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a b s t r a c t 

Objectives: Bacterial persisters are a subpopulation of multidrug-tolerant cells capable of surviving and 

resuming activity after exposure to bactericidal antibiotic concentrations, contributing to relapsing in- 

fections and the development of antibiotic resistance. In this study, we challenge the conventional view 

that persisters are metabolically dormant by providing compelling evidence that an isogenic population 

of Escherichia coli remains metabolically active in persistence. 

Methods: Using transcriptomic analysis, we examined E. coli persisters at multiple time points following 

exposure to bactericidal concentrations of ampicillin (Amp). Some genes were consistently upregulated in 

Amp treated persisters compared to the untreated controls, a change that can only occur in metabolically 

active cells capable of increasing RNA levels. 

Results: Some of the identified genes have been previously linked to persister cells, while others have not 

been associated with them before. If persister cells were metabolically dormant, gene expression changes 

over time would be minimal during Amp treatment. However, network analysis revealed major shifts in 

gene network activity at various time points of antibiotic exposure. 

Conclusions: These findings reveal that persisters are metabolically active, non-dividing cells, thereby 

challenging the traditional view that they are dormant. 

© 2024 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

Signi�cance statement 

Bacterial persisters are a subpopulation renowned for their 
multidrug tolerance and remarkable ability to survive bacte- 
ricidal antibiotic treatments; understanding their formation 
and long-term survival presents significant challenges. These 
persisters play a critical role in driving antibiotic resistance, 
underscoring the urgency of deepening our knowledge about 
them as the threat of resistance continues to escalate. Our 
study challenges the long-held assumption that persisters are 
metabolically inactive and that persisters are not as dormant 
as previously thought. 

∗ Corresponding authors. Mailing address: Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA. 

E-mail addresses: tahminatan.40@gmail.com (T. Hossain), nicholas.butzin@gmail.com (N.C. Butzin) . 

1. Introduction 

Bacteria thrive in a wide range of harsh environments, requiring 

them to adapt to stress by modifying their metabolic states—a phe- 

nomenon widely known as persistence [ 3 , 4 ]. All free-living bacteria 

employ this bet-hedging strategy to survive adverse conditions [ 4 ]. 

Persisters are a small fraction of the bacterial population, emerging 

from inherent phenotypic heterogeneity rather than genetic muta- 

tions. These cells exhibit reduced cellular activity and do not di- 

vide under stress [ 5 ]. When the threat subsides, persister cells can 

resume growth, often leading to recurrent infections that require 

prolonged and repeated antibiotic therapy. For instance, Mycobac- 

terium tuberculosis (which causes tuberculosis) and Mycobacterium 
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avium (which causes non-contagious lung disease), treatment du- 

rations can extend to about one year for M. tuberculosis and up 

to 2 years for M. avium . Despite these prolonged treatments, re- 

lapse rates remain high [ 6 , 7 ]. Recent studies indicate that persis- 

ters also possess a high mutation rate [ 8 ], which has been linked 

to the evolution of antibiotic resistance—a pressing public health 

concern. Antibiotic-resistant bacteria are now the leading cause of 

death worldwide, surpassing other pathogens, including those re- 

sponsible for diseases like HIV or malaria [ 9 ]. Projections suggest 

that by 2050, antibiotic-resistant infections could result in 10 mil- 

lion deaths annually 2050 [ 10 , 11 ] unless significant measures are 

taken to combat this troubling trend. 

Another survival strategy bacteria employ in harsh environ- 

ments is the formation of biofilms—complex communities of bac- 

teria encased in a self-produced protective matrix that adheres to 

surfaces. Biofilms are notoriously challenging to eradicate due to 

their robust defense mechanisms and intricate architecture [ 12–

14 ], often containing ∼1% persister cells [ 15 , 16 ]. These persisters 

can endure stress (i.e., bactericidal antibiotic concentrations) en- 

abling the biofilm to regenerate after susceptible cells are elimi- 

nated and conditions improve [ 17 , 18 ]. To fully grasp how bacteria 

survive in natural settings, we must first understand their survival 

strategies in controlled laboratory conditions. 

Despite being discovered over 8 decades ago, the molecular 

mechanisms underlying it remain unclear and subject to debate. 

A promising method to identify the key genes and regulatory net- 

works involved in persistence is through transcriptome profiling 

of persister cells using RNA sequencing (RNA-Seq), which captures 

the full set of mRNAs synthesised by cells at a specific moment. 

However, due to the low abundance of persisters and the transient 

nature of persister cells, studying their transcriptomic profile is 

highly challenging. As a result, many previous transcriptomic stud- 

ies have employed sub-bactericidal concentrations or used bacteri- 

cidal antibiotic concentrations for a short time [ 19 , 20 ]. These ap- 

proaches often include populations of short-term tolerant cells—

dividing, slow-growing cells—that may not represent true persis- 

ters. It is important to note that short-term tolerance can mask 

persistence, and evidence shows that the two phenomena are dis- 

tinct [ 21 ]. Our recent findings further demonstrate that high per- 

sistence levels do not correlate with high short-term tolerance 

levels [ 22 ]. Therefore, it is crucial to use bactericidal antibiotic 

concentrations when investigating the transcriptional regulatory 

mechanisms of persisters [ 22 ]. 

2. Results and discussion 

The purpose of this work is to determine whether antibiotic 

persisters are truly metabolically inactive (completely dormant), as 

often cited, or if they actively respond to environmental stimuli by 

altering gene expression. An overview of the experimental plan is 

shown in Fig. 1 . Cells were grown to stationary phase, and RNA 

was extracted from a persister subpopulation treated with bacte- 

ricidal doses (0.1 mg/mL) of ampicillin (Amp) following dilution 

in fresh media ( Fig. 1 ). The treatment duration was sufficient to 

eliminate short-term tolerant cells. RNA sequencing was then per- 

formed to analyse the transcriptome profile of the persister cells. 

The E. coli Dh5 αZ1 strain exhibited a biphasic cell death curve, 

with short-term tolerant cells dying rapidly in the first phase, 

while the remaining persisters showed a slower, steady decline 

starting at ∼2 h. Rapid filtration [ 23 , 24 ] and flash freezing was em- 

ployed to remove dead cells and minimise RNA degradation. 

Contrary to the commonly held assumption of a global metabolic 

shutdown in persister cells, we observed differential gene expression 

within these cells. We compared the transcriptome profiles at differ- 

ent time points to investigate dynamic changes in response to bac- 

tericidal Amp treatment (0.1 mg/mL). By comparing the untreated 

population at 0 h with persister subpopulations at 3 h, 6 h, and 24 

h post-treatment, we identified shifts in gene expression. Specifi- 

cally, 378 genes were differentially expressed at 3 h, 1478 at 6 h, 

and 310 at 24 h ( Fig. 2 a). Interestingly, these genes exhibited di- 

verse patterns of upregulation and downregulation at 3 h, 6 h, and 

24 h of treatment ( Fig. 2 a). Contrary to the commonly held hy- 

pothesis of a global metabolic shutdown in persister cells, which 

would predict no gene upregulation, we observed significant up- 

regulation of several genes. The heatmap clearly showed distinct 

expression patterns across all gene sets and time points ( Fig. 2 b). 

This led us to focus on a specific set of genes with similar ex- 

pression profiles. Notably, 27 genes were consistently upregulated 

across all time points ( Fig. 2 c). Of these, 8 were hypothetical genes 

(Table S1a). The upregulation of hypothetical genes, which have not 

been previously linked to antibiotic survival, was particularly in- 

triguing. We hypothesise that these genes may play a critical role 

in the adaptive response of persister cells, potentially contributing 

to their survival under antibiotic stress. 

The majority of genes (86%, 63%, and 90% at 3, 6, and 24 h 

of antibiotic treatment, respectively) showed little to no change in 

expression compared to untreated stationary-phase cultures (Table 

S2). However, a notable proportion of genes (14%, 37%, and 10% at 

3, 6, and 24 h, respectively) exhibited changes in expression. These 

results underscore an important aspect of persister cell activity. If 

cells were metabolically inactive, all gene expressions would be 

uniformly downregulated. However, most genes continue to be ex- 

pressed at levels similar to those before antibiotic treatment. Fur- 

thermore, some genes are upregulated or downregulated, indicat- 

ing that gene expression in persisters is dynamic and that these 

cells are actively responding to their environment. For instance, af- 

ter 3 h of antibiotic treatment, 160 genes are upregulated, repre- 

senting ∼3.7% of the total genes in the genome. 

To determine whether the upregulation of these genes was spe- 

cific to the antibiotic used, we tested ciprofloxacin (Cip), which has 

a different mode of action than Amp. While Amp targets cell wall 

formation [ 25 ], Cip disrupts DNA synthesis [ 26 ]. Of the 27 genes 

upregulated during the 3 h, 6 h, and 24 h Amp treatment, 22 genes 

were also commonly upregulated after 6 h of bactericidal Cip treat- 

ment (0.01 mg/mL). This indicates a common pattern of gene ac- 

tivation across different antibiotics (Fig. S1). A useful way to in- 

terpret our transcriptional analysis is by examining genes already 

linked to persistence, thus building on insights from previous stud- 

ies on persister cells and transcriptomics [ 25–34 ]. Previous stud- 

ies have identified several persister-related genes, including oxyR, 

dnaK, sucB, relA, rpoS, clpB, mqsR , and recA [ 27 ]. We found that 

these previously identified persister-related genes exhibited vary- 

ing responses at different time points with Amp (Table S1b) and 

Cip treatments (Fig. S1). While all of these genes were upregulated 

at some point, none maintained consistent upregulation through- 

out the 3 h, 6 h, and 24 h treatment periods. 

Network analysis revealed significant shifts in gene network re- 

sponses at various time points during antibiotic treatment. Using a 

cluster-centric top-down approach, we analysed changes in gene 

network response and identified key network hubs at 3 h, 6 h, 

and 24 h of Amp treatment. While studying protein and gene 

networks—along with their interconnections (network topology)—

has inherent limitations, such as constraints in predicting inter- 

actions and the variability of dynamic changes across cell types 

[ 35 , 36 ], this method remains a powerful tool for uncovering in- 

teractions that are difficult to detect through other approaches. 

The rise of systems biology and mathematical modelling, includ- 

ing graph theory and neural networks, has enabled the integra- 

tion of core cellular components (genes, RNAs, proteins, etc.) into 

a unified, complex network [ 37 ]. Applying this systematic frame- 

work, we gained critical insights into the network responses of 

differentially expressed genes at various time points ( Fig. 3 a). We 
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Fig. 1. The schematic diagram of experimental design. Stationary phase cells were diluted 1:100 in pre-warmed MMB + media and treated with 0.1 mg/mL Amp for 24 

h. Samples for RNA sequencing were collected at four time points: before antibiotic treatment (0 h) and after antibiotic treatment at 3 h, 6 h, and 24 h. To minimise 

contamination from dead cell RNA, cells were isolated using rapid filtration. RNA extraction and sequencing were followed by gene network analysis using bioinformatics 

tools. Overexpression and mutational studies were then performed to validate the transcriptomic analysis. 

Fig. 2. Comparative transcriptome analysis of the population before and after antibiotic treatment reveals that gene expression changes substantially over time. a-c: The 0 

h sample is stationary-phase cultures before treatment. (a) Volcano plots comparing gene expression at 0 h (non-persister population) with persister populations at later 

time points. (b) Heatmaps of gene expression shows distinct changes in expression levels throughout treatment compared to untreated 0 h. Each row represents a gene, and 

each column corresponds to a treatment time point. The color intensity indicates expression levels, with red signifying high expression and blue signifying low expression. 

(c) Venn diagrams depicting transcriptome profiles, where differentially expressed genes are defined by an adjusted P -values < 0.1 and a fold change greater than 4 (these 

parameters are consistent for all subsequent figures, except for the dataset from log-phase cells, where the P -value threshold was set at 0.05). 

constructed gene networks and identified major gene clusters us- 

ing the molecular complex detection (MCODE) method [ 38 ], which 

pinpoints highly dense clusters within a network. The gene net- 

work response fluctuated significantly across different time points, 

with noticeable changes in edges (connections) ( Fig. 3 b [i]) and as- 

sociated nodes (genes) forming gene clusters ( Fig. 3 b [ii] and Fig. 

S2 a-c). The number of upregulated and downregulated genes were 

different at 3 h, 6 h, and 24 h ( Fig. 3 b [ii]). 

Network analysis revealed a dramatic change in gene network 

response ( Fig. 3 b and Fig. S2 a-c), indicating that the overall con- 

nectivity of a gene plays a major role in regulating its expression. 

This suggests that multiple genes or pathways are likely to con- 

tribute to bacterial survival under stress. This happens when sur- 

vival is driven by a “one-to-many” gene interaction, rather than a 

simple “one-to-one” interaction. Cell-state transitions and network 

switching facilitate this process. Much like the dynamic network 

switching seen in cancer cell metastasis [ 39 , 40 ]. The dynamic net- 

work switching of genes may allow reversible phenotypic plasticity 

(cell-state transition), which causes resistance to drugs and bene- 

fits cell survival. 

Typically, under normal conditions, network clusters undergo 

minimal to no significant alterations. However, in response to ex- 

ternal stress (such as Amp exposure), substantial changes in gene 

expression and network reconfiguration are highly probable. These 

observations reinforce the concept that persister cells are not in 

a static or inactive state but are actively responding to their en- 

vironment. This conclusion aligns with transcriptomic data, net- 

work analysis, and Darwin’s Theory of Evolution, which posits 

that organisms better adapted to their environment have a higher 

likelihood of survival. Persisters that can dynamically adjust their 
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Fig. 3. (a) Interaction Network Model: In this model, each gene is represented as a node, with interactions between genes illustrated as edges. The network was analysed 

using MCODE to identify gene clusters at various time points, which were subsequently compared to highlight differences in gene network responses. Key nodes within 

the network were pinpointed through centrality analyses encompassing node degree, betweenness, and closeness. (b) Dynamic Topological Variation: The network analysis 

reveals significant topological changes in gene networks across different treatment time points. (i) Fluctuations in Edges: A comparison of the number of edges within the 

network reveals fluctuations relative to the total edge count. (ii) Top-Ranking Clusters: The analysis identified distinct clusters at 3 h (total clusters: 62), 6 h (total clusters: 

59), and 24 h (total clusters: 53). The remaining clusters for each time point are presented in Fig. S2 a-c. The total number of nodes and edges varied substantially at 3 h, 

6 h, and 24 h. (c) Degree Centrality: Degree centrality represents the distribution of node connections (degrees) within the network, offering insights into its structure and 

revealing important characteristics related to connectivity and overall network behaviour. Betweenness centrality (often referred to as a bottleneck) quantifies how frequently 

a node appears on the shortest paths between pairs of other nodes in the network [ 1 ], while closeness centrality measures how quickly a node can interact with others [ 2 ]. 

Network analysis predicts key hubs through Degree (k) vs. Betweenness Centrality (BC), and Degree (k) vs. Closeness Centrality (CC) analyses. At 3 h, commonly upregulated 

genes were identified as potential network hubs, with similar findings for centrality analyses at 6 h and 24 h (Fig. S3a [i-ii]). 

networks in response to stress are more likely to endure over 

time. 

Network centrality analysis reveals potential key hubs within per- 

sister gene networks. Our objective was to identify key gene hubs 

that are important for surviving antibiotics. We assessed each 

gene’s network centrality—encompassing metrics such as degree, 

betweenness, and closeness—to elucidate the characteristics of 

genes within their respective networks. Originally developed to 

analyse social networks, classic network centrality [ 41 ] has been 

adapted for biological contexts to elucidate the hierarchy of nodes 

and edges within complex networks. This analysis provides in- 

sights into a gene’s significance in a central network based on its 

connectivity and the flow of information. A high centrality score 

indicates that a node possesses a greater-than-average number of 

connections within the network. A key aspect of our analysis was 

contrasting the centrality scores of differentially expressed genes 

with the average centrality score of all genes within the network. 

Notably, 23%, 21%, and 21% of expressed genes exhibited high be- 

tweenness centrality scores at 3 h, 6 h, and 24 h, respectively 

( Fig. 3 c; Fig. S3a [i-ii]). Similarly, when considering closeness cen- 

trality, 33%, 22%, and 31% of genes displayed high scores at 3 h, 

6 h, and 24 h, respectively ( Fig. 3 c; Fig. S3a [i-ii]). These results 

indicate that a substantial portion of genes maintain a central po- 

sition regarding their ability to interact with other genes within 

the network rapidly. A robust node (genes) plays a significant role, 

as this node is minimally affected by disruption of other nodes in 

a network [ 42 ], and this might be the central gene for bacterial 

persisters. What is particularly intriguing is the overlap between 

genes showing high betweenness and closeness centrality at all 

time points. Most of the commonly upregulated genes (excluding 

the hypothetical genes) showed high betweenness and closeness 

centrality, suggesting their importance to persister survival. This 
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observation suggests that these genes might play critical regula- 

tory roles early in the process, thereby contributing to the long- 

term survival of persister cells. It is not surprising that 8 of the 

27 commonly upregulated genes exhibited lower centrality scores 

than the average for all genes, given that these genes are classified 

as hypothetical. 

2.1. The network analysis of transcriptional data revealed gene 

clusters with potential biological functions 

We explored the roles of various genes at different time points 

by integrating biological interpretations and functional gene group- 

ings using ClueGO, a Cytoscape plug-in [ 43 , 44 ] (Table S3 and Fig. 

S3 b-g). Our focus was on genes associated with oxidative stress, 

cellular processes, and antibiotic responses. We found gene (both 

upregulated and downregulated) clusters with significant fluctua- 

tion at different time points (Table S3), suggesting a potential shift 

in the cellular dynamics or adaptation mechanisms. We identified 

clusters of both upregulated and downregulated genes that exhib- 

ited meaningful fluctuations at different time points (Table S3), in- 

dicating potential shifts in cellular dynamics or adaptive mecha- 

nisms. Notably, 6 h had the highest number of upregulated genes 

linked to oxidative, cellular, and antibiotic responses, but no such 

genes were upregulated at 24 h. This absence suggests that either 

other genes became more critical at 24 h or that the oxidative, cel- 

lular, and antibiotic response proteins produced at 6 h remained 

intact and functional, negating the need for further expression by 

24 h. 

Transcriptional analysis of untreated log phase cells compared to 

different hours of Amp treatment shows that cells are actively pro- 

ducing RNA. In the RNA-seq experiment described above, we opted 

to compare stationary phase cells (0 h) to persisters for technical 

reasons. Accurate RNA-seq comparisons between treatments de- 

pend on proper normalisation, which is most effective when the 

transcriptomic profiles of the samples being compared are simi- 

lar. Based on our prior research [ 34 ] and the understanding that 

stationary phase cultures are enriched with persisters [ 45–48 ], we 

reasoned that stationary phase cells would serve as a more ap- 

propriate control than log phase cultures. Despite the challenges 

associated with using log phase cells (0 h) as a control, we con- 

ducted a second RNA-seq experiment comparing Amp-treated per- 

sister cells to log phase cells (0 h). If persister cells are metaboli- 

cally active, then some genes should be upregulated while in the 

persister state. 

For the second RNA-seq experiment, we adhered to the same 

procedure for collecting cell samples and harvesting RNA, but cells 

were grown to mid-log phase ( ∼OD 0.5) instead of stationary 

phase before antibiotic treatment. As anticipated, the transcrip- 

tome of persister cells differed markedly from that of log-growing 

cells (0 h log). This substantial divergence rendered the median 

of ratios normalisation method used in DESeq2 unsuitable for this 

analysis. The median of ratios method assumes that most genes 

remain unchanged when comparing samples [ 49 ], an assumption 

that does not apply here due to the extensive global shift in gene 

expression. An alternative approach for samples exhibiting such a 

global shift is to normalise using a set of “housekeeping” genes 

with DESeq2. Housekeeping genes are typically expressed at rel- 

atively stable levels across various conditions; however, we could 

not utilise this approach because there are no well-established 

housekeeping genes for our specific conditions. Genes commonly 

used as housekeeping genes, such as dnaK and recA , could not be 

used because they have previously been associated with persister 

survival [ 27 ]. 

Unable to select the most suitable normalisation method for 

our data, we applied four different approaches ( Fig. 4 a). Given the 

insufficient evidence to favor one normalisation method over an- 

other, drawing quantitative conclusions from this analysis could 

lead to misinterpretation. Nonetheless, a key qualitative result 

stands out: across all normalisation methods, many genes are up- 

regulated in persister cells compared to log phase cells ( Fig. 4 b). 

Persister cells are metabolically active, non-growing cells that can- 

not be accurately described as dormant. It is common to define per- 

sisters as dormant and metabolically inactive. A leader in the per- 

sister field has stated, “These persister cells arise due to a state of 

dormancy, defined here as a state in which cells are metabolically 

inactive,” (Review article) [ 15 ]. While this assumption has under- 

pinned much of the research on persisters, we challenge the use of 

the term “dormancy” when it implies that these cells are metabol- 

ically inactive or nearly inactive—failing to express new genes, pro- 

duce new proteins, or respond to their environment. Although per- 

sisters do not grow [ 50 ], our findings indicate that non-growing 

cells can remain metabolically active and thus cannot be consid- 

ered dormant. Drawing on previous work and recent studies) [ 34 ], 

we argue that persisters exhibit altered cellular activity rather than 

exist in a dormant state. This is akin to the difference between 

cells in stationary phase and those in the exponential phase, as 

both are active but possess distinct metabolic profiles. We have 

previously demonstrated that specific genes are upregulated in 

persisters compared to pre-treated (0 h) [ 34 ]. Conversely, some re- 

searchers strongly contend that the expression changes of a limited 

number of genes indicate that these cells are largely dormant. This 

perspective led to the investigation described in this manuscript, 

where we examined whether cells are completely, mostly, or not 

at all dormant. In this section, we present four lines of evidence 

demonstrating that persister cells are metabolically active: 

1. Gene expression patterns : If persister cells were truly dor- 

mant, we would expect all genes to be downregulated during 

their persistence compared to non-persisters. Our findings in- 

dicate that during the persister state, a significant proportion 

of genes are not downregulated; in fact, many maintain their 

expression levels relative to stationary phase cells. 

2. Upregulation of genes: If persisters were completely inactive, 

we would not expect any genes to be upregulated. However, 

after 3 h of antibiotic treatment, we identified 160 upregulated 

genes compared to untreated stationary phase cells, accounting 

for approximately 3.7% of the genome. 

Only metabolically active cells can produce new mRNA. In con- 

trast, inactive cells would lack the capacity to synthesise new 

RNA or proteins for survival and would rely solely on pre- 

existing resources. Cellular maintenance for log and stationary 

cells requires substantial energy [ 51 ]. While we lack precise es- 

timates of the energy expenditure of persister cells, it is rea- 

sonable to assume that, under the extreme stress of antibiotic 

treatment, maintenance constitutes a significant metabolic cost. 

For instance, E. coli has been shown to increase energy usage in 

response to heat [ 52 ]. 

While metabolically inactive cells may survive briefly without 

energy allocated to growth, persisters can endure much longer. 

Throughout this long period, persister cells must actively main- 

tain their structural integrity and membrane potential. Cells 

that do not maintain their membrane potential over time will 

die [ 53 , 54 ]. This duration represents a significant period for 

bacteria to survive, and the assumption that there is no change 

in metabolic activity throughout this time appears highly im- 

plausible for intact cells. While minimal to no metabolic activ- 

ity characterises bacterial spores, this does not apply to persis- 

ter cells. Spores are so metabolically inactive that their reactiva- 

tion upon germination is often described as a return to life [ 55–

58 ]. Although persisters are resilient cells, they are not spores. 

3. Gene interaction network analysis : If the cells were dor- 

mant, the interaction model should display similar profiles at 
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Fig. 4. Untreated 0 h comes from mid-log phase growing cultures (OD ∼0.5). (a) Four methods of normalisation were applied, consistently showing that antibiotic-treated 

samples differed from the 0 h control. Transcript per million (TPM), counts per million (CPM), trimmed mean of m-values (TMM), and cyclic loess normalisation. Both TPM 

and CPM normalise by sequence depth, with TPM also taking gene length into account. In contrast, TMM and cyclic loess address compositional differences between samples, 

making them better equipped to handle outliers and global shifts in gene expression. Furthermore, cyclic loess specifically adjusts for the distribution of expression values 

across different samples. (b) Regardless of the normalisation method, several genes were consistently upregulated. 

3 h, 6 h, and 24 h compared to stationary phase untreated 

cells. Our analysis revealed significant differences showing that 

metabolism of persister cells is not static. 

4. Supporting evidence from other studies : Pu and colleagues 

have shown that during β-lactam antibiotic treatment, persister 

cells upregulate the expression of the multidrug efflux gene tolC 

[ 20 ]. This adaptation enables persisters to expel antibiotics from 

their cells, thereby enhancing their survival [ 20 ]. Only metaboli- 

cally active cells can produce new tolC mRNA and new proteins. 

Each line of evidence presented in this study has its own limita- 

tions, and when considered in isolation, it might seem reasonable 

to cling to the traditional view of persister cells. However, when 

these findings are examined collectively, findings support that per- 

sister cells are metabolically active. This study challenges the con- 

ventional perspective of persister cells as metabolically dormant, 

instead revealing that they are metabolically active, non-growing 

cells. 

3. Methods 

Microbial strains and media are described in Table S4. 

Persister assay: The assay was done as previously described 

[ 22 , 34 ]. Cells were treated using 10X the MIC (0.01 mg/mL) for 

Amp and 100X the MIC (0.0 0 0 01) for Cip at 37 °C and shaken at 

250 rpm as previously described for this strain [ 59 ]. For the time- 

kill curve, antibiotic treatment was extended to 24 h, and the num- 

ber of persisters was recorded at 3 h, 6 h, and 24 h. 

RNA sample preparation, sequencing, and analysis are described 

in Table S5 a-b. We used our previously published data (NCBI GEO: 

GSE156896) [ 34 ] and new data: PRJNA1067386 and GSE278938. 

Network construction and data analysis are described in Fig. S2. 
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