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ABSTRACT

Objectives: Bacterial persisters are a subpopulation of multidrug-tolerant cells capable of surviving and
resuming activity after exposure to bactericidal antibiotic concentrations, contributing to relapsing in-
fections and the development of antibiotic resistance. In this study, we challenge the conventional view
that persisters are metabolically dormant by providing compelling evidence that an isogenic population
of Escherichia coli remains metabolically active in persistence.
Methods: Using transcriptomic analysis, we examined E. coli persisters at multiple time points following
exposure to bactericidal concentrations of ampicillin (Amp). Some genes were consistently upregulated in
Amp treated persisters compared to the untreated controls, a change that can only occur in metabolically
active cells capable of increasing RNA levels.
Results: Some of the identified genes have been previously linked to persister cells, while others have not
been associated with them before. If persister cells were metabolically dormant, gene expression changes
over time would be minimal during Amp treatment. However, network analysis revealed major shifts in
gene network activity at various time points of antibiotic exposure.
Conclusions: These findings reveal that persisters are metabolically active, non-dividing cells, thereby
challenging the traditional view that they are dormant.
© 2024 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Significance statement

1. Introduction

Bacterial persisters are a subpopulation renowned for their

study challenges the long-held assumption that persisters are
metabolically inactive and that persisters are not as dormant
as previously thought.

Bacteria thrive in a wide range of harsh environments, requiring

multidrug tolerance and remarkable ability to survive bacte- them to adapt to stress by modifying their metabolic states—a phe-
ricidal antibiotic treatments; understanding their formation nomenon widely known as persistence [3,4]. All free-living bacteria
and long-term survival presents significant challenges. These employ this bet-hedging strategy to survive adverse conditions [4].
persisters play a critical role in driving antibiotic resistance, Persisters are a small fraction of the bacterial population, emerging
underscoring the urgency of deepening our knowledge about from inherent phenotypic heterogeneity rather than genetic muta-
them as the threat of resistance continues to escalate. Our tions. These cells exhibit reduced cellular activity and do not di-

vide under stress [5]. When the threat subsides, persister cells can
resume growth, often leading to recurrent infections that require
prolonged and repeated antibiotic therapy. For instance, Mycobac-

terium tuberculosis (which causes tuberculosis) and Mycobacterium
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avium (which causes non-contagious lung disease), treatment du-
rations can extend to about one year for M. tuberculosis and up
to 2 years for M. avium. Despite these prolonged treatments, re-
lapse rates remain high [6,7]. Recent studies indicate that persis-
ters also possess a high mutation rate [8], which has been linked
to the evolution of antibiotic resistance—a pressing public health
concern. Antibiotic-resistant bacteria are now the leading cause of
death worldwide, surpassing other pathogens, including those re-
sponsible for diseases like HIV or malaria [9]. Projections suggest
that by 2050, antibiotic-resistant infections could result in 10 mil-
lion deaths annually 2050 [10,11] unless significant measures are
taken to combat this troubling trend.

Another survival strategy bacteria employ in harsh environ-
ments is the formation of biofilms—complex communities of bac-
teria encased in a self-produced protective matrix that adheres to
surfaces. Biofilms are notoriously challenging to eradicate due to
their robust defense mechanisms and intricate architecture [12-
14], often containing ~1% persister cells [15,16]. These persisters
can endure stress (i.e., bactericidal antibiotic concentrations) en-
abling the biofilm to regenerate after susceptible cells are elimi-
nated and conditions improve [17,18]. To fully grasp how bacteria
survive in natural settings, we must first understand their survival
strategies in controlled laboratory conditions.

Despite being discovered over 8 decades ago, the molecular
mechanisms underlying it remain unclear and subject to debate.
A promising method to identify the key genes and regulatory net-
works involved in persistence is through transcriptome profiling
of persister cells using RNA sequencing (RNA-Seq), which captures
the full set of mRNAs synthesised by cells at a specific moment.
However, due to the low abundance of persisters and the transient
nature of persister cells, studying their transcriptomic profile is
highly challenging. As a result, many previous transcriptomic stud-
ies have employed sub-bactericidal concentrations or used bacteri-
cidal antibiotic concentrations for a short time [19,20]. These ap-
proaches often include populations of short-term tolerant cells—
dividing, slow-growing cells—that may not represent true persis-
ters. It is important to note that short-term tolerance can mask
persistence, and evidence shows that the two phenomena are dis-
tinct [21]. Our recent findings further demonstrate that high per-
sistence levels do not correlate with high short-term tolerance
levels [22]. Therefore, it is crucial to use bactericidal antibiotic
concentrations when investigating the transcriptional regulatory
mechanisms of persisters [22].

2. Results and discussion

The purpose of this work is to determine whether antibiotic
persisters are truly metabolically inactive (completely dormant), as
often cited, or if they actively respond to environmental stimuli by
altering gene expression. An overview of the experimental plan is
shown in Fig. 1. Cells were grown to stationary phase, and RNA
was extracted from a persister subpopulation treated with bacte-
ricidal doses (0.1 mg/mL) of ampicillin (Amp) following dilution
in fresh media (Fig. 1). The treatment duration was sufficient to
eliminate short-term tolerant cells. RNA sequencing was then per-
formed to analyse the transcriptome profile of the persister cells.
The E. coli Dh5aZ1 strain exhibited a biphasic cell death curve,
with short-term tolerant cells dying rapidly in the first phase,
while the remaining persisters showed a slower, steady decline
starting at ~2 h. Rapid filtration [23,24] and flash freezing was em-
ployed to remove dead cells and minimise RNA degradation.

Contrary to the commonly held assumption of a global metabolic
shutdown in persister cells, we observed differential gene expression
within these cells. We compared the transcriptome profiles at differ-
ent time points to investigate dynamic changes in response to bac-
tericidal Amp treatment (0.1 mg/mL). By comparing the untreated
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population at 0 h with persister subpopulations at 3 h, 6 h, and 24
h post-treatment, we identified shifts in gene expression. Specifi-
cally, 378 genes were differentially expressed at 3 h, 1478 at 6 h,
and 310 at 24 h (Fig. 2a). Interestingly, these genes exhibited di-
verse patterns of upregulation and downregulation at 3 h, 6 h, and
24 h of treatment (Fig. 2a). Contrary to the commonly held hy-
pothesis of a global metabolic shutdown in persister cells, which
would predict no gene upregulation, we observed significant up-
regulation of several genes. The heatmap clearly showed distinct
expression patterns across all gene sets and time points (Fig. 2b).
This led us to focus on a specific set of genes with similar ex-
pression profiles. Notably, 27 genes were consistently upregulated
across all time points (Fig. 2c). Of these, 8 were hypothetical genes
(Table S1a). The upregulation of hypothetical genes, which have not
been previously linked to antibiotic survival, was particularly in-
triguing. We hypothesise that these genes may play a critical role
in the adaptive response of persister cells, potentially contributing
to their survival under antibiotic stress.

The majority of genes (86%, 63%, and 90% at 3, 6, and 24 h
of antibiotic treatment, respectively) showed little to no change in
expression compared to untreated stationary-phase cultures (Table
S2). However, a notable proportion of genes (14%, 37%, and 10% at
3, 6, and 24 h, respectively) exhibited changes in expression. These
results underscore an important aspect of persister cell activity. If
cells were metabolically inactive, all gene expressions would be
uniformly downregulated. However, most genes continue to be ex-
pressed at levels similar to those before antibiotic treatment. Fur-
thermore, some genes are upregulated or downregulated, indicat-
ing that gene expression in persisters is dynamic and that these
cells are actively responding to their environment. For instance, af-
ter 3 h of antibiotic treatment, 160 genes are upregulated, repre-
senting ~3.7% of the total genes in the genome.

To determine whether the upregulation of these genes was spe-
cific to the antibiotic used, we tested ciprofloxacin (Cip), which has
a different mode of action than Amp. While Amp targets cell wall
formation [25], Cip disrupts DNA synthesis [26]. Of the 27 genes
upregulated during the 3 h, 6 h, and 24 h Amp treatment, 22 genes
were also commonly upregulated after 6 h of bactericidal Cip treat-
ment (0.01 mg/mL). This indicates a common pattern of gene ac-
tivation across different antibiotics (Fig. S1). A useful way to in-
terpret our transcriptional analysis is by examining genes already
linked to persistence, thus building on insights from previous stud-
ies on persister cells and transcriptomics [25-34]. Previous stud-
ies have identified several persister-related genes, including oxyR,
dnak, sucB, relA, rpoS, clpB, mgsR, and recA [27]. We found that
these previously identified persister-related genes exhibited vary-
ing responses at different time points with Amp (Table S1b) and
Cip treatments (Fig. S1). While all of these genes were upregulated
at some point, none maintained consistent upregulation through-
out the 3 h, 6 h, and 24 h treatment periods.

Network analysis revealed significant shifts in gene network re-
sponses at various time points during antibiotic treatment. Using a
cluster-centric top-down approach, we analysed changes in gene
network response and identified key network hubs at 3 h, 6 h,
and 24 h of Amp treatment. While studying protein and gene
networks—along with their interconnections (network topology)—
has inherent limitations, such as constraints in predicting inter-
actions and the variability of dynamic changes across cell types
[35,36], this method remains a powerful tool for uncovering in-
teractions that are difficult to detect through other approaches.
The rise of systems biology and mathematical modelling, includ-
ing graph theory and neural networks, has enabled the integra-
tion of core cellular components (genes, RNAs, proteins, etc.) into
a unified, complex network [37]. Applying this systematic frame-
work, we gained critical insights into the network responses of
differentially expressed genes at various time points (Fig. 3a). We
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Experimental workflow
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Fig. 1. The schematic diagram of experimental design. Stationary phase cells were diluted 1:100 in pre-warmed MMB+ media and treated with 0.1 mg/mL Amp for 24
h. Samples for RNA sequencing were collected at four time points: before antibiotic treatment (0 h) and after antibiotic treatment at 3 h, 6 h, and 24 h. To minimise
contamination from dead cell RNA, cells were isolated using rapid filtration. RNA extraction and sequencing were followed by gene network analysis using bioinformatics
tools. Overexpression and mutational studies were then performed to validate the transcriptomic analysis.
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Fig. 2. Comparative transcriptome analysis of the population before and after antibiotic treatment reveals that gene expression changes substantially over time. a-c: The 0
h sample is stationary-phase cultures before treatment. (a) Volcano plots comparing gene expression at 0 h (non-persister population) with persister populations at later
time points. (b) Heatmaps of gene expression shows distinct changes in expression levels throughout treatment compared to untreated 0 h. Each row represents a gene, and
each column corresponds to a treatment time point. The color intensity indicates expression levels, with red signifying high expression and blue signifying low expression.
(c) Venn diagrams depicting transcriptome profiles, where differentially expressed genes are defined by an adjusted P-values <0.1 and a fold change greater than 4 (these
parameters are consistent for all subsequent figures, except for the dataset from log-phase cells, where the P-value threshold was set at 0.05).

constructed gene networks and identified major gene clusters us-
ing the molecular complex detection (MCODE) method [38], which
pinpoints highly dense clusters within a network. The gene net-
work response fluctuated significantly across different time points,
with noticeable changes in edges (connections) (Fig. 3b [i]) and as-
sociated nodes (genes) forming gene clusters (Fig. 3b [ii] and Fig.
S2 a-c). The number of upregulated and downregulated genes were
different at 3 h, 6 h, and 24 h (Fig. 3b [ii]).

Network analysis revealed a dramatic change in gene network
response (Fig. 3b and Fig. S2 a-c), indicating that the overall con-
nectivity of a gene plays a major role in regulating its expression.
This suggests that multiple genes or pathways are likely to con-
tribute to bacterial survival under stress. This happens when sur-
vival is driven by a “one-to-many” gene interaction, rather than a
simple “one-to-one” interaction. Cell-state transitions and network

switching facilitate this process. Much like the dynamic network
switching seen in cancer cell metastasis [39,40]. The dynamic net-
work switching of genes may allow reversible phenotypic plasticity
(cell-state transition), which causes resistance to drugs and bene-
fits cell survival.

Typically, under normal conditions, network clusters undergo
minimal to no significant alterations. However, in response to ex-
ternal stress (such as Amp exposure), substantial changes in gene
expression and network reconfiguration are highly probable. These
observations reinforce the concept that persister cells are not in
a static or inactive state but are actively responding to their en-
vironment. This conclusion aligns with transcriptomic data, net-
work analysis, and Darwin’s Theory of Evolution, which posits
that organisms better adapted to their environment have a higher
likelihood of survival. Persisters that can dynamically adjust their
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a. Network model
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represented as a node, with interactions between genes illustrated as edges. The network was analysed

using MCODE to identify gene clusters at various time points, which were subsequently compared to highlight differences in gene network responses. Key nodes within
the network were pinpointed through centrality analyses encompassing node degree, betweenness, and closeness. (b) Dynamic Topological Variation: The network analysis
reveals significant topological changes in gene networks across different treatment time points. (i) Fluctuations in Edges: A comparison of the number of edges within the
network reveals fluctuations relative to the total edge count. (ii) Top-Ranking Clusters: The analysis identified distinct clusters at 3 h (total clusters: 62), 6 h (total clusters:
59), and 24 h (total clusters: 53). The remaining clusters for each time point are presented in Fig. S2 a-c. The total number of nodes and edges varied substantially at 3 h,
6 h, and 24 h. (c) Degree Centrality: Degree centrality represents the distribution of node connections (degrees) within the network, offering insights into its structure and
revealing important characteristics related to connectivity and overall network behaviour. Betweenness centrality (often referred to as a bottleneck) quantifies how frequently

a node appears on the shortest paths between pairs of other nodes

in the network [1], while closeness centrality measures how quickly a node can interact with others [2].

Network analysis predicts key hubs through Degree (k) vs. Betweenness Centrality (BC), and Degree (k) vs. Closeness Centrality (CC) analyses. At 3 h, commonly upregulated

genes were identified as potential network hubs, with similar findings for centrality analyses at 6 h and 24 h (Fig. S3a [i-ii]).

networks in response to stress are more likely to endure over
time.

Network centrality analysis reveals potential key hubs within per-
sister gene networks. Our objective was to identify key gene hubs
that are important for surviving antibiotics. We assessed each
gene’s network centrality—encompassing metrics such as degree,
betweenness, and closeness—to elucidate the characteristics of
genes within their respective networks. Originally developed to
analyse social networks, classic network centrality [41] has been
adapted for biological contexts to elucidate the hierarchy of nodes
and edges within complex networks. This analysis provides in-
sights into a gene’s significance in a central network based on its
connectivity and the flow of information. A high centrality score
indicates that a node possesses a greater-than-average number of
connections within the network. A key aspect of our analysis was
contrasting the centrality scores of differentially expressed genes

with the average centrality score of all genes within the network.
Notably, 23%, 21%, and 21% of expressed genes exhibited high be-
tweenness centrality scores at 3 h, 6 h, and 24 h, respectively
(Fig. 3c; Fig. S3a [i-ii]). Similarly, when considering closeness cen-
trality, 33%, 22%, and 31% of genes displayed high scores at 3 h,
6 h, and 24 h, respectively (Fig. 3c; Fig. S3a [i-ii]). These results
indicate that a substantial portion of genes maintain a central po-
sition regarding their ability to interact with other genes within
the network rapidly. A robust node (genes) plays a significant role,
as this node is minimally affected by disruption of other nodes in
a network [42], and this might be the central gene for bacterial
persisters. What is particularly intriguing is the overlap between
genes showing high betweenness and closeness centrality at all
time points. Most of the commonly upregulated genes (excluding
the hypothetical genes) showed high betweenness and closeness
centrality, suggesting their importance to persister survival. This
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observation suggests that these genes might play critical regula-
tory roles early in the process, thereby contributing to the long-
term survival of persister cells. It is not surprising that 8 of the
27 commonly upregulated genes exhibited lower centrality scores
than the average for all genes, given that these genes are classified
as hypothetical.

2.1. The network analysis of transcriptional data revealed gene
clusters with potential biological functions

We explored the roles of various genes at different time points
by integrating biological interpretations and functional gene group-
ings using ClueGO, a Cytoscape plug-in [43,44] (Table S3 and Fig.
S3 b-g). Our focus was on genes associated with oxidative stress,
cellular processes, and antibiotic responses. We found gene (both
upregulated and downregulated) clusters with significant fluctua-
tion at different time points (Table S3), suggesting a potential shift
in the cellular dynamics or adaptation mechanisms. We identified
clusters of both upregulated and downregulated genes that exhib-
ited meaningful fluctuations at different time points (Table S3), in-
dicating potential shifts in cellular dynamics or adaptive mecha-
nisms. Notably, 6 h had the highest number of upregulated genes
linked to oxidative, cellular, and antibiotic responses, but no such
genes were upregulated at 24 h. This absence suggests that either
other genes became more critical at 24 h or that the oxidative, cel-
lular, and antibiotic response proteins produced at 6 h remained
intact and functional, negating the need for further expression by
24 h.

Transcriptional analysis of untreated log phase cells compared to
different hours of Amp treatment shows that cells are actively pro-
ducing RNA. In the RNA-seq experiment described above, we opted
to compare stationary phase cells (0 h) to persisters for technical
reasons. Accurate RNA-seq comparisons between treatments de-
pend on proper normalisation, which is most effective when the
transcriptomic profiles of the samples being compared are simi-
lar. Based on our prior research [34] and the understanding that
stationary phase cultures are enriched with persisters [45-48], we
reasoned that stationary phase cells would serve as a more ap-
propriate control than log phase cultures. Despite the challenges
associated with using log phase cells (0 h) as a control, we con-
ducted a second RNA-seq experiment comparing Amp-treated per-
sister cells to log phase cells (0 h). If persister cells are metaboli-
cally active, then some genes should be upregulated while in the
persister state.

For the second RNA-seq experiment, we adhered to the same
procedure for collecting cell samples and harvesting RNA, but cells
were grown to mid-log phase (~OD 0.5) instead of stationary
phase before antibiotic treatment. As anticipated, the transcrip-
tome of persister cells differed markedly from that of log-growing
cells (0 h log). This substantial divergence rendered the median
of ratios normalisation method used in DESeq2 unsuitable for this
analysis. The median of ratios method assumes that most genes
remain unchanged when comparing samples [49], an assumption
that does not apply here due to the extensive global shift in gene
expression. An alternative approach for samples exhibiting such a
global shift is to normalise using a set of “housekeeping” genes
with DESeq2. Housekeeping genes are typically expressed at rel-
atively stable levels across various conditions; however, we could
not utilise this approach because there are no well-established
housekeeping genes for our specific conditions. Genes commonly
used as housekeeping genes, such as dnaK and recA, could not be
used because they have previously been associated with persister
survival [27].

Unable to select the most suitable normalisation method for
our data, we applied four different approaches (Fig. 4a). Given the
insufficient evidence to favor one normalisation method over an-
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other, drawing quantitative conclusions from this analysis could
lead to misinterpretation. Nonetheless, a key qualitative result
stands out: across all normalisation methods, many genes are up-
regulated in persister cells compared to log phase cells (Fig. 4b).
Persister cells are metabolically active, non-growing cells that can-
not be accurately described as dormant. It is common to define per-
sisters as dormant and metabolically inactive. A leader in the per-
sister field has stated, “These persister cells arise due to a state of
dormancy, defined here as a state in which cells are metabolically
inactive,” (Review article) [15]. While this assumption has under-
pinned much of the research on persisters, we challenge the use of
the term “dormancy” when it implies that these cells are metabol-
ically inactive or nearly inactive—failing to express new genes, pro-
duce new proteins, or respond to their environment. Although per-
sisters do not grow [50], our findings indicate that non-growing
cells can remain metabolically active and thus cannot be consid-
ered dormant. Drawing on previous work and recent studies) [34],
we argue that persisters exhibit altered cellular activity rather than
exist in a dormant state. This is akin to the difference between
cells in stationary phase and those in the exponential phase, as
both are active but possess distinct metabolic profiles. We have
previously demonstrated that specific genes are upregulated in
persisters compared to pre-treated (0 h) [34]. Conversely, some re-
searchers strongly contend that the expression changes of a limited
number of genes indicate that these cells are largely dormant. This
perspective led to the investigation described in this manuscript,
where we examined whether cells are completely, mostly, or not
at all dormant. In this section, we present four lines of evidence
demonstrating that persister cells are metabolically active:

1. Gene expression patterns: If persister cells were truly dor-
mant, we would expect all genes to be downregulated during
their persistence compared to non-persisters. Our findings in-
dicate that during the persister state, a significant proportion
of genes are not downregulated; in fact, many maintain their
expression levels relative to stationary phase cells.

2. Upregulation of genes: If persisters were completely inactive,
we would not expect any genes to be upregulated. However,
after 3 h of antibiotic treatment, we identified 160 upregulated
genes compared to untreated stationary phase cells, accounting
for approximately 3.7% of the genome.

Only metabolically active cells can produce new mRNA. In con-
trast, inactive cells would lack the capacity to synthesise new
RNA or proteins for survival and would rely solely on pre-
existing resources. Cellular maintenance for log and stationary
cells requires substantial energy [51]. While we lack precise es-
timates of the energy expenditure of persister cells, it is rea-
sonable to assume that, under the extreme stress of antibiotic
treatment, maintenance constitutes a significant metabolic cost.
For instance, E. coli has been shown to increase energy usage in
response to heat [52].

While metabolically inactive cells may survive briefly without
energy allocated to growth, persisters can endure much longer.
Throughout this long period, persister cells must actively main-
tain their structural integrity and membrane potential. Cells
that do not maintain their membrane potential over time will
die [53,54]. This duration represents a significant period for
bacteria to survive, and the assumption that there is no change
in metabolic activity throughout this time appears highly im-
plausible for intact cells. While minimal to no metabolic activ-
ity characterises bacterial spores, this does not apply to persis-
ter cells. Spores are so metabolically inactive that their reactiva-
tion upon germination is often described as a return to life [55-
58]. Although persisters are resilient cells, they are not spores.

3. Gene interaction network analysis: If the cells were dor-
mant, the interaction model should display similar profiles at
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Untreated log growth phase (0 h) vs 3 h, 6 h, or 24 h Amp treated

International Journal of Antimicrobial Agents 65 (2025) 107386

—0h
a. TPM normalization CPM normalization TMM normalization Cyclic Loess normalization | 2 E
0.4 04 0.4 —24h
0.8
0.3+ 03 0.3

0.6
2
g o4 0.2 02 0.2

0.2 0.14 0.1 0.1

\
0 04 0 0
0 5 10 15 -5 0 5 10 15 -5 0 5 10 15 0 5 10 15
Log TPM Log CPM Log CPM Log CPM

b. Ohvs3h Ohvs6h Ohvs24h

60 60 60 @ Up O Stable @ Down

50 50 50

40 40 40
& 30 30 30/

20 20 20

10 10 10

0 0

0
TPM CPM TMM Cyclic Loess TPM CPM TMM Cyclic Loess

"TPM CPM TMM Cydlic Loess

Fig. 4. Untreated 0 h comes from mid-log phase growing cultures (OD ~0.5). (a) Four methods of normalisation were applied, consistently showing that antibiotic-treated
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and CPM normalise by sequence depth, with TPM also taking gene length into account. In

contrast, TMM and cyclic loess address compositional differences between samples,

making them better equipped to handle outliers and global shifts in gene expression. Furthermore, cyclic loess specifically adjusts for the distribution of expression values

across different samples. (b) Regardless of the normalisation method, several genes were

3 h, 6 h, and 24 h compared to stationary phase untreated
cells. Our analysis revealed significant differences showing that
metabolism of persister cells is not static.

. Supporting evidence from other studies: Pu and colleagues
have shown that during B-lactam antibiotic treatment, persister
cells upregulate the expression of the multidrug efflux gene tolC
[20]. This adaptation enables persisters to expel antibiotics from
their cells, thereby enhancing their survival [20]. Only metaboli-
cally active cells can produce new tolC mRNA and new proteins.

Each line of evidence presented in this study has its own limita-
tions, and when considered in isolation, it might seem reasonable
to cling to the traditional view of persister cells. However, when
these findings are examined collectively, findings support that per-
sister cells are metabolically active. This study challenges the con-
ventional perspective of persister cells as metabolically dormant,
instead revealing that they are metabolically active, non-growing
cells.

3. Methods

Microbial strains and media are described in Table S4.

Persister assay: The assay was done as previously described
[22,34]. Cells were treated using 10X the MIC (0.01 mg/mL) for
Amp and 100X the MIC (0.00001) for Cip at 37°C and shaken at
250 rpm as previously described for this strain [59]. For the time-
kill curve, antibiotic treatment was extended to 24 h, and the num-
ber of persisters was recorded at 3 h, 6 h, and 24 h.

RNA sample preparation, sequencing, and analysis are described
in Table S5 a-b. We used our previously published data (NCBI GEO:
GSE156896) [34] and new data: PRJNA1067386 and GSE278938.

Network construction and data analysis are described in Fig. S2.
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