
Fostering Microservice Maintainability Assurance
through a Comprehensive Framework

Amr S. Abdelfattah
Computer Science Department, Baylor University

Waco, TX, USA
amr elsayed1@baylor.edu

Supervisors: Tomas Cerny & Eunjee Song

Abstract—Cloud-native systems represent a significant leap
in constructing scalable, large systems, employing microservice
architecture as a key element in developing distributed systems
through self-contained components. However, the decentralized
nature of these systems, characterized by separate source codes
and deployments, introduces challenges in assessing system qual-
ities. Microservice-based systems, with their inherent complexity
and the need for coordinated changes across multiple microser-
vices, lack established best practices and guidelines, leading to
difficulties in constructing and comprehending the holistic system
view. This gap can result in performance degradation and in-
creased maintenance costs, potentially requiring system refactor-
ing. The main goal of this project is to offer maintainability assur-
ance for microservice practitioners. It introduces an automated
assessment framework tailored to microservice architecture, en-
hancing practitioners’ understanding and analytical capabilities
of the multiple system perspectives. The framework addresses
various granularity levels, from artifacts to constructing holistic
views of static and dynamic system characteristics. It integrates
diverse perspectives, encompassing human-centric elements like
architectural visualization and automated evaluations, including
coupling detection, testing coverage measurement, and semantic
clone identification. Validation studies involving practitioners
demonstrate the framework’s effectiveness in addressing diverse
quality and maintainability issues, revealing insights not apparent
when analyzing individual microservices in isolation.

Index Terms—Microservice Architecture, Microservice Visual-
ization, Maintainability, Metrics, Software Architecture Recon-
struction, Viewpoints

I. INTRODUCTION

Cloud-native design emerged as the mainstream direction
for decentralized systems seeking scalability and high perfor-
mance under heavy workloads. The adoption of microservice
architecture for such direction is crucial for fully harness-
ing the advantages of cloud computing [1]. Microservices,
with their self-contained nature, enhance management and
deployment efficiency, making them highly favored in enter-
prise software systems. The microservice architecture, once
considered cutting-edge, has now become the standard, with
industry giants like Amazon and Netflix leading the way.
These paradigms have profoundly transformed application
development, emphasizing scalability and efficiency.

Problem Statement: The problem statement revolves around
system maintainability. In particular, it considers challenges
stemming from comprehension of the overall system, at-
tributed to poor design decisions and heightened system com-

plexity. Software systems undergo transformations throughout
their lifecycle, whether to incorporate new features, adapt
to different environments, address bugs, and more. However,
these changes often pose significant challenges. As highlighted
by Bass et al. [2], the software development community is
grappling with the realization that about 80% of the total
cost of a typical software system is incurred after its initial
deployment to modify and maintain the system. Consequently,
a significant portion of the systems that developers engage with
is in this post-deployment phase. Many software practitioners
work within the constraints of the existing architecture and
codebase, with limited opportunities for new development.

Moreover, managing a complex architecture, characterized
by its dynamic, distributed, and expansive nature, poses sig-
nificant challenges. Independent decision-making by teams
on parts of the system, coupled with the evolving nature
of the system, can lead to ripple effects where changes
in one part impact another, complicating management pro-
cesses. Additionally, maintaining up-to-date documentation
for numerous interconnected services, each with multiple
dependencies, presents substantial challenges in management
and maintenance. These efforts may result in downtime and
necessitate a comprehensive overhaul of the entire system.

Research Objective: The objective is to introduce and im-
plement an automated assessment framework for microservice
systems. This objective is fueled by building comprehensive
foundations especially with the absence of comprehensive
guidelines governing microservices practices. This framework
aims to enhance analytical abilities and reasoning in archi-
tectural design, identify early indicators of system design
degradation, and offer testability measurements for the system.

Paper Organization: The rest of this paper is organized as
follows: Section II covers the background and objectives with
research questions (RQs). Section III details the methodology
and prior results. Section IV discusses the development of
the maintainability framework. Section V outlines the research
contributions and conclusion.

II. BACKGROUND AND OBJECTIVE

Microservices, foundational to cloud-native applications, are
modular, autonomous units that enhance agility and resource
utilization by decomposing functionalities [3], [4]. They in-
teract via network protocols and message passing, improving



system modularity, scalability, and maintainability. Maintain-
ability, a key quality attribute, measures how effectively and
efficiently a product can be modified by its maintainers [2].
According to ISO 25010 [5], it includes essential dimensions
like modularity, reusability, analyzability, modifiability, and
testability.

The main objective is to design and implement an automated
assessment framework for the maintainability of microservice
systems. To achieve this, several RQs must be explored,
each contributing to the framework and supporting system
maintainability.

RQ1 What dependencies exist within microservices-based
systems?

In microservices-based systems, dependencies become dis-
tributed, heterogeneous, less visible, and harder to track. The
challenge is compounded by the absence of comprehensive
guidelines and catalogs for identifying and defining these
dependencies. Such guidelines are crucial for enhancing sys-
tem maintainability. This RQ aims to develop a dependency
taxonomy to offer a comprehensive understanding of these
dependencies, their impact, and their categorization.

RQ2 How to construct system-centric views of microservice
architecture?

The decentralized nature of microservices and their dependen-
cies presents a challenge wherein alterations in one part of the
architecture can yield widespread effects, both explicitly and
implicitly. Teams frequently enact these changes without pos-
sessing a comprehensive view of the entire system. Moreover,
the isolated nature of teams, each operating within separate
sandboxes, fosters independent decision-making, potentially
influencing the overall architecture. This RQ aims to develop
holistic and centric views of the system architecture that
encompass various perspectives of dependencies.

RQ3 How to Implement automatic testability and quality
assessment methodologies on the system?

A critical challenge facing microservice systems is the absence
of tailored quality assessment techniques. Existing method-
ologies often fail to address the unique characteristics and
complexities inherent in microservice architectures [6], [7].
This deficiency hampers the ability of development teams to
effectively evaluate the maintainability of their microservice-
based applications, thus hindering their overall quality as-
surance efforts. This RQ aims to employ holistic views to
formulate and automate assessment metrics and techniques.
It seeks to adopt a holistic approach that considers various
facets of the system architecture and its operation to create
robust and efficient evaluation methodologies.

RQ4 How can a tailored visualization methodology be
designed to effectively communicate the constructed views
to practitioners?

The extensive information encompassed within microservice
architecture and its holistic views presents a challenge in
effectively conveying this wealth of data to practitioners.
Furthermore, the absence of visualization tools specifically
tailored for microservices views raises questions about the
adequacy of traditional visualization techniques in capturing
microservice perspectives. This RQ aims to design and validate
a visualization technique specifically tailored for depicting
representations of microservices. It aims to develop a visu-
alization approach that effectively captures the intricacies and
dependencies inherent in microservice architectures, providing
practitioners with intuitive and insightful visualizations to aid
in their understanding and reasoning processes.

III. METHODOLOGY AND PRIOR RESULTS

Different research questions necessitate distinct methodolo-
gies to address them. Employing diverse methodologies en-
hances the breadth of outcomes and validates their robustness.

Regarding RQ1, it embarks on the ambitious endeavor of
conducting a comprehensive study to grasp the foundational
issues stemming from the core concept of dependencies. This
study is centered on the creation of a varied dependency
taxonomy, which amalgamates insights from existing litera-
ture, tackles challenges to comprehend existing dependencies,
and draws upon various expertise to elucidate multifaceted
dependency dimensions. It distinguishes between root causes
and symptomatic occurrences, thus reducing ambiguity during
identification. To tackle this RQ, two methodologies are uti-
lized: Systematic Literature Review (SLR) [8] and Open and
Axial coding [9], [10]. The SLR collects literature evidence
to understand current microservice dependencies. Then, Open
and Axial coding validate and categorize these dependencies
with expert collaboration. These methodologies are evaluated
for their systematic approach and efforts to reduce bias by
involving external practitioners.

Prior results pertaining to this RQ include a discussion paper
on the correlation between dependencies and system maintain-
ability, as referenced in [11]. Furthermore, the dependency
taxonomy (under review) reveals both implicit and explicit
types of dependencies. Explicit dependencies occur when one
microservice directly calls another via a REST interface [12].
Similarly, data dependencies arise when multiple data entities
are shared between microservices within a bounded context.
Implicit dependencies arise through semantic clones, where
multiple microservices share similar business logic.

For RQ2, the aim is to leverage the dependency taxonomy
and constructed guidelines to build system-centric views of
microservice-based systems. This involves creating multidi-
mensional perspectives (viewpoints) based on various depen-
dency artifacts, which form the cornerstone of the research
endeavor, utilizing the established guidelines to formulate
subsequent research questions and provide practitioners with a
comprehensive system view. To address this RQ, the Software
Architecture Reconstruction (SAR) [13] methodology is em-
ployed to automatically generate these comprehensive views.



Additionally, a review methodology is utilized to develop
a roadmap for generating different representations from the
system artifacts. A review has been conducted to introduce
this roadmap [3] for constructing the necessary viewpoints.
Both static and dynamic analyses are employed to capture the
multiple dimensions of the system. Prototypes and case studies
are then developed to assess the effectiveness of the method
and the completeness of the generated viewpoints.

Prior results have been derived from endpoint dependen-
cies and data dependencies extracted using static analysis
techniques. These results are presented in dependency matrix
representations as outlined in [14]. These matrices offer a
central viewpoint illustrating the behavior of dependencies
across dimensions, such as the Service Dependency Matrix
(SDM) depicted in Fig. 1 (generated from the TrainTicket
benchmark [15]). For example, considering the cell at position
(row: 23, column: 6) in the SDM, with a value of 4.1, it
signifies that the ts-admin-user-service microservice
(ID 23) has made four calls to the ts-user-service mi-
croservice (ID 6), with one shared entity (UserDto) between
them. These dependencies underscore their interconnected
nature and the significance of their mutual interaction.

Fig. 1: Service Dependency Matrix (SDM). This matrix is
sourced from Abdelfattah et al. (2023) [14].

For RQ3, two main tasks are addressed: firstly, creating a
comprehensive catalog of microservice bad practices to es-
tablish benchmarks for assessing architecture maintainability;
secondly, leveraging the developed holistic views to devise and
automate assessment metrics and techniques.

Transferring design patterns across various software ar-
chitectures is challenging, as not all patterns fit universally,
leading to anti-patterns. To gauge maintainability, current
systems are assessed for anti-patterns, often using tools like
SonarQube [16]. However, SonarQube evaluates individual
applications and cannot identify microservice smells or detect
anti-patterns across codebases. This highlights the need to

explore and identify anti-patterns specific to microservices for
effective system maintenance. To achieve this, this research
utilizes the Triatry systematic literature review [17] in con-
junction with the Open and Axial coding methodologies to
construct a cohesive and exhaustive catalog focused on mi-
croservice ecosystem anti-patterns. Additionally, it leverages
the developed viewpoints and integrates dynamic data to assess
the system by analyzing runtime behavior and computing
assessment metrics such as endpoint test coverage metrics.

Prior results introduced a comprehensive anti-pattern cata-
log in [18], comprising 5 main categories and 58 individual
anti-patterns. This catalog engages experts from the field to
ensure consistency and merge similar anti-patterns published
under different names or with slightly varied definitions. It lays
the groundwork for developing assessment techniques to iden-
tify and address bad practices within microservice systems.
Regarding assessment metrics, this research has delivered End-
to-End (E2E) and API test coverage metric calculations, as
detailed in [19], [20]. It presents three metrics for endpoint
test coverage calculation in microservice systems. Moreover, it
encompasses additional metrics aimed at gauging the impact of
evolutionary changes across various components of the system.

For RQ4, the focus lies on determining the suitable design
approach to effectively convey the complex information ex-
tracted from the microservice ecosystem. The challenge lies
in visualizing the holistic view in a more engaging and inter-
active manner, rather than relying solely on static dependency
matrices. This prompts the question of whether conventional
methodologies suffice for representing this information or if
a tailored visualization methodology should be introduced.
To tackle this RQ, we initiated by conducting a thorough
literature review to assess the state of the art in visualization
within this domain. Subsequently, we devised and developed a
visualization methodology, followed by a series of controlled
experiments involving practitioners to evaluate the understand-
ability of microservice dependency behavior through both
conventional and tailored visualization approaches.

Prior results performed multiple reviews addressing visu-
alization in the literature [21], [22], which highlighted a
shortage in microservice visualization methods, necessitating a
tailored design to encompass its unique perspectives. We then
presented the design outline of the visualization methodology
experiment in [23], which involved implementing a tool named
Microvision utilizing Augmented Reality (AR) medium to
address the challenge of limited rendering space in traditional
visualization, as detailed in [24]. For assessment purposes,
we conducted controlled experiments comparing Microvision
with conventional 2D-graph-based visualization tools, with the
protocol and results analysis published in [25]. The 2D tool
uses rectangular boxes and arrows to present microservice
dependency graphs, similar to commercial and open-source
tools. In contrast, the Microvision tool renders a 3D model
with cubes and line connectors, displaying call information
via popups. Both visualizations convey the same information
but offer distinct display and interaction features for different
needs. This experiment involved systems of two sizes (small



and large) and participants with varying expertise (novice
and expert). The findings showed that AR effectively aids
in understanding microservice architecture, enabling novice
practitioners to grasp system dependencies like experienced
users. While 2D tools clearly visualized dependencies in
small systems, Microvision outperformed in visualizing large
systems with scalability in mind.

Fig. 2: Methodologies aligned with research questions.

As depicted in Fig. 2, each research question employs a
distinct literature review methodology tailored to its specific
tasks. RQ1 and RQ3 utilize the Open and Axial coding
methodology to refine the data extracted from the literature re-
view. Regarding evaluation methodologies, this study assesses
each method based on its inherent nature. The literature review
undergoes validation through adherence to process guidelines,
while the Open and Axial coding process is validated through
collaboration with experts. Case studies are employed to
validate the Software SAR process and quantification metrics.
Additionally, controlled experiments are utilized to evaluate
the effectiveness of the visualization design methodology.

IV. FRAMEWORK CONSTRUCTION

These RQs’ perspectives form the basis for developing an
assessment framework to allow analyzers to operate based on
extracted components and constructed holistic views.

Fig. 3: The proposed Microservice Assessment Framework

This framework, as depicted in Fig. 3 is centered around
the construction of the system holistic view and derive au-

tomated application to provide assessment for the system
quality perspectives. This framework considers various system
granularities and perspectives, combining human-centric as-
pects like architectural visualization with automated evaluation
facets. This framework adheres to the principles outlined in
layers-based guidelines [2], which promote the use of layers
to offer guidance and flexibility in identifying architectural
aspects and determining the views to be generated. This six-
layered framework originates from the microservice system
artifacts and culminates at the application layer, the epicenter
of assessment objectives. The application layer (both quality
assessment perspective (RQ3) and visualization perspective
(RQ4)) harmonizes with one of three granularity component
layers. At the fundamental components layer, the system
components are extracted from the constructed intermediate
representation, an outcome of the intricate static and dynamic
analysis extraction processes. Above it lies the integrated
components [26] layer, a flow of interconnected components
within individual microservices. Contrarily, the holistic views
(RQ2) layer orchestrates the interconnected components and
flows across multiple microservices, constructing a compre-
hensive view of the entire system. Moreover, the guidelines
(dependency taxonomy (RQ1) and anti-pattern catalog (RQ3))
serve as valuable resources to augment the understanding
and application of microservices practices. This concerted
effort to compile such essential references directly fuels the
fundamental component of this framework.

The introduced framework provides flexibility to the ap-
plication layer, allowing diverse applications to assess dif-
ferent system perspectives. The outcomes demonstrate that
this framework effectively addresses issues through a holistic
viewpoint, uncovering insights that might be missed when
analyzing individual microservices in isolation.

V. CONTRIBUTION AND CONCLUSION

This work introduces a comprehensive framework for mi-
croservices systems, enhancing system maintainability and
analytical capabilities. The framework offers techniques for
effective system modifications, ensuring testability, and im-
proving modularity and reusability to maintain manageability.

In addition to practical applications, this work provides
valuable resources to the community. These include multiple
publications detailing the framework’s construction, compre-
hensive catalogs for anti-patterns and dependency taxonomy,
datasets with dependency measurements, anti-pattern defini-
tions, testing suites, and a visualization tool for holistic service
views, integrated as a plugin with development tools.

The framework paves the way for future research, such as
exploring new holistic perspectives from technological and
operational standpoints, broader applications like interactive
documentation, and incorporating evolutionary aspects through
co-change analysis.

FUNDING

This material is based upon work supported by the National
Science Foundation under Grant No. 2409933.



REFERENCES

[1] T. Cerny, M. J. Donahoo, and M. Trnka, “Contextual understanding of
microservice architecture: Current and future directions,” SIGAPP Appl.
Comput. Rev., vol. 17, no. 4, pp. 29–45, Jan. 2018.

[2] L. Bass, P. Clements, and R. Kazman, Software architecture in practice,
3rd ed. Addison-Wesley Professional, 2003.

[3] A. S. Abdelfattah and T. Cerny, “Roadmap to reasoning in microservice
systems: A rapid review,” Applied Sciences, vol. 13, no. 3, p. 1838,
2023.

[4] Amazon, “What is cloud native? cloud native applications explained,”
https://aws.amazon.com/what-is/cloud-native/, 2024, accessed: 2024-02-
01.

[5] “Iso/iec 25010,” https://iso25000.com/index.php/en/
iso-25000-standards/iso-25010, accessed: May 14, 2024.

[6] I. Ghani, W. M. Wan-Kadir, A. Mustafa, and M. I. Babir, “Microservice
testing approaches: A systematic literature review,” International Journal
of Integrated Engineering, vol. 11, no. 8, pp. 65–80, 2019.

[7] P. Jiang, Y. Shen, and Y. Dai, “Efficient software test management
system based on microservice architecture,” in 2022 IEEE 10th Joint
International Information Technology and Artificial Intelligence Confer-
ence (ITAIC), vol. 10. IEEE, 2022, pp. 2339–2343.

[8] B. Kitchenham and P. Brereton, “A systematic review of systematic
review process research in software engineering,” Information and
software technology, vol. 55, no. 12, pp. 2049–2075, 2013.

[9] S. H. Khandkar, “Open coding,” University of Calgary, vol. 23, no.
2009, p. 2009, 2009.

[10] J. Kendall, “Axial coding and the grounded theory controversy,” Western
journal of nursing research, vol. 21, no. 6, pp. 743–757, 1999.

[11] T. Cerny., M. Chy., A. Abdelfattah., J. Soldani., and J. Bogner., “On
maintainability and microservice dependencies: How do changes prop-
agate?” in Proceedings of the 14th International Conference on Cloud
Computing and Services Science - CLOSER, INSTICC. SciTePress,
2024, pp. 277–286.

[12] M. Masse, REST API design rulebook: designing consistent RESTful
web service interfaces. ” O’Reilly Media, Inc.”, 2011.

[13] G. Y. Guo, J. M. Atlee, and R. Kazman, “A software architecture
reconstruction method,” in Software Architecture: TC2 First Working
IFIP Conference on Software Architecture (WICSA1) 22–24 February
1999, San Antonio, Texas, USA. Springer, 1999, pp. 15–33.

[14] A. S. Abdelfattah and T. Cerny, “The microservice dependency matrix,”
in European Conference on Service-Oriented and Cloud Computing.
Springer Nature Switzerland Cham, 2023, pp. 276–288.

[15] FudanSELab, “Train Ticket Wiki,” https://github.com/FudanSELab/
train-ticket/wiki, Accessed: 2024.

[16] “Sonarqube,” https://www.sonarsource.com/products/sonarqube/,
accessed: May 14, 2024.

[17] B. Kitchenham, R. Pretorius, D. Budgen, O. P. Brereton, M. Turner,
M. Niazi, and S. Linkman, “Systematic literature reviews in software
engineering–a tertiary study,” Information and software technology,
vol. 52, no. 8, pp. 792–805, 2010.

[18] T. Cerny, A. S. Abdelfattah, A. Al Maruf, A. Janes, and D. Taibi,
“Catalog and detection techniques of microservice anti-patterns and bad
smells: A tertiary study,” Journal of Systems and Software, vol. 206, p.
111829, 2023.

[19] A. S. Abdelfattah, T. Cerny, J. Yero, E. Song, and D. Taibi, “Test
coverage in microservice systems: An automated approach to e2e and
api test coverage metrics,” Electronics, vol. 13, no. 10, 2024. [Online].
Available: https://www.mdpi.com/2079-9292/13/10/1913

[20] A. S. Abdelfattah, T. Cerny, J. Y. Salazar, A. Lehman, J. Hunter, A. Bick-
ham, and D. Taibi, “End-to-end test coverage metrics in microservice
systems: An automated approach,” in European Conference on Service-
Oriented and Cloud Computing. Springer, 2023, pp. 35–51.

[21] T. Cerny, A. S. Abdelfattah, V. Bushong, A. Al Maruf, and D. Taibi,
“Microservice architecture reconstruction and visualization techniques:
A review,” in 2022 IEEE International Conference on Service-Oriented
System Engineering (SOSE). IEEE, 2022, pp. 39–48.

[22] K. Burgess, D. Hart, A. Elsayed, T. Cerny, M. Bures, and P. Tisnovsky,
“Visualizing architectural evolution via provenance tracking: a system-
atic review,” in Proceedings of the Conference on Research in Adaptive
and Convergent Systems, 2022, pp. 83–91.

[23] A. S. Abdelfattah, “Microservices-based systems visualization: student
research abstract,” in Proceedings of the 37th ACM/SIGAPP Symposium
on Applied Computing, 2022, pp. 1460–1464.

[24] T. Cerny, A. S. Abdelfattah, V. Bushong, A. Al Maruf, and D. Taibi,
“Microvision: Static analysis-based approach to visualizing microser-
vices in augmented reality,” in 2022 IEEE International Conference on
Service-Oriented System Engineering (SOSE). IEEE, 2022, pp. 49–58.

[25] A. S. Abdelfattah, T. Cerny, D. Taibi, and S. Vegas, “Comparing 2d and
augmented reality visualizations for microservice system understand-
ability: A controlled experiment,” in 2023 IEEE/ACM 31st International
Conference on Program Comprehension (ICPC). IEEE, 2023, pp. 135–
145.

[26] A. S. Abdelfattah, A. Rodriguez, A. Walker, and T. Cerny, “Detecting
semantic clones in microservices using components,” SN Computer
Science, vol. 4, no. 5, p. 470, 2023.


