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ABSTRACT

Intent-based networking (IBN) enables network administrators to

express high-level goals and network policies without needing to

specify low-level forwarding configurations, topologies, or pro-

tocols. Administrators can define intents that capture the overall

behavior they want from the network, and an IBN controller com-

piles such intents into low-level configurations that get installed in

the network and implement the desired behavior.

We discovered that current IBN specifications and implementa-

tions do not specify that flow rule installation orderings should be

enforced, which leads to temporal vulnerabilities where, for a lim-

ited time, attackers can exploit indeterminate connectivity behavior

to gain unauthorized network access.

In this paper, we analyze the causes of such temporal vulnerabil-

ities and their security impacts with a representative case study via

the ONOS IBN implementation. We devise the Phantom Link attack

and demonstrate a working exploit to highlight the security impacts.

To defend against such attacks, we propose Spotlight, a detection

method that can alert a system administrator of risky intent updates

prone to exploitable temporal vulnerabilities. Spotlight is effec-

tive in identifying risky updates using realistic network topologies

and policies. We show that Spotlight can detect risky updates in

a mean time of 0.65 seconds for topologies of over 1,300 nodes.
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1 INTRODUCTION

Over the last decade, software-defined networking (SDN) has been

deployed in a variety of production settings to ease the burden on

network administrators in managing control plane operations with-

out manual intervention on every switch1. More recently, intent-

based networking (IBN) allows an administrator to express network

policies without configuring individual network devices with spe-

cific flow rules. Instead, administrators define intents that capture

the overall behavior they want from the network, then an SDN

controller translates them into low-level flow rules and communi-

cates with the network devices to implement the desired behavior.

IBN has been standardized by the Open Networking Foundation

(ONF) [53], the Internet Engineering Task Force (IETF) [21, 45], and

the 3rd Generation Partnership Project (3GPP) [5ś7].

Once an administrator defines their desired policy, two steps

take place prior to enforcing such policy. First, each intent is com-

piled into a set of flow rules through intent compilation. Then, the

individual flow rules corresponding to each intent are sent to the

devices through intent installation. Given the complexities of the

inherently distributed system, it becomes challenging to ensure

DISTRIBUTION STATEMENTA. Approved for public release. Distribution is unlimited.
This material is based upon work supported by the Under Secretary of Defense for
Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any
opinions, findings, conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the Under Secretary
of Defense for Research and Engineering.
1We use łswitchž and łforwarding devicež synonymously throughout the paper.
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that the intended behavior of all flow rules becomes actionable and

consistent at the same time when flows are updated.

Addressing such update inconsistencies is critical for security.

For instance, given a security network policy, a host should never

have connectivity to a host to which it is not explicitly granted

access. When a host does become connected to an unauthorized

host that it was not connected to before the update started and will

not be connected to after the update completes, we refer to this

as a temporal vulnerability. If such connectivity is the result of a

malicious action we refer to it as a temporal attack. We also refer to

the resulting additional connectivity as unauthorized connectivity.

Although prior work has studied the problem of inconsistent

updates in SDN, no work has focused on the security implications

to the IBN layer or the security implications of inconsistent data

plane updates. Several models for consistent updates have been

proposed [48, 51, 61], but unfortunately none of them have been

widely adopted, likely due to both memory and time overhead. The

introduction of intents as a new abstraction presents additional at-

tack vectors, while inconsistent updates and their potential impact

on security continue to remain an unsolved problem. As a feature,

IBN provides conditions under which flow rules will be recomputed

and redeployed. This implies an expanded threat model in which

an attacker can influence when and how this redeployment occurs.

These capabilities increase the attacker’s control over the system,

and have not been considered in prior work. IBN-related security

has focused on secure ACL update plans [71], provenance analy-

sis [72], and automatic bug discovery [42], but none have identified

any temporal vulnerability during intent updates. To the best of

our knowledge, no work has studied temporal vulnerabilities in

IBN caused by inconsistent updates.

Overview. In this paper, we focus on IBN temporal attacks. We

explore different approaches that can be exploited by an attacker

to conduct such attacks: monitoring flow installation, delaying

installation of specific rules, or forcing intents recompilations by

an honest controller, all with the goal of creating an inconsistency

that gives the attacker unauthorized access.

We demonstrate a concrete delay attack, which we refer to as

the Phantom Link attack. In this attack, we show that an attacker-

controlled host is able to create transient connections to other hosts

that are not specified by the intent. In other words, despite an intent

dictating where a host is able to connect, we are able to create short-

lived connections to other hosts. Additionally, we are able to extend

this unauthorized connectivity for long enough to show that an

exploit can be delivered. We are, to the best of our knowledge, the

first to show how an attacker can gain unauthorized connectivity

via inconsistent flow rule updates without access to the controller

or switches.

Solving the problem of inconsistent updates is challenging. On

one side, existing IBN standards [5ś7, 21, 45] do not specify update

consistency guarantees or how updates ought to be implemented.

As a result, developers may design or implement update consis-

tency differently. Defenses implemented in popular controllers,

like barriers and stripe keys, are insufficient to protect against our

attacks. Stripe keys can only enforce the ordering when sending

flow rule operations. They do not guarantee the install ordering

among switches. An attacker can exploit this by selectively delay-

ing updates to some switches. Likewise, barrier messages can only

enforce the flow rule processing order on a single switch. We exploit

improper flow rule update ordering between multiple switches, so

barrier messages are not an effective defense. We demonstrate our

attacks for the ONOS IBN implementation. Changing standards

takes time; meanwhile, administrators are left either unaware or

unable to deal with such inconsistencies and the vulnerabilities

they introduce.

On the other side, enforcing consistent updates in the entire

network is costly and not always necessary. We propose a solution

designed to empower administrators without paying the network

cost of enforcing global consistency on all the flow rule updates.

Our approach instead is to identify high-risk intent updates before

attempting to install the resulting flow rules on the network.

We propose Spotlight, a system that identifies updates prone to

temporal vulnerabilities. We first show a strawman approach that

finds all possible orders in which flow rules can be installed, which

we then inspect individually to verify if it would lead to a transient

connection outside the expectations of the IBN administrator. This

approach is costly and is only feasible on small networks, but finds

all such risky updates. We then present a faster method based on

link prediction algorithms that scales better to large network graphs.

Although this faster algorithm does not guarantee to find all risky

updates, we show that, with proper tuning, we are able to identify

risky updates in all properly tuned trials, even on topologies with

over 1,300 nodes in a mean time of 0.65 secondsÐthis presents a

speedup of 76.8× over the exhaustive search approach.

Empoweredwith Spotlight, an administrator can decide how to

handle such risky updates. Our experimental evaluation shows that

their number is small, thus for example, the administrator might

decide to use a consistent update enforcement for those particular

intents such as those previously proposed [48, 51, 61].

Contributions. We make the following contributions:

• We explore the space of temporal attacks in IBN and show

different ways in which an attacker can exploit them: by

monitoring intent installation, by forcing intent recompila-

tion, or by delaying intent installation.

• We demonstrate an exploitable concrete temporal attack that

controls the order of flow rules by delaying the installation

of an intent at a particular switch. We refer to this attack as

the Phantom Link attack.

• We design the Spotlight detection method to identify high-

risk IBN updates.

• We implement and evaluate Spotlight, and show that it

can detect risky updates in a mean time of 0.65 seconds for

topologies of over 1,300 nodes. We open source Spotlight

for the benefit of the community2.

Ethics. We identified a novel vulnerability in the well-known ONOS

SDN controller. We responsibly disclosed our discovery to the

ONOS security response team of developers. Our attack was as-

signed CVE-2024-24270.

2https://zenodo.org/doi/10.5281/zenodo.11642349
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2 BACKGROUND

2.1 Software-defined Networking (SDN)

Software-defined networking (SDN) differs from traditional net-

working by separating how traffic forwarding decisions are made

(i.e., the control plane) from the traffic itself (i.e., the data plane), cen-

tralizing the control into a logically centralized SDN controller, and

exposing programmable APIs to developers who want to extend

the control plane functionality [43].

2.1.1 Programming the network. To program the network, the SDN

controller sends flow rules to the network’s forwarding devices (e.g.,

switches and routers). Flow rules contain łmatch-actionž fields that

specify parameters of incoming packets that should be matched and

a specific action to be taken. For instance, a typical flow rule may

specify (1) an ingress port to match, (2) an egress port to forward

the packet out on, and (3) a set of header fields (e.g., IP destination

address for routing) to match. A flow rule is triggered if the packet

is received on the ingress port and matches the specified pattern,

in which case the packet is sent out on the egress port.

Flow rules can be installed or removed by the controller at any

time, either actively or passively (e.g., timeout due to lack of match-

ing packets). A controller may send out many flow rule updates (i.e.,

installations, removals, or modifications) as part of a single logical

update in which the goal is to establish or remove connectivity

between at least two endpoints (i.e., hosts).

2.1.2 Update consistency in the data plane. Although the SDN ar-

chitecture is logically centralized, it is a distributed system consist-

ing of SDN controller instances and switches. Distributed systems

often aim to provide consistency a property dictating that all partic-

ipants see the same view of operations and execute intended state

changes in a well-defined order.

The update consistency problem in the data plane3 arises from the

ordering of flow rule updates [62]. If an SDN controller sends mul-

tiple flow rule updates at one time, some switches may receive and

install the updates before others. That leads to an inconsistent (and

insecure) forwarding state, since in-transit packets may be subject

to some indeterminate mixture of the old and new rule set. Foerster

et al. [25] describe consistency in terms of ensuring that there are

no loops and no blackhole routing (connectivity consistency), that

certain configured properties must remain satisfied at all times (pol-

icy consistency), and that no flows should be created that violate

link capacities (congestion-aware consistency). Additionally, per-

packet consistency [61] ensures that every packet flowing through

the network should behave as though it is being routed before any

updates occurred, or after all updates have occurred.

To ensure update consistency, McGeer [51] proposes two-phase

commits, which trades off space (preserving scarce TCAM memory

on switches) with communication (extra communication cost). Re-

itblatt et al. [62] propose installing new flow rules before removing

old ones and tagging packets with information that directs them

on which set of flow rules to follow. Liu et al. [48] propose a faster

algorithm for consistent updates, but this comes at the cost of a

relaxed model of consistency.

3A similar update consistency challenge arises in the control plane, but prior work
(e.g., [17, 56, 64]) has addressed this challenge and we leave it out of scope. We refer
the reader to Bannour et al. [14] for a survey on distributed SDN control planes.
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Figure 1: Intent compilation and installation of a single intent

within a generic intent state machine model. Intents (and

their low-level updates) are impacted by administrator events

(e.g., requesting a new intent be installed, withdrawing an

existing intent) or by network events (e.g., topology change).

2.2 Intent-based Networking (IBN)

Intent-based networking extends the programmability of SDN but

aims to simplify network management through abstraction. Rather

than focusing on łhowž the network should implement some de-

sired outcome or policy, IBN enables administrators to describe

łwhatž they want the network to do through intents. Administra-

tors can define high-level intents (e.g., łconnect host A to B with

minimum bandwidth Xž) without concerning themselves with im-

plementation details in the data plane such as flow rules, network

configuration protocols, or underlying topology.

IBN has been standardized by the Open Networking Foundation

(ONF) [53], the Internet Engineering Task Force (IETF) [21, 45], and

the 3rd Generation Partnership Project (3GPP) [5ś7]. IBN shares a

common model where a logically centralized intent controller (or

IBN controller) coordinates and manages all intents based on an

intent state machine. IBN has been implemented in open-source

software such as the Open Network Operating System (ONOS) [54],

OpenDaylight (ODL) [47], and the Open Network Automation Plat-

form (ONAP) [46]. Proprietary IBN controllers have also been de-

veloped by Juniper [35], Cisco [20], Huawei [31], and IBM [32].

We use the ONOS IBN implementation as a running example

throughout the rest of this paper because of its representative fea-

tures and production-quality implementation.

When an IBN controller attempts to fulfill an administrator’s

intent, the intent is compiled from a high-level abstraction to low-

level flow rules and installed into the network by the controller

sending those flow rules to the network’s switches. Figure 1 shows

the intent compilation and installation within the intent state ma-

chine. An administrator requests an intent to be installed, which

gets compiled into low-level flow rules. The compilation or installa-

tion can fail if the intent’s requirements do not meet the network’s

current resources. Network events, such as topology changes, can

impact failed intents (i.e., resources may become available allowing

the intent to be installed) or impact installed intents (i.e., resources

3
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may become unavailable preventing the intent from being fulfilled).

An administrator can withdraw an intent when no longer needed.

3 CURRENT PRACTICES OF SECURE
UPDATES IN IBN

Since IBN abstracts away many of the low-level implementation

details in terms of flow rule compilation and installation, we now

consider the security impacts of flow rule update consistency on

the specification, design, and implementation of IBN.

We found a gap between the academic literature on programmable

network updates and how they are implemented in IBN. We an-

alyze the ONOS IBN implementation as an illustrative example

of how update consistency is implemented, its shortcomings, and

its security impacts. Based on the ONOS case study, we highlight

several challenges in addressing these impacts, and we sketch our

contributions to how we solve those challenges.

3.1 Case Study: ONOS IBN implementation

We examined ONOS v2.7.1 to understand how updates are imple-

mented within the compilation and installation phases.

3.1.1 Compilation. Within the compilation stage, an administra-

tor’s intent is compiled into łmiddle intentsž (i.e., intents that are

not yet ready to be installed and need further refinement) and łin-

stallable intentsž (i.e., intents that are ready to be installed). The

compilation iteratively processes middle intents until they become

installable intents. Installable intents are added to a queue to be

installed. As a result, installable intents that are generated earlier

during the compilation will be ordered before the installable intents

that are generated later in the final queue.

Security implications:No ordering mechanism exists to ensure

that intents are compiled in a particular order (e.g., FIFO). That

prevents an administrator from being able to have fine-grained

control over or assurances about potentially conflicting intents.

3.1.2 Installation with striping. Within the installation phase, for

each switch, ONOS assembles a list of flow rule operations (i.e., the

flow rule and whether it should be installed or deleted). Flow rule

operations are separated into batches based on the switch to which

they are being sent. ONOS implements łstripe keysž such that each

batch can be assigned a key, and ł[batches] with the same key will

be executed sequentially. Operations [batches] without a key or

with different keys might be executed in parallel. This parameter is

useful to correlate different operations [batches] with potentially

conflicting writesž [4].

We found that ONOS does correctly implement the in-order

sequential execution of flow rule operation batches with the same

stripe keyÐbut only if a stripe key is assigned.4 If utilized, the stripe

key mechanism is an effective way to enforce a certain order when

sending flow rule operation batches to the switches, but it does

not enforce any ordering on the receiving and processing of those

batches among the switches.

4Specifically, ONOS selects the thread that will send the batch based on the batch’s
stripe key, where the thread index equals to the stripe key mod the number of threads
(i.e. the remainder of dividing the stripe key with the thread count). This ensures the
batches with the same stripe key will be sent out sequentially on the same thread,
even if the batches are intended for different switches.

Critically, we also found that when the batches are assembled,

no stripe keys are actually assigned. In other words, the stripe key

mechanism is implemented and available in the code, but not used

when installing or deleting flow rules via the IBN subsystem.

Security implications:Although flow ordering mechanisms ex-

ist in ONOS, they are not used by the IBN subsystem. Furthermore,

even if they were used, there is no assurance that the flows will be

applied in a consistent order once they are updated on the switches.

That lack of assurance can cause indeterminate behavior through

race conditions and allow unauthorized data plane connectivity.

3.1.3 Installation with barrier messages. ONOS implements mes-

sage ordering through łbarriersž that separate groups of requests

that should be processed. The controller sends an initial group of

requests, followed by a barrier request, followed by a second group

of requests. The switch may reorder any requests within the initial

group but must complete all requests and send a barrier reply to

the controller before attempting to process the second group. We

found that ONOS places a barrier request between each batch of

flow rule operations sent to a single switch. However, barriers are

not used to enforce ordering for batches sent to multiple switches.

Security implications: Although single-switch updates can be

ordered, multi-switch updates (which are common for intents) are

not ordered. The lack of ordering could cause indeterminate behav-

ior and introduce security-critical race condition vulnerabilities.

3.1.4 Automated recompilation and redeployment. Anetwork event

can cause intents in ONOS to be recompiled. Network events could

include changes to topology, workload, or security administration.

All intents are recompiled after a network event, but flow rule

updates will only be distributed if they differ from the flow rules

before the event. A network event does not imply that any flow rule

updates will occur, but flow rule updates do imply that either an

administrator made an intentional policy change at the controller,

or a network event occurred.

Security implications: Intents provide convenience to ostensi-

bly ease the responsibilities of network and security administrators.

However, they do so by offloading some responsibility of flow rule

management to network event detection modules. These network

events can be manipulated to intentionally fool the controller into

performing an intent recompilation and flow rule redeployment

in a way that would be much more difficult if updates relied on a

human administrator.

3.2 Challenges to Secure Updates

Based on the insights from our investigation into the ONOS IBN

implementation, we consider several fundamental challenges about

why inconsistent updates pose security risks in IBN and what the

current obstacles are in defending against them.

3.2.1 Challenge 1: Inconsistent updates cause exploitable network

conditions. Although data plane update consistency properties and

guarantees have been proposed in academic literature [16, 25, 44,

61, 62, 66, 78], we discovered that major open-source SDN and IBN

controllers like ONOS do not explicitly verify or enforce any notion

of consistent ordering in traditional SDN, much less IBN.

In contrast to relatively static traditional networks, SDN and IBN

enable more dynamic changes that theoretically allow for frequent

network reconfiguration. Prior work has shown how such frequent

4
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reconfiguration can lead to denial of service impacts [28]. As a result,

attackers could leverage the inconsistencies in frequent updates to

gain unauthorized communication access within the data plane.

Our contributions: We demonstrate the efficacy of an attacker

exploiting such inconsistencies by proposing three temporal attacks

(Section 4.2) and devising a working exploit in the ONOS IBN

implementation (Section 4.3) to demonstrate the impact of such

attacks on overall network security.

3.2.2 Challenge 2: Does IBN promise consistent updates? (If not,

should it?) Given that IBN implementations are susceptible to at-

tacks that leverage update inconsistencies, does the root cause come

from the implementation, design, or specification? We surmise that

the ONOS IBN implementation does not provide consistent updates

in the data plane because there is no well-defined specification that

says that it ought to provide such properties, nor do code or network

traces indicate the presence of a consistent update mechanism.

Unfortunately, the existing IBN standards [5ś7, 21, 45] do not

specify update consistency guarantees or how updates ought to

be implemented. As a result, developers may design or implement

update consistency differently. If not properly specified, adminis-

trators could incorrectly assume that their IBN implementation

implements update consistency securely when it may not.

Our contributions: We propose a set of invariant conditions

(Section 5.2) that can be used to verify when inconsistent updates

within IBN cause security-critical impacts on the network.

3.2.3 Challenge 3: Efficiently detecting security-impacting updates.

Even if the right conditions can be detected, the state space of all

possible updates (i.e., the set of all possible flow rules for all possible

data plane paths that enable connectivity for an intent) becomes

difficult to manage. However, not all updates will cause security-

critical vulnerabilities to manifest. Even if consistent updates were

implemented, such updates could impose a performance penalty

on updates that do not cause vulnerabilities.

Our contributions: We propose a defense, Spotlight, and

design a fast detection algorithm (Section 5.5) that can reduce the

searchable state space for only security-relevant consistent updates.

4 TEMPORAL ATTACKS IN IBN

We describe how an adversary can execute temporal attacks in

IBN by exploiting inconsistencies in intent installation and in the

remote connection between the controller and switches. We first

describe the attacker model including objective and capability. Then

we introduce different types of temporal attacks and demonstrate a

concrete temporal attack, Phantom Link. Finally, we reproduce the

Phantom Link on the emulated network and show that by exploiting

this attack, an attacker can construct unauthorized connectivity

between a victim and a malicious server.

4.1 Threat Model

Network policy with intents. We refer to network devices comprising

hosts, switches, and controllers. Hosts are end devices and may

be workstations, servers, databases, or any device with which a

user might want to interact. Switches are forwarding devices that

receive network packets and forward them according to installed

flow rules. Controllers are the control plane devices that decide

which flow rules should be installed on which switches.

We assume that a network’s security policy is defined and en-

forced using intents, for example as in NetViews [12, 13]. All intents

are assumed to be correctly defined by the administrator, which is

to say that the steady-state final connectivity after all updates are

made is the intended configuration.

Temporal attacks. Given the system description above, we assume

a default-deny model: a host should never have connectivity to

a host to which it is not explicitly granted access. When a host

does become connected to an unauthorized host that it was not

connected to before the update started and will not be connected

to after the update completes, we refer to this as a temporal vul-

nerability. If such connectivity is the result of a malicious action

we refer to it as a temporal attack. We also refer to the resulting

additional connectivity as unauthorized connectivity.

Attacker model. We consider an IBN network controlled by an IBN

controller, which may be built upon an SDN controller and act as a

subsystem within such an SDN controller [24, 47, 54]. We assume

hosts in the data plane may be malicious but the controller and

switches are not. An adversarymay also have the ability to influence

intent installation, but cannot install arbitrary intents directly. We

assume that a malicious host has a goal of connecting to one or

more hosts that are disallowed by the security policy. Even short-

lived temporal vulnerabilities are considered a successful attack in

the adversary’s eyes if the connection is long enough to deliver a

malicious payload. Additionally, we assume the attacker can hide

its abnormal behavior from detection by using multiple machines

and can retry the attack multiple times if prior attempts fail.

Table 1 shows a toolkit of possible attack capabilities leveraged by

the attacker based on existing known attack methods. The attacker

can learn the network’s flow rules by using SDNMap [10] and infer

intents from the learned rules. To saturate a target link, the attacker

can find a virtual network topology by learning a łlayer-3 link mapž

through traceroute [36]. In the case of SDN with in-band control,

the attacker can discover ła shared linkž used for both the control

and the data plane and attack a target switch [18]. By fingerprinting

SDN applications, the attacker may be able to execute the Switch

Delay attack (Section 4.2.3), which depends on a specific application

(e.g., ARP proxy in ONOS [54] and ODL [47]).

4.2 Temporal Attacks

We show how temporal vulnerabilities can occur not only when

installing an intent that connects two endpoints5 (e.g., two hosts),

but also while modifying or recompiling an intent, in which case

the controller may induce temporal vulnerabilities.

As described earlier in Section 3.2, the inconsistency of flow

rule installation allows temporal vulnerabilities in IBN. Because

the intents are installed in a random and indeterminate order, un-

expected behavior can happen in terms of network connectivity.

Such behavior can be characterized as:

• Lack of connectivity: Examples include blackholes where

packets are dropped, or loops where packets are forwarded

without ever reaching their destination. The outcome is a

denial of service of a victim(s), or the entire network.

5Unless specified, we assume an intent is constrained by its endpoints.

5
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Table 1: Existing attack tools, tools’ capabilities, and tools’ use in temporal attacks.

Tools Capabilities Use

SDNMap [10] Fingerprinting flow rules Intent speculation

Crossfire [36], Crosspath [18] Disrupting a link or a switch Intent recompilation (Section 4.2.2)

Cao et al. [19] Fingerprinting SDN apps Switch Delay attack (Section 4.2.3)
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s3s2
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f2

s4h1 h2

(a) The initial path compiled from the waypoint intent.

f1

s1

s3s2

s5

f2

s4h1 h2

(b) The final path compiled from the waypoint intent.

f1

s1

s3s2

s5

f2

s4h1 h2

(c) An intermediate path that bypasses both firewalls.

Figure 2: An indeterminate ordering installation of flow rules

can cause a modification to a waypoint intent to suffer from

temporarily bypassing the waypoints, which violates the

intended security policy.

• Additional connectivity: The random order of installation

can also result in additional connectivity between devices

in the network that was not intended by the network secu-

rity policy. In this case, the outcome is unauthorized access

between two or more hosts.

We note that just because the controller does not enforce a certain

order of the flow rules installation does not necessarily mean that

unauthorized access is allowed. An attacker can either discover such

unauthorized access by monitoring the installation of intents, or

can enforce a certain order by delaying flow installation at certain

switches, or by forcing the controller to create them by triggering

the recompilation of intents.

We describe these methods in more detail:

4.2.1 Discovering unauthorized connectivity by network monitoring.

A controller can modify an existing intent to change any endpoint

of the intent. When two ends of the intent have been changed,

the controller may induce unauthorized connectivity. For example,

suppose an intent 𝐼 allows a connection from ℎ𝑎 → ℎ𝑏 and the

controller modifies 𝐼 to allow a connection from ℎ𝑐 → ℎ𝑑 , which

shares part of its path with ℎ𝑎 → ℎ𝑏 . While updating the intent

𝐼 , if the switch that connects ℎ𝑏 and ℎ𝑑 is updated first, it will

allow ℎ𝑎 → ℎ𝑑 . If the switch that connects ℎ𝑎 and ℎ𝑐 is updated

first, it will allow ℎ𝑐 → ℎ𝑏 . As a result, there are two short-lived

indeterminate connectivity possibilities that enable unauthorized

access: ℎ𝑎 → ℎ𝑑 or ℎ𝑐 → ℎ𝑏 .

In addition, the controller can also update the waypoint of a

waypoint intent6. Figure 2 shows an example where the victim

network has initially deployed a waypoint intent that requires the

traffic between hosts ℎ1 and ℎ2 to go through the firewall 𝑓 1. The

assumed path is ℎ1− 𝑓 1−𝑠2−𝑠3−𝑠4−𝑠5−ℎ2, as shown in Figure 2a.

Some time later, the network operator modifies this intent so that

the traffic between the two hosts is required to go through the

firewall 𝑓 2. The eventual new path is ℎ1−𝑠1−𝑠2−𝑠3−𝑠4− 𝑓 2−ℎ2,

as shown in Figure 2b.

Attack mechanism: If the flow rule updates for 𝑠4 and 𝑠5 are

significantly delayed, then there will be an intermediate path where

the traffic goes throughℎ1−𝑠1−𝑠2−𝑠3−𝑠4−𝑠5−ℎ2, which bypasses

both firewalls, as shown in Figure 2c. Although this simple topology

may not be exactly the same in real deployed topologies, such

bypasses can occur as long as the simple topology is a subgraph

within a realistic topology, e.g. if 𝑠2, 𝑠3 and 𝑠4 are connected to

other switches and hosts.

Attack implications: While intent modification can allow tem-

poral attacks, an attacker has to meet strong requirements in order

for this attack to succeed. The attacker needs to have the capabil-

ity to monitor intent updates in the control plane to calculate the

difference between the old set and the new set of intents.

4.2.2 Triggering unauthorized connectivity by intent recompilation.

If an intent can be implemented on one of multiple paths, the

controller can recompile the intent when the established path is no

longer valid. Figure 3 shows an example of temporal connectivity

when resolving a down link. We assume that the controller has two

connectivity intents. The intent with a priority of 200 (𝐼𝐴) sends

packets destined to an IP subnet 10.0.10.0/24 from 𝐻1 to 𝐻3. The

intent with a priority of 100 (𝐼𝐵 ) forwards packets destined to an IP

subnet 10.0.0.0/8 from 𝐻2 to 𝐻4. If the controller finds the shortest

path for each intent, the path of 𝐼𝐴 will be 𝐻1 − 𝑆1 − 𝑆2 − 𝐻3 and

the path of 𝐼𝐵 will be 𝐻2 − 𝑆1 − 𝑆3 − 𝐻4.

Attack mechanism: If the link 𝑆1 − 𝑆2 is disconnected, the

controller will receive a link down event and recompile the intent

𝐼𝐴 to avoid the failed link, 𝑆1−𝑆2 1 . Since another valid path for 𝐼𝐴
exists (i.e. 𝐻1 −𝑆1 −𝑆3 −𝑆2 −𝐻3), the controller can still implement

6A waypoint intent adds additional constraints to an intent by specifying intermediate
nodes (i.e., waypoints) in the network that the end-to-end path must traverse. Such
waypoint intents can enforce network security policies such as łall traffic between A
and B must go through a firewallž.
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100

200 𝐻1 → 𝐻3, DST IP: 10.0.10.0/24 

𝐻2 → 𝐻4, DST IP: 10.0.0.0/8 

𝐻1 𝐻2

𝐻3 𝐻4
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𝑆2 𝑆3

𝐻1 𝐻2

𝐻3 𝐻4
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𝑆2 𝑆3
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𝐻3 𝐻4
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𝑆2 𝑆3

(2) Delay on S3(1) S1–S2 Link Down (3) All Updated

Intents:

CONTROL PLANE

DATA PLANE

Figure 3: Execution of a temporal attack while handling a

down link.

𝐼𝐴 by removing outdated rules from the switches in the previous

path and adding new rules to the switches in the new path. If the

flow rule updates for 𝑆3 are delayed, 𝑆3 has outdated rules while

𝑆1 and 𝑆2 have new rules 2 . Since 𝑆3 forwards packets destined

to an IP subnet 10.0.0.0/8 to 𝐻4 because of 𝐼𝐵 , packets from 𝐻1 are

also delivered to 𝐻4, not 𝐻3, until 𝑆3 handles delayed updates from

the controller 3 .

Attack implications: Unlike the intent modification, attackers

residing in a remote host can provoke intent recompilation at will.

To disconnect a link or a switch, the attacker can saturate the target

link [18, 36] or the control channel between the controller and

the target switch [65, 75]. However, the random order of flow rule

installation from intent recompilation does not always guarantee a

successful temporal attack that would allow unauthorized access.

4.2.3 Constructing unauthorized connectivity by delaying installa-

tion of intents. During intent updates, a remote host attacker can

execute the temporal attack by choosing the target switch to delay

during rule installation. We refer to this as the Switch Delay attack.

Attack mechanism: To delay rule installation, the attacker can

attempt to perform denial of service to one of the three parties

involved in the rule installation: the controller, the control channel,

and/or the switch.

First, attacking the controller requires flooding packets sent from

many servers like in a botnets, considering that the controllers show

high performance with thread scalability [22]. Although such DDoS

attacks could succeed, they would paralyze the whole network.

Second, the attacker could saturate the control channel between

the controller and the target switch. The SDN controller can re-

ceive packets of interest from a switch (e.g., PACKET_IN messages

in OpenFlow7). To check link status, the SDN controller listens

for link-layer discovery protocol (LLDP) packets. In our setup, by

flooding 1300-byte LLDP packets with tcpreplay, the remote at-

tacker can achieve 1400 Mbps bandwidth, which can saturate the

7We use OpenFlow [52] and its message types as a representative example of the
data plane configuration protocol, but the attack can generalize to other data plane
configuration protocols (e.g., P4Runtime [55]).

𝐻1 𝐻2

𝐻3 𝐻4

𝑆1

𝑆2 𝑆3

2

1

S1-S2 Down

FLOW MOD

ARP Reply

…

ARP Proxy

Intent Manager

IBN Controller

Figure 4: Execution stages of the Phantom Link attack from

Figure 3. The attacker located in 𝐻2 and 𝐻4 executes steps 1

and 2 to allow unauthorized access.

control-channel uplink from the switch8. However, this does not

affect the delay of the flow-rule update message, since the control-

channel downlink to the switch is not affected. Unless the controller

saturates the control-channel downlink by itself, the attacker in the

data plane cannot delay the rule installation.

Finally, the adversary attacks the target switch. If the target

switch crashes, the controller simply removes the erroneous switch

and supports existing intents on the remaining switches. Instead,

the attacker can overload the slow path of the target switch. The

SDN controller listens to ARP packets to monitor hosts, and also

to send ARP reply packets on behalf of the destination host (e.g.,

PACKET_OUT messages in OpenFlow). A remote attacker on a host

connected to the target switch can flood ARP request packets. Due

to the small size of ARP packets, the bandwidth of ARP flooding is

less than 40 Mbps, much lower than the bandwidth of the control

channel. The controller can handle such low-bandwidth PACKET_IN

messages and send back corresponding PACKET_OUT messages to

the target switch. However, the switch becomes slow in handling

control messages while processing flooded PACKET_OUT messages.

An attacker does not necessarily need to gather information to

flood ARP. An attacker can flood crafted ARP request packets by

setting one machine as the destination and another as the source

without needing the victim’s information. Since the IBN controller

will respond with ARP reply packets for these request packets,

the path between the target switch and the controller becomes

saturated, which is within the IBN threat model. Tools like SDNMap

increase the success likelihood of our exploit but are not strictly

required, and if the attack fails due to insufficient knowledge, the

attacker can always try again.

Attack implications: The attacker can delay the flow rule in-

stallation request (e.g., FLOW_MOD in OpenFlow) by flooding ARP

request packets.

8According to a specification of the Pica8 40GbE OpenFlow hardware switch [57], the
bandwidth of the control channel is 1 Gbps.
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4.3 Executing Phantom Link

Among temporal attacks described in Section 4.2, we introduce

Phantom Link, which allows the attacker to exploit temporal attacks

at the discretion of the attacker.

Figure 4 shows the process of executing the Phantom Link attack.

First, the attacker on 𝐻4 executes the Switch Delay attack by flood-

ing ARP request packets 1 . That forces 𝑆3 to handle PACKET_OUT

messages that include ARP reply packets sent from the ARP proxy

in the controller. Then, the attacker in 𝐻2 floods packets to saturate

the target link 2 . That cuts off the 𝑆1 − 𝑆2 link, and the controller

will receive a link-down message from 𝑆1. Since 𝐼𝐴 uses the discon-

nected link, the intent manager in the controller will update the

flow rules of 𝐼𝐴 to bypass the failed link. However, while processing

flooded ARP reply messages, 𝑆3 delays the FLOW_MOD message sent

from the controller. Therefore, the attacker can receive packets

from 𝐻1 until the flow rules have been updated in 𝑆3.

4.3.1 Reproducing Phantom Link. To demonstrate that the attacks

are not just theoretical, we reproduced the Phantom Link attack.We

ran two virtual machines in Google Cloud Platform: 4 vCPUs, 32 GB

memory, and 120 GB balanced persistent disk. On one VM, we ran

ONOS v2.7.1 as an IBN controller (controller VM). On the other VM,

we executed network emulation based on Mininet v2.3.0 with Open

vSwitch v2.14.0 (switch VM) to emulate the scenario described in

Figure 3. Each emulated switch connects to the controller through

OpenFlow 1.3 over TCP. These two virtual machines are connected

to the same network, which shows nearly 8 Gbits per second. We

limited the bandwidth of each management connection to 1 Gbps by

referring to the specification of the OpenFlow hardware switch [57].

To disconnect the target link, the attacker can execute the link-

flooding attack [36] by flooding packets that traverse the target link.

We emulated this attack by simply disabling an emulated interface

of the target link. We executed 10 times to measure the average.

We flooded ARP request packets from 𝐻4 to delay 𝑆3. The band-

width of ARP showed 40Mbps, which is much lower than the 1Gbps

bandwidth of the control channel. After a few seconds for the target

switch to process control messages, we disconnected the 𝑆1 − 𝑆2
link. ONOS recompiled the 𝐼𝐴 intent and sent the FLOW_MOD and

the BARRIER_REQ messages to 𝑆1, 𝑆2, and 𝑆3. The time difference

between these messages was less than 10 ms, while the order of

messages was random. However, the target switch (𝑆3) sent the

corresponding BARRIER_REPLY message to ONOS after 1304.5 ms,

compared to 157.9 ms taken in the remaining switches.

Thus, 𝑆3 allowed temporal connectivity fromwhen normal switches

responded to when the target switch responded, or 1146.6 ms.

4.3.2 Security implications. An attacker can use the Phantom Link

attack as a stepping stone in a larger attack campaign where a

tactical goal is to gain unauthorized access within a network. The

attacker’s ultimate goal may be to send malicious payloads to a

victim host (e.g., malware campaign) or to learn about the network’s

configuration or the traffic being sent across it.

5 Spotlight: TEMPORAL VULNERABILITY
DETECTION FOR IBN

Weprovide some insights into the causes of temporal vulnerabilities,

and propose SpotlightÐa defense module that can successfully

mitigate our Phantom Link attack. We describe both the design and

proof-of-concept realization of Spotlight.

5.1 System Model and Goals

Our model considers two roles, each of whom will be interacting

with the system in different ways and under different constraints.

The first role is that of policy administrators who are charged with

implementing network connectivity policies. The policy adminis-

trator enforces whatever network policy has been selected. In the

context of IBN, this means that the policy administrator can add,

remove, or modify intents, as well as perform other network actions

necessary to adhere to the requirements. We assume that policy

administrators are not malicious. The second role is that of users.

They are human actors or software programs at any of the network

hosts endpoints. Users are blind to the constitution of the network

fabric; their only visibility into which is through side-channel infer-

ences based on network operations such as initiating (or receiving)

connections or sending data. Additionally, our model assumes that

the dominant cause of delay in flow rule updates is link latency, so

we treat all updates on a single switch as atomic.

System goals. We aim to design a detector system that can alert

policy administrators if the intent being added may be a high-

risk update. We define high-risk updates to be the modification of

intents such that, if switch flow rules are not updated consistently,

a temporal vulnerability will occur. Spotlight returns an alert to

the policy administrator that the submitted intent has a temporal

vulnerability. Alternatively, it can return all possible orders that

flow rule updates could be installed in that would yield a temporal

vulnerability.

5.2 Causes of Temporal Vulnerabilities

In Section 4.2, we presented several examples of temporal vulnera-

bilities. In this section, we characterize similarities between them,

and identify insights about when a temporal vulnerability may

occur. We use these insights to guide our solution, Spotlight.

For completeness, we define three terms: starting state S0, action

A, and finishing state S𝑓 . The starting state S0 is a stable state of

the IBN; all intents have been compiled and all pending flow rules

have been installed on their respective switches. The finishing state

S𝑓 is the quiescent stable state achieved by the system after the

action A has been executed on the starting state S0. The action A

is the addition, removal, of modification or intents, as well as any

changes to the topology; it represents a transition from S0 → S𝑓 .

We represent an intent being added, removed, or modified as

𝑖 ∈ 𝐼 , where 𝑖 ∈ S0∨𝑖 ∈ S𝑓 . The source and destination of a connec-

tion as specified by an intent are represented as 𝑖 .𝑠𝑟𝑐, 𝑖 .𝑑𝑒𝑠𝑡∀𝑖 ∈ 𝐼 .

An intent that was added to S𝑓 is represented as 𝑖 , and an intent

removed from S0 is represented as 𝑖′. We define a function D

executed by the controller that returns the set of switches that

need to be updated with new flow rules to satisfy a connectivity

intent. Each intent has a boolean pattern matching function written

𝑖 .𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ∀𝑖 ∈ 𝐼 , which returns whether or not a particular packet

source or destination will match the flow rules comprising the in-

tent. Using this terminology, we list below the requirements for

extra connectivity:
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(1) At least one intent must have already been installed in the

starting state

|S0 | > 0

(2) The action must include at least one intent being removed

and one being installed in a single update batchÐthis could

also be the modification of a single existing intent

|S| > 0,S = S𝑓 − S0

(3) There must be partially disjoint paths between the original

intent and new intent that is being installed

0 < |D(𝑖1) ∩ D(𝑖2) | < |D(𝑖1) ∪ D(𝑖2) |

(4) The two intentsÐoriginal and newÐmust differ in at least

one endpoint or waypoint

𝑖 .𝑠𝑟𝑐 ≠ 𝑖′ .𝑠𝑟𝑐∨𝑖 .𝑑𝑒𝑠𝑡 ≠ 𝑖′ .𝑑𝑒𝑠𝑡∨𝑖 .𝑤𝑎𝑦 ≠ 𝑖′ .𝑤𝑎𝑦 ∀𝑖 ∈ S0,∀𝑖
′ ∈ S𝑓

(5) The packet filter rules must match the source and destination

of both the original and new intents for every switch on the

path. In other words, a temporal vulnerability can only occur

for packets that would be affected by the intent update

𝑖 .𝑝𝑎𝑡𝑡𝑒𝑟𝑛(ℎ1) ∧ 𝑖 .𝑝𝑎𝑡𝑡𝑒𝑟𝑛(ℎ2) ∧ 𝑖
′ .𝑝𝑎𝑡𝑡𝑒𝑟𝑛(ℎ1) ∧ 𝑖

′ .𝑝𝑎𝑡𝑡𝑒𝑟𝑛(ℎ2)

∃ℎ1 ∈ 𝐻,ℎ2 ∈ 𝐻,ℎ1 ≠ ℎ2

5.3 Spotlight Architecture

Our detection module sits logically after the IBN controller com-

pilation stage. The workflow, as indicated in Figure 5, begins with

a policy administrator either modifying an existing intent, or re-

moving an existing intent and then adding a new one 1 . This is a

policy change in which network connectivity is altered between

at least two hosts. The compilation of the intent into flow rules is

unmodified, but after compilation is complete, flow rules are sent

out to the Spotlight detection module instead of being propagated

to the switches over the network 2 .

The detection module processes the flow rules as described in

Section 5.4 and Algorithm 2. If a high-risk update is detected, the

compiled flow rules are cached and details of the vulnerability are

reported to the policy administrator who can decide to pursue safer

alternatives 3 . We have shown with our attack in Section 4 that

updates that have not been fully vetted can entail security risks.

In response, it makes sense to pre-approve updates to ensure that

they are safe. If Spotlight does not find a temporal vulnerability,

the update is considered safe and is forwarded on to the controller

4 , which then distributes the flow rules as usual 5 .

Administrators have several options for what to do with detected

temporal vulnerabilities. We discuss those options and trade-offs

in detail in Section 7.

The Spotlight architecture is designed as a standalone module

and is agnostic to the underlying controller implementation. All

that is required for adapting Spotlight to a different controller is

to import the currently installed flow rules as well as the flow rules

to be installed using Spotlight’s program interface.

5.4 Strawman Detection Algorithm

We first present a strawman detection algorithm that when given

as inputs (1) the flow rules presently installed on the switches in

the network, and (2) the flow rules changes resulting from the IBN

Vulnerability 
detected

Update safe

Compiled 
flow rules

Propose 
intent

Distribute 
flow rules

Policy
administrator

1

2

4

3

5

Controller

Spotlight

Figure 5: Spotlight architecture showing typical workflow

of an administrator proposing an intent to be compiled and

installed into the IBN-based network.

Algorithm 1 Strawman detection algorithm

1: Input: 𝐹0, 𝐹Δ, 𝐻, 𝑆

2: Output: 𝑡𝑟𝑢𝑒 ∪ 𝑓 𝑎𝑙𝑠𝑒

3: 𝐺0 ← 𝑖𝑛𝑖𝑡𝐺𝑟𝑎𝑝ℎ(𝐻, 𝑆, 𝐹0)

4: 𝐺 ′ ← 𝑖𝑛𝑖𝑡𝐺𝑟𝑎𝑝ℎ(𝐻, 𝑆, 𝐹0 + 𝐹Δ)

5: for 𝑆 ′ ⊂ 𝑆 do

6: 𝐺𝑢 ← 𝑖𝑛𝑖𝑡𝐺𝑟𝑎𝑝ℎ(𝐻, 𝑆, 𝐹0 + 𝑓 𝑙𝑜𝑤𝑟𝑢𝑙𝑒𝑠 (𝑆
′))

7: for ℎ1 ∈ 𝐻,ℎ2 ∈ 𝐻,ℎ1 ≠ ℎ2 do

8: 𝑝 ← 𝑝𝑎𝑡ℎ(𝐺𝑢 , ℎ1, ℎ2)

9: if 1(𝑝) = 1(𝑝𝑎𝑡ℎ(𝐺0, ℎ1, ℎ2)) then

10: next host pair // hosts were connected before update

11: else if 1(𝑝) = 1(𝑝𝑎𝑡ℎ(𝐺 ′, ℎ1, ℎ2)) then

12: next host pair // hosts will be connected after update

13: else if 𝑚𝑎𝑡𝑐ℎ(ℎ1, ℎ2, 𝑓 𝑙𝑜𝑤𝑟𝑢𝑙𝑒𝑠 (𝑠)),∀𝑠 ∈ 𝑝 then

14: return 𝑡𝑟𝑢𝑒 // temporal vulnerability detected
return 𝑓 𝑎𝑙𝑠𝑒

controller’s compilation of the new intent, performs an exhaustive

search of the state space for possible temporal violations.

We show the pseudocode in Algorithm 1, where 𝐹0 and 𝐹Δ repre-

sent the initial set of flow rules in the system, and the set of changes

to the flow rules, respectively, 𝐻 represents the set of hosts and (𝑆)

represents the set of switches. A flow rule is a tuple of an ingress

port 𝐼 , an egress port 𝐸, and a matching pattern 𝑀 . We assume

the physical topology is static, so all egress ports are connected to

exactly one ingress port on another switch or host. This allows us

to build a graph from the flow rules.

The procedure starts by creating a directed graph𝐺0 = (𝐻+𝑆, 𝐹0)

where the vertices are the hosts and switches, and the edges are

the set of flow rules before the update 𝐹0 (line 3). Next, we create a

9
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graph 𝐺 ′ = (𝐻 + 𝑆, 𝐹0 + 𝐹Δ) where the vertices are the same, but

the edges are the set of flow rules after the update (𝐹0 + 𝐹Δ) (line 4).

Following the graph generation, we need to generate the exhaus-

tive set of unique update orderings. As discussed in Section 5.1, we

assume that the updates on a single switch are atomic. Therefore,

we only need to consider the unique subsets of switches 𝑆 ′ ⊂ 𝑆 ,

which, when updated before the other switches, result in temporal

vulnerabilities (line 5). Note that this is a strict subset, because if

the entire set 𝑆 is updated then the update is complete and any

connectivity is either intentional or a mistake by the administrator,

which is out of scope for our system. In practice, when generating

the unique subsets, we restrict 𝑆 to only switches that will receive

flow rule updates for the new intent.

On line 6, we build a new graph with the initial flow rules plus

any changes to the flow rules in the update of switch 𝑆 ′. We then

use the three graphs we have built to test connectivity between all

pairs of hosts. If a host pair is connected in graph 𝐺𝑢 but not in 𝐺0

or𝐺 ′, then extra connectivity may be possible. We test connectivity

by running a shortest path algorithm between each host pair on all

three graphs, which we indicate in Algorithm 1 lines 8, 9, and 11

with the function 𝑝𝑎𝑡ℎ(). As flow rules define directed edges, we

must test the connectivity in both directions.

For any host pairs for which we deem a temporal vulnerability

to be possible, we need to make sure that there exist packets that

will not be filtered out by the flow rules’ pattern matching field. We

show this part of the algorithm on lines 13ś15 using the𝑚𝑎𝑡𝑐ℎ()

function which returns 𝑡𝑟𝑢𝑒 if ℎ1 and ℎ2 match the pattern in at

least one flow rule on switch 𝑠 in 𝑓 𝑙𝑜𝑤𝑟𝑢𝑙𝑒𝑠 (𝑠). Concretely, we

iterate through the switches on the connected path and check if

the source and destination hosts on the path match the patterns of

all the new flow rules on the path.

5.5 Spotlight Detection Algorithm

The strawman approach described above is guaranteed to find all

temporal vulnerabilities that result from an update. However, this

comes at a significant computational cost.

One approach to improve the strawman algorithm is to use link

prediction algorithms for graphs. These schemes rely on calculating

some similarity score for some subset of node pairs, and then esti-

mating the likelihood of a connection based on the pairs’ score [50].

Our insight is that in representing the topology as a graph with the

hosts 𝐻 and switches 𝑆 as nodes, the similarity between a switch

𝑠 ∈ 𝑆 and a host ℎ ∈ 𝐻 is related to the likelihood that the host ℎ is

impacted by a flow rule change on the switch 𝑠 .

While there are many algorithms calculating such similarity

scores, we selected Panther [77] because Panther can quickly calcu-

late similarity for nodes in a topology 𝑇 , which includes all hosts

𝐻 , switches 𝑆 , and their physical connectivity. Panther works by

calculating random paths of length 𝑝 from a node 𝑣 , and returning

the proportion of paths that include each of the top 𝑘 most traversed

nodes. These proportions are the similarity scores for each node in

the top 𝑘 . The similarity score computed by Panther is directly rele-

vant to our use caseÐwhen a switch frequently shares a randomly

generated path with a host, we might reasonably expect changes

to the switch flow rules to impact the connectivity of frequently

connected hosts.

Algorithm 2 Spotlight fast detection with similarity cache

1: Input: 𝐹0, 𝐹Δ, 𝐻, 𝑆

2: Output: 𝑡𝑟𝑢𝑒 ∪ 𝑓 𝑎𝑙𝑠𝑒

3: 𝐺0 ← 𝑖𝑛𝑖𝑡𝐺𝑟𝑎𝑝ℎ(𝐻, 𝑆, 𝐹0)

4: 𝐺 ′ ← 𝑖𝑛𝑖𝑡𝐺𝑟𝑎𝑝ℎ(𝐻, 𝑆, 𝐹0 + 𝐹Δ)

5: for 𝑆 ′ ⊂ 𝑆 do

6: 𝐺𝑢 ← 𝑖𝑛𝑖𝑡𝐺𝑟𝑎𝑝ℎ(𝐻, 𝑆, 𝐹0 + 𝑓 𝑙𝑜𝑤𝑟𝑢𝑙𝑒𝑠 (𝑆
′))

7: for ℎ1 ∈ 𝐻,ℎ2 ∈ 𝐻,ℎ1 ≠ ℎ2 do

8: if ℎ1 ∉ 𝑃 ∧ ℎ2 ∉ 𝑃 [𝑠] ∀𝑠 ∈ 𝑆 ′ then

9: next host pair // neither host is similar to switches in 𝑆 ′

10: 𝑝 ← 𝑝𝑎𝑡ℎ(𝐺𝑢 , ℎ1, ℎ2)

11: if 1(𝑝) = 1(𝑝𝑎𝑡ℎ(𝐺0, ℎ1, ℎ2)) then

12: next host pair // hosts were connected before update

13: else if 1(𝑝) = 1(𝑝𝑎𝑡ℎ(𝐺 ′, ℎ1, ℎ2)) then

14: next host pair // hosts will be connected after update

15: else if 𝑚𝑎𝑡𝑐ℎ(ℎ1, ℎ2, 𝑓 𝑙𝑜𝑤𝑟𝑢𝑙𝑒𝑠 (𝑠)),∀𝑠 ∈ 𝑝 then

16: return 𝑡𝑟𝑢𝑒 // temporal vulnerability detected
return 𝑓 𝑎𝑙𝑠𝑒

For our system, Spotlight, we use Panther to calculate a simi-

larity cache which includes the top 𝑘 most similar nodes to each

switch. If we assume that the physical network topology is unlikely

to change often, we can precompute the similarity cache a single

time. We provide an additional argument 𝑃 to our fast algorithm,

which represents the similarity cache.

The difference between the strawman and the fast algorithm in

Algorithm 2 is that we use the preprocessed similarity cache 𝑃 to

inform us about which shortest path calculations can be skipped.

This significantly reduces the state space that needs to be searched.

While the fast algorithm scales much better than the strawman

approach, because it is based on heuristics instead of exhaustive

search, it does not guarantee that it will always find a temporal

vulnerability if it exists. We show in Section 6.2 that the algorithm

is quite successful at detecting the vulnerabilities in practice.

5.6 Implementation

We implemented Spotlight as a Python3 program in 966 lines of

code. We use Python generators to enumerate the unique update or-

derings 𝑆 one at a time, so that the potentially large set of orderings

to check never resides in memory in its entirety.

As described in Algorithm 1 and Algorithm 2, instead of mod-

eling the topology graph based on the physical connectivity, we

opt to create edges between nodes that have flow rules connecting

them. This is because we rely on the assumption that the IBN con-

troller’s compilation stage is correct, and thus it cannot output flow

rules that forward packets on non-existent links. For calculating

shortest paths on these graphs, we use the shortest_path func-

tion included in the NetworkX [27] library, which uses Dijkstra’s

Algorithm [23]. We cache the results of the shortest path calcula-

tions we perform on the initial graph 𝐺0 and the final graph 𝐺 ′

for all pairs of hosts, which we repeatedly use in lines 9 and 11 of

Algorithm 1. We note that our algorithm can be parallelized for

additional execution speedup.

We perform the preprocessing step using the panther_similarit-

y function included with NetworkX. We perform this preprocessing
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step only once. In practice, an administrator would want to run this

step during topology changes, which we expect to be less frequent

than intent changes.

6 EVALUATION

We evaluate Spotlight on performance and its ability to detect

temporal vulnerabilities. We aim to answer the following questions:

Q1 How does Spotlight’s performance compare to a baseline

exhaustive search algorithm?

Q2 How does Spotlight scale with the topology size?

Q3 How likely is Spotlight to find a temporal vulnerability if

one exists?

Q4 Can we increase detection likelihood with proper tuning?

6.1 Experimental Setup

For evaluating the performance of Spotlight, we must both con-

sider the topologies and the intents installed on the system we are

measuring. We execute our experiments on a machine running

Ubuntu 22.04. Our machine has an Intel Xeon Silver 4114 2.20GHz

CPU with forty cores and 187GB of memory. We run each of the

configurations discussed below ten times.

6.1.1 Fat tree topologies. Variations in network topology will im-

pact the time it takes to detect temporal vulnerabilities. However,

topology size is independent of the pattern of connectivity within

the network. For this work, we perform our evaluations using the

fat tree topology as described by Al-Fares et al. [11] because its short

paths and redundant links make it representative of data center

networks (e.g., Google [67]) and because its single parameterized

input 𝑓𝑘 allows us to generate topologies of increasing size while

maintaining some degree of similarity in connectivity patterns.

The fat tree topology is a tree architecture with four layers.

The top layer is called the core, below which is the aggregate layer

followed by the edge layer. These three layers all consist of switches.

The aggregate and edge switches are organized into 𝑓𝑘 pods each

containing 𝑓𝑘 switches. We define the pods notationally as 𝑝𝑖 ∈

{𝑝0, 𝑝1, . . . , 𝑝 𝑓𝑘−1}. Likewise, we define edge switches of pod 𝑝𝑖 as

𝑝𝑖 .𝑒 𝑗 ∈ {𝑒0, 𝑒1, . . . , 𝑒𝑚−1}, where𝑚 is the number of edge switches

in each pod. The fourth layer, connected to the southbound interface

of the edge switches contains the hosts. We index hosts using a

dot notation of the form 𝑝𝑖 .𝑒 𝑗 .ℎ𝑛 ∈ {ℎ0, ℎ1, . . . , ℎ𝑟−1}, where 𝑟 is

the number of hosts in each pod. There are no direct connections

between podsÐpods can only communicate through core switches.

We wrote a Python script to generate all of our topologies using

the NetworkX library [27]. These fat tree topologies vary in size

from 𝑓𝑘 = 4 to 𝑓𝑘 = 16 (36 to 1,344 total nodes). See Table 2 for

more details.

6.1.2 Stanford backbone topology. While the fat tree topology is

popular, we consider other topologies for a broader evaluation. We

tested Spotlight on the Stanford backbone topology, a common

topology used in networking research [12, 13, 38, 76] due to its large

size9. The topology consists of two core switches, ten aggregate

switches, and fourteen edge switches. These are arranged in a

tree with the core switches at the root, the aggregate switches

connected as children to the core switches, and the edge switches as

9The Stanford network serves at least 17,000 students and faculty [38].

Table 2: Topologies used for evaluation and probabilities of

finding a temporal vulnerability along with preprocessing

times for all the experiments.

Type 𝑓𝑘 Switches Hosts Prob. Preprocessing (s)

Fat tree 4 20 16 0.98 0.399

Fat tree 7 58 85 0.86 4.062

Fat tree 10 125 250 0.86 49.09

Fat tree 13 205 549 0.88 694.17

Fat tree 16 320 1,024 0.78 644.23

Stanford - 25 26 1.00 0.219

Cisco - 8 12 1.00 0.0442

children to the aggregate switches. We honor precisely the reported

connectivity between switches.

6.1.3 Cisco topology. We also consider a topology provided by

Cisco [12, 13, 76]. Unlike the fat tree and Stanford backbone topolo-

gies, which are intended to support large networks, the Cisco topol-

ogy is designed to act as a distributed firewall. We chose this topol-

ogy because it is one of the few known enterprise topologies, and its

structural differences from the Stanford and fat tree topologies test

the versatility of Spotlight. The Cisco topology is the smallest of

the three with twelve hosts and eight switches. However, while the

Stanford and fat tree topologies are tree-based, Cisco is not, which

allows us to evaluate Spotlight in a less hierarchical network.

6.1.4 Testing intents. To make meaningful comparisons among

topologies, we need to model networks that have similar sets of

intents installed. We model only host-to-host intents such as those

available on ONOS, which simply create connections between any

pair of hosts. We choose to measure the upper bound of detection

time. As such, we choose initial and modified intents that initiate

connections with the number of hops equal to the graph diameter.

For our fat tree graphs, we can follow the same simple procedure for

graphs of all sizes. For the initial intent, we choose the source host

𝑝0 .𝑒0 .ℎ0 and a destination host 𝑝 𝑓𝑘−1 .𝑒𝑚−1 .ℎ𝑟−1. For the updated

intent, we use the same source host but replace the destination host

with 𝑝 𝑓𝑘−1 .𝑒0 .ℎ0. For the Stanford backbone and Cisco topologies,

we also use intents that span the entire graph diameter.

6.1.5 Metrics. The metrics we measure are:

(1) the time to detect the first temporal vulnerability,

(2) the number of temporal vulnerabilities detected per run, and

(3) the preprocessing costs required by Spotlight.

The time to detect the first temporal vulnerability does not in-

clude preprocessing time, which only needs to be done once for a

topology. The clock starts before the state space search begins, and

stops after connectivity is verified between two hosts that should

not have been connected. We have defined a topology and set of

intents such that there are exactly four temporal vulnerabilities

that could lead to unauthorized connectivity. The baseline algo-

rithm is guaranteed to find all vulnerabilities because it performs

an exhaustive search.
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For each experimental run of Spotlight, we collect the number

of temporal vulnerabilities that were verifiably detected. The pre-

processing time is the time it takes to run the Panther similarity

algorithm on the topology. The clock starts before preprocessing

begins and ends immediately after.

6.2 Performance of Spotlight

Figure 6 shows the time it took to detect the first temporal vul-

nerability in the fat tree topology. These are restricted to only the

cases where at least one temporal vulnerability was found, which

as we will see in Section 6.3 was the case for most runs. The x-axis

tracks the number of hosts and switches for each run and the y-

axis, drawn on a log scale, is the time in seconds to detect the first

temporal vulnerability.

We compare the detection time of Spotlight (blue points) to

that of the baseline (red points) (Q1). The detection time for both de-

tector implementations increases with the size of the topology. This

growth, however, is subexponential, as discussed in ??. Additionally,

the baseline algorithm has much greater variance, with a standard

deviation on the largest topology of 17.5 seconds compared to 0.859

seconds for Spotlight. This is likely because there is a larger space

of update orderings over which the temporal vulnerabilities are

distributed. In the largest topology with 1,344 nodes, Spotlight’s

detection time was 0.65 seconds, while the baseline detection time

was 49.9 seconds, a 76.8× speedup (Q2). Spotlight had a mean

detection time of 0.002 seconds on the Stanford backbone topol-

ogy, which contains 51 nodes. The median time to detect the first

violation was 0.00192 seconds for Spotlight and 0.0013 seconds

for the naïve baseline. This resulted in a median speedup of 6.77×

and a maximum speedup of 31.13×. Results were similar for the

Cisco topology, which contains 20 nodes. On this topology, the

mean detection time was 0.00641 secondsÐconsistent with fat tree

topologies of similar size.

In Table 2, the preprocessing time varies from an average of

0.399 seconds for a small fat tree network to over ten minutes for

the largest topology. The Stanford backbone an Cisco topologies

were preprocessed even faster, 0.219 seconds and 0.0442 seconds,

respectively. The longest preprocessing time was 5,682.21 seconds

(over ninety minutes), though this was an outlier. This can be an

expensive operation but only needs to be computed once per topol-

ogy. If topologies are unlikely to change frequently, such cost could

be amortized over the lifespan of a single topology. For smaller

networks, even those than can support tens of thousands of clients

like Stanford’s backbone, Spotlight’s preprocessing time is quick

and could be recomputed ad hoc at very little cost.

We also tracked the memory usage of Spotlight. We found that

Spotlight used approximately 176.3 MB for our largest 1,300-node

topology. This computation is performed on the controller node,

rather than a switch, and thus is not subject to the same resource

constraints as switch processes.

6.3 Accuracy of Spotlight

Unlike the strawman algorithm, which is guaranteed to find tem-

poral vulnerabilities if they exist, Spotlight uses a probabilistic

method based on graph heuristics and so may not find all vulnera-

bilities.
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Figure 6: Time taken to detect temporal vulnerability as a

function of the number of hosts in the fat tree topology.

In Table 2 column two, we see the probability of Spotlight find-

ing at least one temporal vulnerability across all trials for each node

count (Q3). For small networks, Spotlight finds a temporal vulner-

ability with high probability (98.0%), however the probability drops

as the topology scales in size. This column, however, represents

the probabilities over all configurations and tuning parameters.

For both the Stanford backbone and Cisco topologies, Spotlight

found all temporal vulnerabilities in all trials. These results suggest

that Spotlight is highly reliable for small networks, even without

optimal parameter tuning.

When we isolate the cases where Panther parameter 𝑘 (repre-

senting the size of the similarity cache) is set to twenty, we see that

all temporal vulnerabilities were found in all fat tree topology trials.

This is further substantiated in Figure 7. In this heatmap, the x-axis

is Panther’s 𝑘 , and the y-axis is the number of vulnerabilities found.

Each square represents the proportion of runs of Spotlight with

parameter 𝑘 that found the corresponding number of vulnerabilities

on the y-axis. There is a strong positive trend with increasing 𝑘

suggesting that increasing the size of the similarity cache yields

more found vulnerabilities at a slight cost of storing more data. Any

additional computational cost is borne during preprocessing and

thus does not factor significantly into detection timing.

There is also notably a pattern of stratification where each detec-

tor run finds either zero, two, or four temporal vulnerabilities, but

never one or three. The most likely cause of this is the proximity

of the updated switches in the topology graph. In the intents used

in the evaluation, there are two updated switches near one host,

and two near the other host. The similarity cache is thus likely to

contain the switches in pairs, if at all.

Ultimately, we see that Spotlight can be tuned to find at least

one temporal vulnerability with a very high probability (Q4).

7 DISCUSSION

Mitigating temporal attacks with least-privileges access control. Suf-

ficiently precise pattern matching on the flow rules would prevent
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algorithm’s 𝑘 parameter representing the size of the similar-

ity cache.

unauthorized connectivity even in the presence of inconsistent

flow rule updates. However, this puts an additional burden on the

individual security and system administrators. A secure-by-design

model, such as Spotlight, is more effective at securing sensitive

systems because it offers protection even in the presence of overly

permissive access control policies.

Additionally, some security models intentionally group hosts

(e.g., identified by IP addresses) together within flow rule matching

patterns as a data plane optimization to save TCAM space in switch

memory [12], which is an intentional design decision for which

more restrictive policies may not be an option.

Mitigating temporal attacks with update consistency. While consis-

tent update schemes would mitigate temporal attacks, consistent

updates come at significant performance cost. Liu et al. [48] mea-

sured several proposed update schemes and found that even the

fastest scheme increased the median update time by more than

50% even on medium to small fat tree topologies (𝑓𝑘 = 8) with a

relaxed notion of consistency. For more rigorous models, Liu et al.

[48] reported an overhead of more than 400%. These consistent

update schemes also come at a cost of additional TCAM usage, with

even the lowest footprint model using more than 10% additional

memoryÐalready an expensive and scarce resource.

We hypothesize that a mixed-modal solution could provide a

realistic balance. A temporal vulnerability detector like Spotlight

could be used on all intent installations and recompilations, and

only when a temporal vulnerability is detected a consistent update

could be triggered. However, future work is necessary to identify

the likelihood of high-risk updates appearing in the wild, as well

as a comparison of the cost of consistent updates with the cost of

executing a temporal vulnerability detector.

Other vulnerable IBN implementations. Our evaluations use ONOS

as a representative case study. However, we suspect that several

other well known controllers may also be vulnerable. To be robust

against a Phantom Link during intent installation, an IBN controller

must have a mechanism to control the flow rule install ordering

across multiple switches. The popular IBN controller, OpenDaylight

(ODL) [47] does not contain such a mechanism, and so to the best of

our knowledge, it is also vulnerable. ODL is highly scalable [22] and

has a built-in ARP proxy app which can also delay the installation

of rules on the switch; these features provide the same footholds we

used to exploit ONOS. Several other ostensibly independent SDN

environmentsÐONAP [1], OpenStack [2], and Cisco Open SDN [3]Ð

use ODL as the underlying SDN controller, and therefore share the

same shortcomings as ODL. We are unable to acquire or examine

the code of closed-source IBN controllers like Juniper Apstra or

Cisco Meraki, so we cannot infer their vulnerability status.

Non-static topologies. While no topology is ever truly static, we

argue that this is not necessarily a limitation for Spotlight. Inten-

tional topology changes (e.g., adding links) takes non-negligible

time, during which the Panther algorithm precomputation of the

new topology is possible. Conversely, when the topology changes

quickly due to link or switch failure, the naïve algorithm will still

find all temporal vulnerabilities because the controller is alerted of

the failure; as a result, the intent recompilation will be triggered.

Meanwhile, the Panther algorithm will not see any reduction in

likelihood of finding any new temporal vulnerabilities because

link/switch failures do not create any new paths through the net-

work topology which were not already taken into account.

8 RELATED WORK

IBN security. IBN abstracts away many implementation details to

simplify network management and can be utilized to enhance the

security of the overall network [41]. The LAI language [71] au-

tomatically generates ACL update plans that satisfy the network

operators’ intents. Herbaut et al. [29] propose an efficient con-

formance checking approach based on intents. Intent-based cloud

services [40] provides security services to both the service providers

and consumers to apply security policies without security expertise.

While such approaches can improve the network’s security, they

do not consider the attack surface of the IBN architecture itself and

do not mitigate temporal vulnerabilities.

Several security tools have been proposed for understanding

IBN’s attack surface. ProvIntent [72] generates a provenance of

how IBN events affect the network state while bridging the seman-

tic gap between high-level intent and low-level implementation.

Intender [42] proposes a semantically-aware fuzzing framework

with a new feedback mechanism, intent-state transition guidance.

While these tools are complementary to Spotlight, they cannot

identify temporal vulnerabilities during intent updates.

Network verification. Network verification checks that network poli-

cies are satisfied and that no constraints are violated. Early work in

verification, such as header space analysis [37, 38], Anteater [49]

and VeriFlow [39], check for network invariants (e.g., blackhole

routing and loops) in the control path between an SDN controller

and switches. However, such tools focus on singular updates (i.e.,

one flow rule at a time) rather than groups of updates (e.g., mul-

tiple flow rules for end-to-end connectivity) that are typical of

IBN updates. Plankton [58] builds on VeriFlow’s computation of

packet equivalence classes and provides model checking for the for-

warding behavior in the converged states of routers. Tiramisu [8]
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provides verification algorithms for policies about failure resilience,

quantitative path metrics, and path existence.

More recently, runtime verification checks network conditions in

real time. Tools such as Delta-net [30], P4Consist [66], VeriDP [78],

and Hydra [63] check data plane consistency, increasingly within

the P4 [15] programmable data plane. None of this prior work

focuses on the unique considerations and semantics of IBNÐthey

only examine lower levels of abstraction.

Policy composition. Policy composition analyzes how to satisfy

multiple new and existing policies, as well as identify and report

unresolvable conflicts to users. Policy Graph Abstraction (PGA) [59]

expresses user-submitted networking policies in the form of input

graphs and provides algorithms to combine those input graphs into

a conflict-free graph, which represents the final composed policy.

PGA also maintains the invariants specified in each user-submitted

policy. Unresolvable conflicts are reported to the user. Janus [9]

extends PGA to additionally support QoS and dynamic policies.

Genesis [70] proposes policy composition and compilation in multi-

tenant networks. Policies are described in a new language called

the Genesis Policy Language. A modular SMT-based algorithm is

designed to enforce the policies. Although the aforementioned prior

work addresses the correctness and optimality of policy composi-

tion, none of the prior work focuses on the ordering of operations

and the temporal faults that may arise due to improper ordering.

SDN security. Both attacks and defenses of SDNs have been studied

numerous times in the literature [26, 33, 34, 60, 65, 68, 69, 73, 74].

Since IBNs are an extension of SDNs, these attacks and defenses are

also applicable to IBNs, but the focus of this paper is on temporal

attacks that are especially pernicious on IBNs.

9 CONCLUSION

In this paper, we identified a vulnerability in IBN caused by the

reordering of low-level flow rules from intents. The vulnerability

can be exploited by an attacker to obtain unauthorized access to

a host. We discussed means to achieve such attacks and demon-

strate one type of attack, Phantom Link. We proposed Spotlight

a detection method that can alert a system administrator of risky

intents prone to temporal faults that can be exploited by an attacker.

We demonstrate that Spotlight is fast and effective in identifying

such risky intents using realistic network topologies and policies.
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