On maintainability and microservice dependencies:
How do changes propagate?

B< Tomas Cerny' lﬂ Md Showkat Hossain Chy? ﬂ Amr S. Abdelfattah?>@f| Jacopo Soldani? E], and
Justus Bogner*
VSystems and Industrial Engineering, University of Arizona, 1127 East James E Rogers Way, Tucson, 85721, Arizona, USA
2Computer Science Department, Baylor University, 1420 S 5th St, Waco, 76798, Texas, USA
3 University of Pisa, Lungarno Antonio Pacinotti, 43, 56126 Pisa PI, Italy

4 Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, Netherlands
tcerny@arizona.edu

Keywords:

Abstract:

Microservices, Maintainability, Dependencies

Modern software systems evolve rapidly, especially when boosted by continuous integration and delivery.

While many tools exist to help manage the maintainability of monolithic systems, gaps remain in assessing
changes in decentralized systems, such as those based on microservices. Microservices fuel cloud-native
systems, the mainstream direction for most enterprise solutions, which drives motivation for a broader
understanding of how changes propagate through such systems. This position paper elaborates on the role
of dependencies when dealing with evolution challenges in microservices aiming to support maintainability.
It highlights the importance of dependency management in the context of maintainability deterioration.
Our proposed perspective refines the approach to maintainability assurance by focusing on the systematic
management of dependencies as a more direct method for addressing and understanding change propagation
pathways, compared to traditional methods that often only address symptoms like anti-patterns, smells,

metrics, or high-level concepts.

1 INTRODUCTION

The evolution of software engineering practices
over the past few decades has been fundamentally
driven by the quest for more maintainable, robust,
and adaptable systems. This journey, marked by
significant milestones, has transitioned from the
era of structural programming to the adoption of
modular design principles, profoundly influencing
how software is conceptualized, developed, and
maintained. These advancements, as documented
in pioneering works (Parnas, 1972 |Parnas et al.,
1985)), have laid a solid foundation for the software
engineering discipline, emphasizing the importance
of structure and modularity in achieving maintainable
software systems.

In parallel, the advent of design patterns, as

(2 https://orcid.org/0000-0002-5882-5502

@ https://orcid.org/0009-0006-6978-399X
https://orcid.org/0000-0001-7702-0059
4@ nttps://orcid.org/0000-0002-2435-3543
(2 https://orcid.org/0000-0001-5788-0991

o

elegantly described by Gamma et al. (Gamma
et al., 1993), and the philosophical underpinnings
of software construction articulated by Dijkstra
(Dijkstra, 1982), have further enriched our
understanding of software maintainability. These
contributions have not only advanced our conceptual
framework for software design but have also
provided practical tools and methodologies for
enhancing software reusability, understandability,
and, consequently, its maintainability. The ISO
25010 standard (iso, 2023) codifies these insights by
defining maintainability as the degree of effectiveness
and efficiency with which a system can be modified
to correct faults, improve performance, or adapt to
changing environments. This standard underscores
the critical attributes of modularity, reusability,
analysability, modifiability, and testability, framing
them as essential for the long-term health and
evolution of software systems.

The complexity of modern software systems,
coupled with the accelerating pace of technological
innovation, necessitated a paradigm shift towards

more dynamic and flexible architectural models.
This shift was epitomized by the emergence of
service-oriented architecture (SOA) (Cerny et al.,
2018), which introduced a new way of thinking
about software as a collection of independently
deployable services. SOA paved the way for the
modularization of functionality, allowing systems to
be composed of loosely coupled services that can be
developed, deployed, and maintained independently.
This architectural style represented a significant leap
forward, enabling greater agility and scalability in
software development and deployment processes.

Building upon the foundations laid by SOA,
the microservice architecture emerged as a natural
evolution, driven by the need for even more granular
modularity and scalability. Microservices take the
principles of SOA to the next level, advocating for
small, self-contained services that are built around
business capabilities and independently deployable
by fully automated deployment machinery (Cerny
et al., 2018). This approach has facilitated the
development of complex, scalable, and resilient
systems that can rapidly evolve in response to
changing business requirements. The widespread
adoption of microservices (ado, 2023) is a testament
to their effectiveness in addressing the challenges of
modern software development, including the need for
continuous integration and delivery, scalability, and
system resilience.

However, the transition to microservice
architectures has not been without challenges.
While microservices offer significant advantages in
terms of scalability and flexibility, they also introduce
complexity, particularly in terms of managing the
dependencies between services. As systems become
more distributed, the interconnections between
microservices become more intricate, posing new
challenges for maintainability. This complexity is
further compounded by the diversity of technologies,
frameworks, and languages used across different
microservices, making system-wide changes more
difficult to implement and manage. Moreover, in a
microservice ecosystem, each service is typically
owned by a separate team, operating with a high
degree of independence.

This position paper questions how the
interdependencies between system components
influence the overall architecture’s maintainability
when modifications are introduced. It navigates
through the complexities of microservice systems,
spotlighting the essential role of dependency
management in preserving system integrity amidst
evolution. We call for a reevaluation of traditional
microservice analysis techniques, suggesting

a move towards methodologies that probe the
underlying reasons for changes. The discourse pivots
towards identifying microservice dependencies as
a critical focal point for assessing change impacts,
proposing their meticulous management as a key
to enhancing system resilience and maintainability.
By focusing on the strategic management of
inter-service dependencies, our goal is to foster the
development of sophisticated tools and frameworks.
These innovations are intended to enhance impact
analysis and support continuous architectural quality
improvement, thereby empowering developers and
architects to more effectively navigate the intricacies
of microservice ecosystems and achieve higher levels
of system resilience and maintainability.

The rest of this manuscript is organized as follows.
Section 2 presents established approaches aiding
maintenance or detecting degradation in software
applications. Section 3 argues the importance
of dependencies and reasons about the symptoms
and causes. Section 4 considers different types
of dependencies and their management to drive
change impact and improve maintenance. Section 5
concludes the paper with open-ended questions.

2 BACKGROUND AND RELATED
WORK

The foundational principles of modular design,
encapsulation, and separation of concerns
significantly enhance software maintainability.
Parnas’s early contributions ((Parnas, 1972)) and
further studies ((Parnas et al., 1985)) have shown
that clearly defined module responsibilities and
interfaces simplify maintenance and comprehension.
The concept of separation of concerns by Dijkstra
((Dijkstra, 1982)) and the focus on encapsulation
by Gamma et al. ((Gamma et al., 1993)) underpin
a design philosophy that enhances modifiability and
minimizes error risk during system evolution.

However, ensuring software quality encompasses
more than these design principles. It involves
adherence to coding standards ((Bass et al., 2021)),
application of best development practices ((Gamma
et al., 1993))), proper assignment of responsibilities
((Larman et al., 1998))), and effective dependency
management. Together with comprehensive
documentation, version control, and thorough
testing, these practices form the core of exemplary
design and development.

As software systems grow in complexity, the
significance of architecture in maintainability
becomes more pronounced. Effective architecture

facilitates easy modifications and guards against
quality degradation. Yet, the drive for rapid
feature development often undermines long-term
architectural integrity, leading to technical and
architectural debt ((Besker et al., 2018};Martini et al.,
2018} [Das et al., 2022; |Azadi et al., 2019; [Fontana
et al., 2016;|Haendler et al., 2017)), where quick fixes
harm future maintainability and scalability.

Strategic approaches are essential for addressing
architectural degradation, as systematic literature
reviews have identified ((Baabad et al., 2020)). These
include detecting architectural smells, enforcing
architectural rules, and mitigating architectural
degradation. Yet, existing research primarily
targets monolithic systems, overlooking the unique
challenges posed by microservices.

Microservices introduce complexities such as
multiple moving parts, a disconnected codebase,
scattered concerns, and autonomously operating
development teams, as highlighted by Conway’s law
((Conway, 1968)). Despite the advantages of loosely
coupled components, unavoidable dependencies can
lead to co-changes and ripple effects ((Bogner
et al., 2021)), making decentralized systems more
susceptible to architectural degradation.

In a decentralized microservices architecture,
the modular design’s benefits are challenged by
the complexity of managing independent yet
interdependent components. This independence
complicates measuring changes and managing
dependencies, potentially causing costly ripple
effects across multiple teams. While microservices
operate as distinct applications, they collectively
form a single system, necessitating a system-level
management approach. Many issues become
apparent only when viewed from this holistic
perspective, rather than through analyzing individual
components in isolation.

The concept of architecture recovery or
Systematic Architecture Reconstruction (SAR),
as mentioned in the literature ((Baabad et al., 2020)),
is pivotal for microservices’ success, offering a
system-centered analysis approach ((Bogner et al.,
2021)). However, implementing SAR effectively
is daunting, requiring significant, ongoing effort
((Rademacher et al., 2020)). While static analysis
((Walker et al., 2020)) may aid in approximating
this reconstruction, a deep understanding of the
interconnections between components is essential for
identifying dependencies and relationships.

Microservices have specific smells (Cerny et al.,
2023)) that can manifest across microservices (e.g.,
cyclic dependency); their detection could use known
anti-patterns that could manifest through SAR or by

accessing codebases through simple rules (Tighilt
et al., 2023). Yet metrics for microservices are in
their infancy. We can emphasize works looking into
structural coupling (Panichella et al., 2021), logical
coupling (d Aragona et al., 2023)), team collaboration
dependency (Lenarduzzi and Sievi-Korte, 2018)), etc.
However, we could question if these are the essential
dependency causes or just symptoms of such cases.
While existing approaches provide a
foundation for maintaining software quality
within monolithic and decentralized systems
alike, the unique challenges posed by
microservice architectures—such as decentralized
management, scattered concerns, and complex
dependencies—remain inadequately addressed.
Our position paper proposes a new perspective,
emphasizing the critical role of dependency
management in navigating the evolution of
microservices. By highlighting this gap, we
aim to spur further research and development of
tools and methodologies that specifically cater to the
nuanced demands of microservice ecosystems.

3 THE ROLE OF
DEPENDENCIES: SYMPTOMS
AND CAUSES

When reasoning about how microservices
interconnect, we can easily think of what is obvious -
“explicit” inter-service calls. Such calls align the path
for dependencies, which are obvious to developers.
However, what about other dependencies that are
less obvious? For instance, as demonstrated by
Walker et al. (Walker et al., 2021)), data dependencies
could be considered. In their work, they construct
the canonical data model from across microservices
based on similar data entities (names or structures).
Such dependencies (Figure |1) might exist due to the
same data microservices exchange or as a legacy of
their monolith migration.

Dependency

|
v v

Explicit

Implicit

Figure 1: Types of Dependencies

However, there are other “implicit” dependencies
that developers might miss when reviewing change

impact. For example, dependencies sourcing from
implicit invocation involve events through message
systems. We can also consider another perspective
for such dependencies that involve policies and rules
applicable to the entire system. These could be,
for instance, compliance with the General Data
Protection Regulation (GDPR) or access rights that
can not be modularized and reused because it would
violate the principles of cloud-native systems and
introduce bottlenecks. As a result, we are left
with the option of a scattered concern and thus
to restate and customize the policy specifically to
a given microservice while scattering the concern
across multiple components and then dealing with
finding each of these when the policy changes.
There are other implicit dependency types, and likely,
these will be missed by developers assessing change
impact propagation to other microservices. Careful
dependency management could guide developers on
potential implications.

Dependencies in microservices, defined as the
reliance of one module on another for proper
functioning, often lead to challenges like co-change
requirements and ripple effects. These challenges are
not the root causes but rather symptoms of underlying
dependencies. Researchers are thus motivated to
explore beyond traditional dependency models to
address these symptomatic challenges directly.

The distinction between the causes, affected
artifacts, and symptoms of dependencies can be
nuanced. For example, version control commits often
tied to data dependencies between microservices
result in logical coupling ((d Aragona et al., 2023)),
a symptom of such dependencies. Likewise, team
collaboration issues may stem from shared resource
dependencies ((Lenarduzzi and Sievi-Korte, 2018)).

Software architecture reconstruction (SAR)
aimed at change impact analysis typically uncovers
only control dependencies through dynamic analysis,
which might be obvious to developers. Manual SAR
can be overwhelming, pushing towards evident paths,
yet static analysis presents broader opportunities.
It can, for instance, uncover code clones across
microservices, indicating potential change pathways.
These clones, whether syntactic or semantic,
highlight the need to navigate polyglot diversity,
despite the absence of significant data on polyglot
prevalence in cloud-native systems.

Beyond clones, static analysis aids in identifying
data dependencies to gauge change impacts on
interconnected components. Addressing policies
and rules introduces additional complexity due to
the lack of a uniform method for their analysis,
necessitating strategies like rule annotation or

employing rule engines like Drools for a standardized
expression. Static analysis also extends to identifying
technology dependencies, where changes in one
component might necessitate adjustments elsewhere.
A comprehensive resource dependency check would
include shared libraries, configuration files, data
sources, and cloud-native infrastructure elements
such as API gateways and service discovery.

The complexity of addressing both functional
and non-functional requirements, which dictate the
responsibilities of system components and necessitate
modifications in the source code, often surpasses the
capabilities of conventional automation techniques.
This challenge, however, finds a promising solution
in the model-driven development (MDE) approach,
as highlighted by Terzi¢ et al. (Terzi¢ et al.,
2018). Despite its potential to streamline these
processes, the adoption of MDE has not yet become
a widespread practice within the industry, signaling a
gap between its theoretical benefits and its practical
implementation.

4 ARCHITECTURE
DEGRADATION MITIGATION
STRATEGIES IN THE
CONTEXT OF DEPENDENCIES

To mitigate architectural degradation, four key
strategies are identified: metrics-based detection,
smell detection and prioritization, architectural
recovery, and addressing architectural rule violations
((Baabad et al., 2020)). As depicted in Figure 2]
these strategies offer a comprehensive approach to
mitigating architectural degradation, emphasizing the
importance of a nuanced understanding of system
dependencies.

4.1 Metrics-based strategies

Metrics-based detection in source code offers
insights into software quality and maintainability,
assessing effectiveness and architectural instability
throughout its evolution. Key metrics focus on
instability, modularity, coupling, and cohesion.
High code churn signals potential instability and
architectural concerns. Modularity metrics, such
as the average number of modified components
per commit (ANMCC), Index of Package Changing
Impact (IPCI), and Index of Package Goal Focus
(IPGF), indicate degradation risks (Li et al.,
2014). Cyclomatic Complexity (CC) reveals code
complexity and potential maintenance challenges,
while high duplication levels highlight modularity

Architectural Degradation Detection Strategies

v v

v v

Smell Detection and
Prioritization

Metrics-
Based Detection

Architectural Rule
Violations

Architectural
Recovery

Figure 2: Architecture degradation strategies in the context of dependencies

issues, complicating consistent updates and risking
inconsistent behavior.

When considering code metrics in the context
of cloud-native systems, we must account for the
decentralized codebase or at least for self-contained
code modules that do not have direct connections
across microservice components, which opens gaps.
When we use remote calls as the dependency
indicator, it is likely not enough to get a reliable
perspective because there are other dependencies
across microservices, as we suggested in the previous
section.

At the same time, we may argue that practitioners
do not pay attention to such non-obvious or
non-tracked dependencies. In explicit dependencies,
the source code explicitly states and traces the
relationship. For example, when one method calls
another, the code clearly states what is being called,
making it explicit. Implicit dependencies lack direct
connections or textual context that would lead a
developer to recognize them. It is similar to implicit
innovation when components do not directly invoke
other components (i.e., message queue). As Garland
and Shaw (Garlan and Shaw, 1993) suggest, the
implicit invocation is highly scalable and makes
components reusable, but we also lose execution
control and need data exchange encapsulated within
an event.

Recognizing various types of dependencies
(apart from the explicit ones) across microservice
components would open new pathways to re-apply
known metrics with better reliability measures
towards the overall decentralized system rather
than using the individual microservice perspectives
without details on their inter-dependencies. One
could question such dependencies qualitatively when
two microservices are dependent and what weights
can be expressed on different types of dependencies.
Certainly, different dependency types will present
different weights but also other properties alongside
their quantities. All these could be used when
reasoning about system evolution and the change
impact propagation across components and specific
artifacts to drive reviewers.

Highlights:

e Emphasizing dependency management as
key to addressing architectural degradation in
microservices.

4.2 Smell detection strategies

Smell detection and prioritization have been the
practice for many years, and most research would
point to tools like SonarQube or alternative tools for
the detection of anti-patterns. A smell is typically
an indicator of a deeper problem, not knowing what
the specific cause is, so it can be seen as a symptom.
Anti-pattern is a manifestation of a specific problem.

While most tools are designed to operate within
monolithic repository systems, challenges arise
when dealing with multiple repositories. Multiple
disjoint repositories make it difficult to detect
microservice anti-patterns (Cerny et al., 2023) that
span across multiple components. Basic approaches
use dependency graphs (Al Maruf et al., 2022; |Walker
et al., 2020), call graphs or syntax trees; however, also
plain rule-based marching checking has been (Tighilt
et al., 2023). If we consider the approaches using
service dependency graphs, we can generalize such
graphs as an intermediate system representation and a
product of architectural recovery; thus, the strategies
presented in (Baabad et al., 2020) blend. It is obvious
that the greater the intermediate system representation
we can get, the better analysis can be performed.
Thus, by recognizing and tracking all dependencies
across code and artifacts in microservices, more
reliable results can be provided to reviewers.

The second question to raise with regards to
intermediate system representation is whether it
can fit various frameworks and platforms; however,
tools like Oracle’s GraalVM show such direction is
possible, and other approaches (Schiewe et al., 2022)
indicate this applied to cloud system development
frameworks as well.

Still, the major question is whether smells and
anti-patterns are the proper strategies to use. While

it has been established as an approach to use, we
must notice that smells are symptoms. Moreover,
anti-patterns are only identified and described for
a limited number of problems after they reoccur
multiple times with negative consequences. They
seem to be a result of identified degradation that
is generalizable. Unless we detect them in a new
system version, they will be a very discrete indicator
of degradation.

On the other hand, dependencies are apparent
at a much lower level and do not need a prior
description of combined rules or graph glyphs in
code. Proper identification and management of
dependencies would likely indicate a problem even
without knowing there is an anti-pattern but not
vice versa. If we compare the changed system
versions, the impact can be more quantified than
using a collection of anti-patterns that will always
be limited. Likely, with proper details of different
types of dependencies, more anti-patterns could be
identified, and vice-versa, known anti-patterns could
be marched to dependency graphs.

Highlights:

* Highlighting the need for advanced metrics
and analysis tools tailored to the microservice
architecture’s unique challenges.

4.3 Architecture reconstruction
strategies

Architecture reconstruction and recovery in
microservice environments are pivotal for
maintaining system integrity and comprehending the
evolution of the system architecture over time. The
distributed nature of microservices complicates this
process, necessitating the analysis of dependencies
and interactions across multiple services and
infrastructure components. The task of architecture
reconstruction in microservice environments involves
not just the mapping of services and their interactions
but also understanding the underlying dependencies
and the rationale behind architectural decisions.
Recent advancements focus on automating the
extraction and analysis of architectural information,
combining both static codebases and dynamic
runtime behaviors (Alshugayran et al., 2018]).

The architecture reconstruction/recovery direction
(Walker et al., 2021), as mentioned with smell
and anti-pattern detection section, can be used for
question answering or as a documentation of the
system; there are typically multiple system views
extracted to enable human experts to reason about
the system. Alternatively, direct questions about the

system can be asked and answered. However, our
experience is that while we can recover individual
views, we do so with explicit dependencies or control
flows. There are no clues of how individual pieces
depend on each other and why. It is important
to augment these views, models, or representations
that result from the reconstruction with dependencies
that would enable stronger analysis on top of the
reconstruction process.

Highlights:

* Highlighting the need for advanced strategies
in detecting smells and identifying anti-patterns
tailored to microservice dynamics.

4.4 Architectural Rule Violation
Detection Strategies

Architectural rule violations highlight deviations
from the intended architecture, guiding developers to
adhere to specific design principles. For instance, a
common rule might enforce that service layers only
communicate through defined interfaces, preventing
direct data layer access from the Ul layer. Prioritizing
these rules by severity helps developers focus on the
most critical architectural integrity issues.

The effectiveness of these rules depends on
their ability to comprehensively capture the system’s
architectural dependencies. If certain dependencies
are overlooked, the rules’ capacity to enforce the
architecture weakens. Thus, keeping track of all
system dependencies is essential for the rules to
remain expressive and powerful.

Additionally, managing architectural rules
requires attention similar to system code, as these
rules can become outdated as the architecture
evolves. This necessitates a maintenance strategy for
the rules themselves, ensuring they are kept current
and reflective of the system’s architectural standards
and practices.

Highlights:

* Emphasizing the need for innovative methods
in architecture reconstruction and detecting rule
violations to preserve system integrity.

4.5 Implications

Concerning the dependencies, the established
strategies to detect architectural degradation seem
to be positioned at a higher level of abstraction.
Moreover, these strategies are difficult to apply in

a highly decentralized system with independent
services. For instance, to perform proper architecture
reconstruction, we need to access and review each
microservice codebase and manual approach of
the topic, given the pace with which we evolve
these systems. Similar efforts are needed to assess
the violation of architectural rules. = While an
approximation can be provided by static analysis
approaches, we still need to deal with platform
diversity, and tooling support is in its infancy.

As opposed to presented strategies, dependencies
are at the lower level and more fundamental elements
to build new tools on top of. They open new
pathways to identify issues, causes, and alternate
anti-patterns without their prior cataloging. They
can be used with architectural rules but will not
leave the burden of required maintenance if used as
a sole indicator of degradation. Moreover, using
augmented intermediate system representation with
identified and tracked dependencies, current metrics
could be utilized on the overall system rather than just
its components.

S MAINTANABILITY IN THE
CONTEXT OF MICROSERVICE
DEPENDENCIES

Maintainability within microservice architectures
emphasizes the facility to modify, extend, or “changes
software system with minimal effort”, aiming
to minimize error introduction during changes.
Essential to this concept is change impact analysis,
which primarily serves to detect and assess the
potential effects of modifications, rather than merely
limiting their ripple effect. This analysis is vital for
understanding the implications of modifications on
system maintainability, particularly in microservices
where dependencies are intricate.

Dependencies serve as a precise indicator of
how changes may influence maintainability, offering
insights into the specific areas of the system
affected. This precision aids in identifying the root
causes of potential maintainability issues, enabling
decision-makers to weigh the benefits of changes
against their impacts. Unlike composite metrics and
smells, dependencies elucidate the direct relationship
between changes and their effects, guiding the
consideration of alternative designs or strategies to
mitigate adverse outcomes.

Bass et al. and ISO 25010 define maintainability
through attributes such as modularity, reusability,
analysability, modifiability, and testability ((Bass
et al., 2021))). In the realm of microservices, adept

management of dependencies is crucial for bolstering
these attributes, highlighting the importance of
comprehensive change impact analysis to sustain
system integrity and flexibility. As illustrated in
Figure 3] understanding the quality attributes for
maintainability as outlined by ISO 25010 is crucial.
Modularity, a key maintainability attribute, entails
dividing a complex system into smaller, independent,
and interchangeable components, aiming for minimal
impact on other components when one is changed.
In the context of microservices, this translates to
designing each service to handle a specific function,
allowing them to operate cohesively within the larger
system. Although modularity seeks to enhance
maintainability, reusability, and clarity, achieving
it in cloud-native systems is challenging due to
the interconnected nature of microservices and
the distribution of global policies and knowledge
(e.g., role-based access control) across the system.
This necessitates careful tracking of dependencies
to manage scattered modularity effectively. One
proposed solution is to centralize shared logic in
importable libraries, though this approach may
conflict with cloud-native principles like those
outlined in the Twelve-Factor App methodology.

Modularity: Dependency tracing is crucial due
to complex inter-service interactions and policy
dispersion in microservices.

Reusability is the practice of designing software
components to be used multiple times across
different system parts or various projects, aiming to
save development time and resources by utilizing
existing, validated components. This concept,
fundamental to software engineering, enhances
efficiency and reduces redundancy. While modularity
lays the groundwork for reusability, the evolution
towards service-oriented architectures initially
amplified its application. However, the shift towards
scalable, self-contained microservices introduces
complications, such as latency and bottlenecks,
which challenge the straightforward application of
reusability principles. Against this backdrop, the
serverless approach offers a promising pathway to
circumvent the limitations posed by microservices.
Distinguished from traditional server-centric models,
the serverless approach focuses on executing
backend services on an as-used basis without
requiring the application developers to manage
server infrastructure. This paradigm allows for the
creation and deployment of functions that execute
in response to events, facilitating the reuse of these
functions across different parts of a system or even
across projects. By abstracting away the underlying
infrastructure management, the serverless approach

Maintainability

Y A 4

Y

Modularity Reusability

Analyzability

Modifiability Testability

Figure 3: Quality attribute for maintainability according to ISO 25010

mitigates common microservice challenges, making
it an effective strategy for achieving reusability in the
context of modern software development demands.

Reusability: Scalability and independence in
microservices challenge reusability, pointing
towards serverless solutions.

Analysability indicates the ease with which
software can be analyzed or examined for various
purposes, such as understanding its structure,
identifying potential issues, debugging, and making
improvements. An analyzable system facilitates
effective inspection, diagnosis, and comprehension
by developers and other stakeholders. Microservices
lead us to decentralization, and with the separation
of duty, developers manage their realm but do not
have the system’s big picture. While most currently
adopted approaches push for tracing, it is greatly
dependent on developers’ consistency in proper
logging and willingness to sacrifice performance.
Static analysis can give a fast approximation of the
system, but tools lack microservices.

Analysability: The decentralized nature of
microservices necessitates improved tracing and
static analysis for effective system comprehension.

Modifiability is the ease with which a system
can be modified or adapted to meet changing
requirements. It is a crucial quality attribute as
software evolves to accommodate new features,
address bugs, and respond to changing user needs.
A highly modifiable system allows developers to
make modifications efficiently, minimizing the risk of
introducing errors and reducing the time and effort
required for updates. In this perspective, we see
the greater potential of dependency management,
which is proper change impact analysis can reduce
the negative effect of improper design. However, to
enable such analysis, the system must be analyzed
first, pointing to the importance of the prior concept.

Modifiability: Robust dependency management
facilitates efficient and error-minimizing
modifications in microservices.

Testability is the ease with which a software
system can be tested to ensure that it meets its
specified requirements and behaves as intended. A
highly testable system is designed in a way that
facilitates the creation, execution, and maintenance
of tests. While not directly related, it brings a
great discussion. First, tests are expensive, and
static analysis might provide answers with much
less resource demands. Tests need maintenance,
and there are dependencies between tests and the
system, so there are dependencies between system
changes and tests. That said, system change might
not require a complete system test, but with properly
managed dependencies between tests and modular
system design, specific tests could be triggered to run
to minimize resource usage. Moreover, changes in
the system could indicate which specific tests need
to be changed, which would be especially useful for
end-to-end testing.

Testability: Dependency-aware testing strategies
are key to optimizing test maintenance and
resource use in microservices.

Figure 4] illustrates the concept of architectural
degradation and its influence on system
maintainability. The roots represent system
dependencies, essential for nourishing and
stabilizing the architecture, shown as the tree’s
trunk. As the trunk branches out, signifying the
system’s architecture, the leaves depict the aspect
of maintainability. The barren branches indicate an
unmaintained system, suggesting that neglecting the
underlying dependencies leads to the deterioration
of the system’s structural integrity. This visual
metaphor emphasizes that maintaining the system’s
architecture depends on the careful management of
its dependencies, which, if mishandled, can lead to
architectural degradation and a consequent decline in
maintainability.

Ma:nta:nab:l:ty

Architecture

De_pe_nde_nc?e_s

Un-maintained
Sys‘tem

4

<——— Architecture
Degro\do\‘tion

Figure 4: Visualizing root cause of architectural degradation

6 CONCLUSIONS

In this paper, we have highlighted the importance of
dependency management in microservice systems
when dealing with maintainability. While evolving
systems must be managed to mitigate architectural
degradation and various approaches exist for
mono-repo systems, there is still a gap in strategies
that would meet the needs of microservices. We
highlight the potential of dependency management
in microservices to aid change impact analysis and
discuss the perspective within the context of currently
recognized strategies. Using managed dependencies
as an instrument to assess changes in decentralized
systems could aid developers in their efforts and
help them reach better outcomes more effectively.
However, with this perspective, more research is
necessary.

Further research is essential to bridge the current
gaps in dependency management strategies for
microservices, aiming to devise solutions that are
both scalable and adaptable to the rapid pace of
technological advancements. Pursuing these research
directions will not only address the immediate
challenges faced by developers but also lay the
groundwork for more resilient and maintainable
microservice architectures in the future.

ACKNOWLEDGEMENTS

This work is based upon work supported by
the National Science Foundation under Grant No.
2409933.

REFERENCES

(2023). Iso 25000 portal. https://15025000.com/
index.php/en/iso-25000-standards/iso-25010/57-
maintainability. Accessed: 2023-12-20.

(2023). Microservices adoption in 2020. |https://www.
oreilly.com/radar/microservices-adoption-in-2020/.
Accessed: 2023-12-20.

Al Maruf, A., Bakhtin, A., Cerny, T., and Taibi, D.
(2022). Using microservice telemetry data for system
dynamic analysis. In 2022 IEEE International
Conference on Service-Oriented System Engineering
(SOSE), pages 29-38. IEEE.

Alshugayran, N., Ali, N., and Evans, R. (2018). Towards
micro service architecture recovery: An empirical
study. In 2018 IEEE International Conference on
Software Architecture (ICSA), pages 47-4709.

Azadi, U., Fontana, F. A., and Taibi, D. (2019).
Architectural smells detected by tools: A catalogue
proposal. In Proceedings of the Scientific Workshop
Proceedings of XP2016, XP ’16 Workshops. IEEE
Press.

Baabad, A., Zulzalil, H. B., Hassan, S., and Baharom, S. B.
(2020). Software architecture degradation in open
source software: A systematic literature review. [EEE
Access, 8:173681-173709.

Bass, L., Clements, P., and Kazman, R. (2021).
Software Architecture in Practice: Software Architect
Practice_c4. Addison-Wesley.

Besker, T., Martini, A., and Bosch, J. (2018). Technical
debt cripples software developer productivity: A
longitudinal study on developers’ daily software
development work. In Proceedings of the 2018
International ~ Conference on Technical Debt,
TechDebt 18, page 105-114, New York, NY,
USA. Association for Computing Machinery.

Bogner, J., Fritzsch, J., Wagner, S., and Zimmermann,
A. (2021). Industry practices and challenges for the

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010/57-maintainability
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010/57-maintainability
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010/57-maintainability
https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://www.oreilly.com/radar/microservices-adoption-in-2020/

evolvability assurance of microservices. Empirical
Software Engineering, 26(5):104.

Cerny, T., Abdelfattah, A. S., Maruf, A. A., Janes, A., and
Taibi, D. (2023). Catalog and detection techniques of
microservice anti-patterns and bad smells: A tertiary
study. Journal of Systems and Software, 206:111829.

Cerny, T., Donahoo, M. J., and Trnka, M. (2018).
Contextual understanding of microservice
architecture: current and future directions. ACM
SIGAPP Applied Computing Review, 17(4):29-45.

Conway, M. E. (1968). How do committees invent.
Datamation, 14(4):28-31.

d Aragona, D. A., Pascarella, L., Janes, A., Lenarduzzi,
V., Penaloza, R., and Taibi, D. (2023). On the
empirical evidence of microservice logical coupling.
a registered report.

Das, D., Maruf, A. A., Islam, R., Lambaria, N., Kim, S.,
Abdelfattah, A. S., Cerny, T., Frajtak, K., Bures, M.,
and Tisnovsky, P. (2022). Technical debt resulting
from architectural degradation and code smells: A
systematic mapping study. SIGAPP Appl. Comput.
Rev., 21(4):20-36.

Dijkstra, E. W. (1982). On the Role of Scientific Thought,
pages 60—66. Springer New York, New York, NY.

Fontana, F. A., Roveda, R., Vittori, S., Metelli, A,
Saldarini, S., and Mazzei, F. (2016). On evaluating
the impact of the refactoring of architectural problems
on software quality. In Proceedings of the
Scientific Workshop Proceedings of XP2016, XP 16
Workshops, New York, NY, USA. Association for
Computing Machinery.

Gamma, E., Helm, R., Johnson, R., and Vlissides,
J. (1993). Design patterns: Abstraction
and reuse of object-oriented design. In
ECOOP’93—O0bject-Oriented Programming: 7th
European Conference Kaiserslautern, Germany, July
26-30, 1993 Proceedings 7, pages 406—431. Springer.

Garlan, D. and Shaw, M. (1993). An introduction
to software architecture. In Advances in software
engineering and knowledge engineering, pages 1-39.
World Scientific.

Haendler, T., Sobernig, S., and Strembeck, M. (2017).
Towards triaging code-smell candidates via runtime
scenarios and method-call dependencies. In
Proceedings of the XP2017 Scientific Workshops, XP
’17, New York, NY, USA. Association for Computing
Machinery.

Larman, C. et al. (1998). Applying UML and patterns,
volume 2. Prentice Hall Upper Saddle River.

Lenarduzzi, V. and Sievi-Korte, O. (2018). On the negative
impact of team independence in microservices
software development. In Proceedings of the
19th International Conference on Agile Software
Development: Companion, pages 1-4.

Li, Z., Liang, P., Avgeriou, P., Guelfi, N., and Ampatzoglou,
A. (2014). An empirical investigation of modularity
metrics for indicating architectural technical debt. In
Proceedings of the 10th International ACM Sigsoft
Conference on Quality of Software Architectures,

QoSA ’14, page 119-128, New York, NY, USA.
Association for Computing Machinery.

Martini, A., Sikander, E., and Madlani, N. (2018).
A semi-automated framework for the identification
and estimation of architectural technical debt: A
comparative case-study on the modularization of a
software component. Information and Software
Technology, 93:264-279.

Panichella, S., Rahman, M. 1., and Taibi, D. (2021).
Structural coupling for microservices. arXiv preprint
arXiv:2103.04674.

Parnas, D., Clements, P, and Weiss, D. (1985).
The modular structure of complex systems.
IEEE Transactions on Software Engineering,
SE-11(3):259-266.

Parnas, D. L. (1972). On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15(12):1053-1058.

Rademacher, F., Sachweh, S., and Ziindorf, A. (2020).
A modeling method for systematic architecture
reconstruction of microservice-based software
systems. In Enterprise, Business-Process and
Information Systems Modeling, pages 311-326,
Cham. Springer International Publishing.

Schiewe, M., Curtis, J., Bushong, V., and Cerny,
T. (2022). Advancing static code analysis with
language-agnostic component identification. [EEE
Access, 10:30743-30761.

Terzi¢, B., Dimitrieski, V., Kordi¢ (Aleksi¢), S., and
Lukovié, 1. (2018). A model-driven approach
to microservice software architecture establishment.
pages 73-80.

Tighilt, R., Abdellatif, M., Trabelsi, 1., Madern, L., Moha,
N., and Guéhéneuc, Y.-G. (2023). On the maintenance
support for microservice-based systems through
the specification and the detection of microservice
antipatterns. Journal of Systems and Software,
204:111755.

Walker, A., Das, D., and Cerny, T. (2020). Automated
code-smell detection in microservices through static
analysis: A case study. Applied Sciences,
10(21):7800.

Walker, A., Laird, I., and Cerny, T. (2021). On automatic
software architecture reconstruction of microservice
applications. Information Science and Applications:
Proceedings of ICISA 2020, 739:223.

