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Abstract—This paper explores the application of orthogonal
projectors to simplify the analysis of complex power system
dynamics. By leveraging modal information, orthogonal projec-
tions map high-dimensional dynamics onto a lower-dimensional
subspace, enabling projected state variables to effectively depict
the system’s progression over time. A theoretical framework
and its practical application are presented, illustrating how this
approach enhances the analysis of high-dimensional dynamics.
The method is validated using a two-machine infinite bus sys-
tem and extended to the New England 39-bus system. Results
demonstrate that complex trajectories in an n-dimensional space
can be efficiently projected onto a 2D subspace, facilitating
the observation of specific dynamics, such as those with an
electromechanical nature.

Index Terms—orthogonal projectors, eigenvectors, model order
reduction, oscillations, power system dynamics.

I. INTRODUCTION

The power grid is a complex dynamical system that can be
studied by observing its progression over time in response to
external excitations such as short circuits, changes in input
setpoints, and equipment outages. Mathematically, we can
use a set of differential and algebraic equations to model its
behavior [1]. While this model provides a good representation
when studying the entire system response, it does not allow
for the decoupling of specific dynamics to observe individual
contributions to system behavior.

To approach this matter, a linearization around an equi-
librium point is employed. This approach enables the com-
putation of modal information—specifically eigenvalues and
eigenvectors—providing a deeper understanding of each dy-
namic component within the system. However, interpreting
the participation of each mode in the state variables is not
straightforward. Engineers and researchers typically utilize this
modal information alongside phase planes of state variables.
These illustrate state variables over time, indicating whether
the system is within stability margins [2]. However, in systems
with high dimensionality, phase planes of variables lack real
interpretability of system dynamics.

Projectors are linear transformations that map vectors onto
a subspace, preserving direction and magnitude. Orthogonal
projectors ensure that subspaces onto which vectors are pro-
jected are orthogonal, facilitating clear separation between
them [3]. This paper presents the use of orthogonal projectors
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to analyze complex dynamics of n-dimensional power systems
through projections onto lower subspaces. These retain rele-
vant dynamic system behavior while reducing its complexity
for analytical purposes. Several engineering applications use
projections, for example, in mechanical systems, they have
been utilized to decompose constraining forces, allowing for a
clearer analysis of the system’s behavior [4]. In computational
analysis, they are applied to least squared residual estimations,
which measure the quality of fits in regression analysis [5].
In robotics, orthogonal projections are useful to assess the
vibration accessibility in the control of flexible robotics [6].

Some applications of orthogonal projections in power sys-
tems include model order reduction, where techniques like
proper orthogonal decomposition (POD) [7] provide a frame-
work for determining efficient reduced-order dynamic models
for large-scale systems [8]. Other applications include the
analysis and characterization of nonlinear interarea oscillations
through the POD-Galerkin characterization [9], and extraction
of dynamic patterns from wide-area measurements [10]. While
these methods indirectly use orthogonal projections, they do
not apply them directly. Recently, the authors proposed using
orthogonal projections for oscillation control applications. In
this case, orthogonal projectors are used to target the damping
action of one mode at a time in a multi-mode system without
affecting other modes [11]-[13].

The main contribution of this work is the theoretical pro-
cedure and application of orthogonal projections to power
systems models for analyzing their dynamics in lower sub-
spaces. In the particular case of frequency oscillations, an
appropriate projection can facilitate the study of dynamics that
otherwise can be hard to observe and analyze. The rest of the
paper is structured as follows. Section II details the theory
behind projectors and how to define bases using the eigen-
value decomposition of the system matrix. Section II presents
two application examples of projectors in power systems, in
addition, further potential applications are discussed. Finally,
section IV summarizes the conclusions of this work.

II. PROJECTIONS

Consider a dynamical system modeled using a set of
differential-algebraic equations:

= f(x,y,u) (D
0=g(z,y,u) (2)



where the states variables x € R", algebraic variables y € RE,
and inputs v € R™ are related by the multidimensional
functions f(-) and g(-). For a given fixed input w,., the

linearization around an equilibrium point (2, y.)7 is
Ax = or Az + or Ay + or Au
ox cq. dy cq. ou cq.
= 1Az + JQAy + JgAU 3)
0= 99 Az + 99 Ay + 99 Au
or cq. oy cq. ou cq.
= J4AI + J5Ay + JgAu (4)

Now, if we do not consider changes in the input Awu, the
model is simplified to

0= J,Ax + JsAy (6)

Now, by eliminating algebraic variables Ay using Kron’s
reduction, we get

Ad = [J; — JoJ5 ' Ju] Az (7)
N—————
A

A spectral decomposition is performed on the system matrix
A using a similarity transformation: V' AV = A, where V is
a matrix of eigenvectors with v; € C™*! being the i-th column
corresponding eigenvector, and A = diag{A1, Az, - , A\, } is
the diagonal matrix of eigenvectors with \; € C being the i-th
corresponding eigenvalue.

Let us say that we are interested in projecting the n-
dimensional dynamics into a 2-dimensional space that captures
the oscillatory behavior of a k-th targeted mode (described by
eigenvalues A\; and Apy; = A} and corresponding eigenvec-
tors vy and v = vy, with * being the complex conjugate
operator). Then, we can select a projection base:

N = [Ul Vo vn} (8)

with N € C™*("=2) Note that the eigenvectors are, in general,
complex-valued vectors. Then, equivalently we can consider a
real basis (see Appendix A) as follows:

Vg—1 Vk+3

N= [Ny Np] e Rnx(n=2) 9)
where

'Uk—l] (10)
Ny = [R(ves2)  S(vrga) R(vn) S(va)]  AD

with N the collection of all real eigenvectors and N5 the real
representation of complex eigenvectors (all but targeted mode).
This matrix represents the basis of an (n—2)-dimensional sub-
space related to all but the k-th targeted mode. Consequently,
an orthogonal subspace to span(/N) will describe the dynamics
related to only the mode of interest. The basis of such subspace
is given by

N]_ = [Ul V2

M = null(N) € R"*? (12)

In passing from Ax to its orthogonal projection z €
range(M), the difference z — Az must be orthogonal to
range(M). We can set z = M«, with « being the components
of the projection onto the basis M. Similarly, we can define the
orthogonal projection and components for the basis matrix N.
The components of the projections onto span()) and span(N)
are given by

a=[(M"M)"'"M"] Az, an, = [(NTN)"'NT] Az (13)
—_— —_—
S S’VL
with o« € R? and «,, € R"~2). The orthogonal projectors
onto range(M) and range(V) are

P=MMTM)"*MT (14)
P, =N(NTN)!NT (15)
respectively. For details see Appendix B [3].
To get a clear grasp, consider the following system:
T = x2 + k123 (16)
.’fz = -2 + kg(Eg (17)
3 = k3x3 (18)

with k1,ks > 0 and k3 < 0 to ensure stability. It is simple
to notice that this system is, in essence, a harmonic oscillator
perturbed by z3 dynamics. Given an initial condition ¢y =
[#10 @20 w30]7 and the constants k1, k2, and k3, the explicit
solution is given by

l‘l(t) =y sin(t) -4 COS(t) + (k2x30 — Cgk:;) Gkst (19)
22(t) = Cysin(t) — Co cos(t) + Caelst (20)
Qﬁg(t) = .’)Sgoek?’t (21)

where Cl = k‘gﬂ?go — T10 — k‘303, 02 = T20 — Cg, C3 =
K/(k‘% + 1), and K = koksxsg — k1x30.

For zg = [1.24 0.65 0.45]7, k; = 0.1, ko = 1.5, and
ks = —0.1, the system solution is shown in Fig. la. Note
that (z1, 22, 23) dynamics are projected onto two trivial 2D
subspaces: ;1 — 3, and x; — z3, shown in blue. The subspace
x1 — xo (Fig. 1b) resembles an oscillatory behavior in steady-
state, however, the other (Fig. 1c and d) do not capture any
particularly comprehensible behavior.

Next, based on the eigenvalue/eigenvector decomposition,
projections can be defined. The system matrix is given by

0 1 Kk 0 1 01
A=1]-1 0 kf=|-1 0 15
0 0 ks 0 0 -01
whose eigenvectors and eigenvalues are
0.707 0.707 0.770 j 0 0
V = 0.707¢ —0.7071i —-0.345|, A=1|0 —j5 O
0 0 0.534 0 0 -01
In Fig. 1d the projection using the basis M =

[R(v1),S(v1)] is shown. At first, this may sound logical since
it comprises the eigenvalue related to the targeted oscillatory
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Fig. 1. Dynamical system a) 3D trajectory, and projections onto: b) x1-x2
subspace, ¢) x1-z3 subspace, d) x2-z3 subspace, and e) L v3 subspace.

mode. Nevertheless, it only depicts the same information as
the z1-x2 plane. Now, take the basis of the desired projected
subspace as M = null(vz) € R3*2 ie. two vectors on
the plane orthogonal to the dashed red line on Fig. la.
Then, the components of the projections onto span(M) are
given by a = Sz = (MTM)~*M7Tx and depicted on the
red projection plot in Fig. le. The projection onto the a-
plane shows only the behavior related to the complex mode:
A1,2 = %, thus describing a harmonic oscillator.

In summary, the concept of projections becomes useful
when the objective is to depict, in a lower-order system,
some eigenvalue-driven dynamics of interest. In a linearized
system, these dynamics are fundamentally related to the eigen-
decomposition of the system matrix. Consequently, system
eigenvectors, and proper basis definition, define hyper-planes
where relevant dynamics are projected.

III. APPLICATIONS

Projections of power system dynamics may become useful
when trying to unfold complex interactions among compo-
nents of the system. In this sense, a linear model of the system
representation or a linearization around an equilibrium point is
considered to ultimately get the proper projection matrices. In
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Fig. 2. TMIB system diagram.

the following subsections, a linear model of a two-machine
system and a nonlinear model of the IEEE 39-bus system
are examined. Orthogonal projections are applied to reveal the
oscillatory behavior of system modes.

A. Two-machine infinite bus (TMIB) system

Consider the system of Fig. 2 modeled using the SG
classical model. The mathematical representation with state
variables: angle § [rad] and speed w [p.u.] of each generator,
is as follows

déy/dt = ws(wy — 1) (22)
2H dw1/dt = Py1 — Pe1 — Kg1 (w1 — 1) (23)
dbs/dt = ws(wa — 1) (24)
2Hodws /dt = P — Py — Kaa(ws — 1) (25)

with w; = 1207 rad/s. Given the two generators’ operation,
the electric powers P,; and P,.5 depend on both: the individual
generator angle and angle difference.

Consider the system with the following parameters:

P,1=1pu., B =105pu, H =5s., K4z =6 p.u.
Ppo=1pu., Ey =1.05p.u, Hy =5s., K45 =6 p.u.
Xsc1 = Xsg2 =02 pau., X1 = X2 =0.1 pu.
Xr1=Xp2=04pu., Xp3 =02 pu.

The system is in steady-state and a three-phase short circuit
occurs at bus 3, which is self-cleared after 100 ms. The phase
plane system dynamics is complicated since it is composed of
four states. We can arbitrarily select three or two variables to
generate a 3D or 2D description, respectively. For example,
in Fig. 3a shows the phase plane of variables 1, d2, and wy,
Fig. 3b and c show the phase plane of SG1 variables and SG1-
SG2 difference, respectively. Noticeably, it is hard to draw any
conclusion from these graphical descriptions of the dynamics.

From the system eigen-decomposition, two oscillatory
modes are present. Mode 1 (local): A2 = —0.3 £ j9.44,
f = 1.49 Hz, mode shapes in counter-phase 91.8°(w1),
—88.2°(w2), describes the power exchange between SG1 and
SG2. Mode 2 (interarea): A3 4 = —0.3 £ j5.57, f = 0.89 Hz,
mode shapes in phase 86.9°(w), 86.9°(ws), represents the
energy trade of the two SGs together with the infinite bus.

Now, when the state vector is projected over the subspace
of the modes of interest, we can get interesting representations
of the system dynamics. Fig. 3d and e show these projections
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Fig. 3. TMIB system a) 3D trajectory, b) SG1 phase plane, ¢) SG2 phase
plane, d) mode 1 (SG1-SG2) subspace, and e) mode (SG1+SG2-Infinite bus)
2 subspace.

onto the subspaces related to the local and interarea modes,
respectively. From these projected dynamics it is clear that
mode 1 is not significantly excited (smaller amplitude), and
mode 2 exhibits a much pronounced excitation and lower oscil-
lation frequency. Particularly from this last one, the harmonic
oscillator plus damping behavior is explicit, which confirms
the capturing of the mode dynamics from the initially com-
plex behavior. Overall, the system evidences a good stability
margin, i.e., both projected dynamics are far from any saddle-
node point.

B. 39-bus system

A nonlinear model of the IEEE 39-bus system is used to
validate the application of projections. Simulations are carried
out in MATLAB using a two-axis model for SGs, with IEEE
Type 1 exciter, standard governor model, and classical load
flow formulation for the grid. This system accounts for 100
states and 108 algebraic variables. Data is taken from [14].

Generators’ speed dynamics after a 5-cycle self-cleared fault
at bus 20 are shown in Fig. 4. The response is very complex
and composed, to a significant degree, of the interaction of the
nine electromechanical modes present in this system. However,
it is unclear to what extent the dynamics are dominated by
some modes more than others. Under this scenario, projections
can become handy by separating dynamics related to each
mode. Fig. 5 shows the projections of the entire state vector
(all 100 variables) onto a 2D space related to each of the
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Fig. 4. 39-bus system SG speed dynamics.

nine electromechanical mode subspaces. The frequency and
damping ratio of each mode are indicated on each subplot.
From the projected dynamics, it is clear that the main excited
mode (dominant) is the 0.56 Hz mode, which corresponds to
the interarea mode between SG1 and all the rest of the gen-
erators combined. However, the response has a not negligible
contribution from the 0.91, 0.97, 1.08, and 1.13 Hz modes,
giving the response its complex characteristic. Certainly, local
modes of 1.19, 1.38, 1.39, and 1.40 Hz are not significantly
excited.

These results highlight the ability of projections to depict
uncoupled dynamics in the projected subspaces, considering
the system’s dimension, complexity, and nonlinearity. Note
that, the accuracy of the results depends on the linearity of
the dynamics around the equilibrium point, i.e., the validity of
the linearization.

C. Discussion

The concept of projected dynamics described in this paper
has been shown to successfully unfold complex dynamics
in lower-dimension planes. Such capability finds practical
applications in areas such as:

Oscillation control: projected dynamics that describe ex-
cited modes after an event on the system are useful to display
control systems that can utilize these planes to attenuate dom-
inant modes. In fact, in [11]-[13], the authors have exploited
these ideas by employing a discrete change in the equilibrium
point in projected spaces. By incorporating inverter-based
resources (IBRs) that can provide a step-wise change in their
power output, the oscillations of dominant excited modes
are significantly reduced. Orthogonal projectors are of use to
project onto dominant modes-related subspaces and define the
required power injection from controllable components.

Dynamics classification: the description of excited modes
onto projected subspaces allows the understanding of fun-
damental or critical dynamics behind an event in the power
system. This permits the classification of the underlying nature
of an event: voltage-driven, electromechanical oscillations,
frequency-driven, controller-related (governor, AVR, PSS, etc),
and IBR-related. This classification can also be directly related
to relevant locations, elements, controllers, and/or variables
through participation factors. Particularly, for IBRs where
their dynamic interactions with the power grid are not well
understood and new unknown connections can unravel. These
event-specific dynamics for situational awareness can provide
useful information to operators when the power system is
subjected to a disturbance.
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IV. CONCLUSION

This paper presents the application of orthogonal projectors
in power systems. This technique allows the description of
the system behavior in a lower-dimension space, that captures
dynamics of interest related to its modes. To do so, the system
linearization and eigen-decomposition define the proper basis
of projected subspaces and the corresponding projection trans-
formations. A two-machine infinite bus system and the New
England 39-bus system are used to validate the use of orthogo-
nal projectors. Results show the ability of projections to depict
uncoupled dynamics in the projected subspaces, considering
the system’s complexity and dimension. This is particularly
useful when the objective is to capture specific eigenvalue-
driven dynamics, such as electromechanical oscillatory modes
in power systems.

APPENDIX A
COMPLEX TO REAL EIGENVALUES/EIGENVECTORS

Consider a linear transformation A € R™*" that acts onto
real eigenvectors v; € R™,Vi. From the definition of the
eigenvalue-eigenvector pair:

Av; = N\, Ai=a+jb€(C,
v; = %(’UZ) +]%(Uz) S (C”Nz

(26)
27

then, separating into real and imaginary parts for Av;, we have

> (28)

a

%()\Z’Ul) = aER(vZ-) — b%(’l)z) =V (

oy

amics onto electromechanical modes.

with V = [R(v;) $(v;)] € R"*2. Then, rearranging the
equivalency

AV[V( > v()} Vw (30)

A
which shows that the complex eigenvalue/eigenvector equa-
tion Av; = Av; with \; € C,u; € C™ is equivalent to
AV = VA with V € R"*2 A € R%2¥2,
An alternative way to see this equivalency is by using the
polar form of the eigenvalue \; = 7£6 = |\;|(cos 0 + j sin 0).
Then, the matrix A can be expressed as

A= |\ ( ) = |\il - R—g)

where |)\;| can be seen as an scale factor and R(_g) as a
clockwise rotation. In this definition, A is defined as the real
standard form of the 2 x 2 matrix A with complex eigenvalues
A12 = a % jb. Now, consider the following change of basis
V1AV = A, with

b
a

a
—b

sin 6
cos

cosf

—sin@ @1

B:={v; =R(V),v2 =S(V)} (32)

a basis in R?. The matrix A acts on B as
Avy = avy — buy (33)
Avy = bvy + avy (34)

which means that a linear transformation T' € R? with operator
A in the canonical basis By is given by A in the basis B, i.e.

Tlg,=A 5 [Tlg=A (35)

with V' = [v;  v9] as the change of basis matrix.



APPENDIX B
ORTHOGONAL PROJECTORS

Given a vector z in the space R", we can formulate a
projection into a lower dimensional space by using orthogonal
projectors. In general, an orthogonal projector onto a 7-
dimensional subspace with 7 < n can be constructed from
an arbitrary basis, not necessarily orthogonal.

Suppose that an r-dimensional subspace is spanned by r lin-
early independent vectors {mj,...,m,}, and let M € R™*"
be the matrix whose j-th column is m;. In passing from x to
its orthogonal projection z € range(M), the difference z — z
must be orthogonal to range(M ). This is equivalent to stating
that z must satisfy

m¥(z — ) =0,Vj. (36)

J

Since z € range(M) we can set z = Ma, a € R” and write
the condition as

m] (Mo —z) =0,Vj (37)
or equivalently
M (Ma—2)=0e M"Ma=M"z. (38)
Now, given that M is full column rank (rank(M) = r),
MT™ M is nonsingular. Therefore
a=[(MTM)'MT] z. (39)
Finally, the projection of z, z = M« is
2= [MM"M)"'M" ]|z (40)

P

where P € R™*™ is the orthogonal projector onto range(M).

Note that this same analysis can be carried out for any
subspace of R”. Particularly for the subspace orthogonal to
span(M), let us define N = null(M) € R™ (=7 This
subspace, together with span(M), completes the description
of the n-dimensional space.

Then, we can define the orthogonal projection of = onto
span(N) as z, = N, € range(N), and similarly to the case
with M, we get

= [(NTN)"'N"] 2
[N(N"N)"'NT]z

P

(41)
(42)

Zn =

with P, € R"* ™ being the orthogonal projector onto
range(N). It is important to highlight that the vector x can
be expressed as a sum of its projections onto the orthogonal
subspaces range(M) and range(N) =null(M) as

rt=z+2z,=Px+ P,x = Mo+ Na,. 43)
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