for microservice systems.

Future work will target an analysis of polyglot systems and
a broader analysis of other system benchmarks.
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