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Abstract 

In vitro stem cell-derived embryo and organ models, termed embryoids and organoids, 

respectively, provide promising experimental tools to study physiological and pathological 

processes in mammalian development and organ formation. Most of current embryoid and 

organoid systems are developed using conventional three-dimensional cultures that lack 

controls of spatiotemporal extracellular signals. Microfluidics, an established technology for 

quantitative controls and quantifications of dynamic chemical and physical environments, has 

recently been utilized for developing next-generation embryoids and organoids in a 

controllable and reproducible manner. In this review, we summarize recent progress in 

constructing microfluidics-based embryoids and organoids. Development of these models 

demonstrates the successful applications of microfluidics in establishing morphogen 

gradients, accelerating medium transport, exerting mechanical forces, facilitating tissue 

co-culture studies, and improving assay throughput, thus supporting using microfluidics for 

building next-generation embryoids and organoids for fundamental and translational research. 
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Introduction 

Stem cell-based, in vitro models of mammalian developments and organ formation are 

becoming indispensable tools for advancing mammalian developmental biology and disease 

modeling [1-6]. This is particularly true for understanding human development, given our 

limited access to and bioethical constraints in human embryonic tissues. Till now, there are 

various models of mammalian embryo and organ developments, termed embryoids and 

organoids, respectively, that have been reported [2,3,5,7-9]. Embryoids have been developed 

to recapitulate early embryogenic events, from pre-implantation blastocyst formation, to 

peri-implantation and peri-gastrulation development, all the way up to early organogenesis 

[1-6]. For organoids, there are numerous organoids available now to model the development, 

homeostasis, and pathology of organs associated with the three definitive germ layers [7-9]. 

Researchers continuously develop improved embryoids and organoids with enhanced 

maturity, functions, complexity, structural fidelity, and disease or developmental relevance. 

Bioengineering technologies have been used successfully in the development of 

embryoids and organoids [1,2,4-6,10-21]. These technologies include genetic engineering 

tools [5,6,10-13], functional biomaterials [14-16,19,20], and bioengineering tools 

[1,2,5,6,10,11,21] that can efficiently modulate spatiotemporal local tissue microenvironment. 

Genetic engineering tools are utilized to generate signaling and lineage reporter lines, 

allowing monitoring of intracellular signaling dynamics and cell fate decisions during 

embryoid and organoid developments [4,10,12,13]. Genetic technologies have also been 

utilized to direct cells to interact efficiently with specific chemical cues [5,6,10] or local light 

illuminations [11,12]. Functional biomaterials, such as synthetic hydrogels [14,15,19,20] and 

natural extracellular matrix (ECM) proteins [16], have also been used for embryoid and 

organoid developments, either directly in conventional three-dimensional (3D) tissue cultures 

[14,15] or in bioprinting [17,18] and microfluidics [19,20]. There are other bioengineering 

tools utilized to control the size and shape of initial cell clusters for embryoid and organoid 

developments, such as micropatterning [11,21], AggreWell [2,5,6,10], and microwells [1]. 

For prolonged embryoid and organoid cultures, tissue culture shakers [6,22] and ex utero 

culture instruments [5,6] have been utilized.  

In this review, we focus on discussing promising applications of microfluidics in 
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embryoid and organoid developments. Microfluidic devices can generate gradients of 

chemical signals, useful for tissue patterning and symmetry breaking. Through precise 

controls of microfluidic environments, physical signals, such as gas composition, pressure 

and shear stress, can be modulated for embryoid and organoid developments. Since 

microfluidic devices contain prescribed chambers and channels, useful for loading and 

positioning different types of cells, microfluidic devices are useful for controlling and 

studying cell-cell interactions during embryoid and organoid developments. There are also 

important efforts in developing automated, high-throughput microfluidic devices for 

embryoid and organoid developments, promising for translational screening applications.  

 

Microfluidic gradients inducing tissue patterning and symmetry breaking 

During development, tissue patterning is achieved through specification and differentiation of 

embryonic progenitor cells into functional tissue cell types in a well-orchestrated manner. 

The importance of chemical signals, including morphogens, has been well established in 

tissue patterning. Morphogen gradients in the extracellular space provide positional 

information, to which embryonic progenitor cells respond in a dose-dependent manner. 

Microfluidics offers a convenient platform to create and control graded chemical 

environments to induce tissue patterning in embryoids and organoids. 

Passive diffusion remains the most straightforward way for generating microfluidic 

gradients. Often time cells are cultured in a microfluidic chamber connected to source and 

sink reservoirs, which establishes a concentration gradient in the cell chamber following the 

classic source-sink model of Fickian diffusion. Hydrogels are often added into the cell 

chamber or between the cell chamber and source and sink reservoirs to prevent advection 

flows that might cause undesirable effects on cells. Using microfluidic chemical gradients 

generated using passive diffusion, a broad concentration range of different chemicals have 

been screened for inducing motor neuron differentiation from mouse embryonic stem cells 

(mESCs; Figure 1a) [23]. Microfluidic chemical gradients based on passive diffusion have 

also been integrated with a 2D micropatterned human gastrulation model to achieve in 

vivo-like axial germ layer patterning, highlighting the importance of combining exogenous 

bioengineering controls and intrinsic stem cell self-organization to build embryoids and 
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organoids with heightened complexity and in vivo relevance [21]. 

Microfluidic gradients can also be generated through a series of splitting and mixing of 

microfluidic flows (Figure 1b). Such microfluidic gradient design has been utilized to 

establish an exogeneous WNT signal gradient to recapitulate rostral-caudal patterning of the 

neural tube [24]. Interestingly, an isthmic organizer-like region emerges in the patterned 

neural tube-like structure at the boundary of putative forebrain and midbrain regions, 

highlighting the autonomy and modularity during organ development. 

Owing to precisely controlled microfluidic environments, embryoids and organoids 

developed using microfluidics often show improved efficiency and reproducibility. This 

feature could be best illustrated using the microfluidic post-implantation amniotic sac 

embryoid (PASE). The PASE was first developed using a conventional 3D culture, in which a 

small percentage (5-10%) of hPSC clusters would undergo lumenogenesis then symmetry 

breaking and amniotic patterning, leading to the formation of asymmetric amniotic 

ectoderm-epiblast pattern that resembles the human amniotic sac [25]. To improve PASE 

formation efficiency, a microfluidic platform was developed to guide formation of hPSC 

clusters in prescribed locations before asymmetric morphogen stimulations to drive 

synchronized PASE formation in a controllable and reproducible manner [3,26].  

 

Microfluidics for controlling material transport and physical environment 

Besides chemical signals, other factors, such as nutrients, gases, mechanical forces and 

geometric topology, also can have an impact on embryoid and organoid development. 

Controlled flows in microfluidic devices can enhance nutrient and oxygen transport [27], 

beneficial to tissue growth, survival, and maturation [16,27-29]. For example, apoptosis was 

minimized and proliferation was promoted in microfluidic brain organoid cultures (Figure 2a) 

[16]. Improved survival and insulin secretion were shown in islet organoids under continuous 

microfluidic perfusion [27,29]. Microfluidics could also influence embryoid and organoid 

development by removing secreted factors. For example, in a gut organoid chip with 

independent controls of fluid flow and mechanical deformation, basal flow in gut organoids 

was shown to induce villi-like morphogenesis of intestinal epithelium, mainly via removal of 

WNT antagonists secreted by the tissues themselves [8,30]. 
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Microfluidics has also been utilized for controlling shear stress and hydrodynamic 

pressure to promote morphogenesis and maturation during embryoid and organoid 

developments. It has been shown that kidney organoids exposed to high shear flow exhibited 

enhanced vascularization and had more mature podocytes and tubular compartments 

compared with those under static culture (Figure 2b) [31]. Using microfluidics containing a 

pressure channel, cyclic pressures were applied on colon tumor organoids to mimic peristalsis 

(Figure 2c) [32] . Applying hydrostatic pressures to mimic transmural pressures on lung 

explants, transmural pressure was shown to modulate airway branching morphogenesis, 

airway smooth muscle contraction, and maturation of lung tissues (Figure 2d) [33] .  

Microfluidic devices can also provide precise topologies useful for guiding tissue 

morphogenesis and differentiation. Laser micromachining was applied to fabricate a 

microfluidic channel in hydrogels for the development of a gut model suitable for long-term 

homeostatic culture under an external perfusion pump [34]. Topological features of the 

microfluidic mini-gut model guided the development of intestinal epithelial tissues, leading to 

the formation of a tube-shaped structure with crypt- and villus-like domains (Figure 2e). 

Importantly, intestinal stem cells and Paneth cells were exclusively found in crypt-like 

regions, whereas enterocytes, enteroendocrine cells and goblet cells were exclusively located 

in villus-like regions (Figure 2e), mimicking spatial cell organizations in intestinal epithelial 

tissues. 

 

Microfluidics for controlling tissue-tissue interactions 

Tissue-tissue interactions are manifested in every step of mammalian development and organ 

formation. Microfluidics provides a convenient platform for positioning different tissue cell 

types at prescribed locations inside a controlled microfluidic environment, imitating in 

vivo-relevant tissue-tissue interactions. To model invasion of extravillous trophoblasts (EVTs) 

into maternal uterus during the placentation, a maternal-fetal interface was established by 

seeding EVTs and endothelium cells into two parallel microfluidic channels separated by 

ECM or a pillar barrier array [35,36] (Figure 3a). The barrier function of placenta was also 

imitated by placing trophoblast cells or embryoid bodies in one microfluidic channel to 

model the embryonic compartment of the fetal-maternal interface and endothelial cells in a 
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separate adjacent channel to model the maternal compartment [37-39]. Similarly, by placing 

different tissue cell types into opposing microfluidic channels (Figure 3b), intra-organ models 

were constructed, such as a liver model with hepatocytes interfaced with liver sinusoidal 

endothelial cells, Kupffer cells and hepatic stellate cells [40], and a pancreas model with 

pancreatic ductal epithelial cells interfaced with islet cells [41]. Vascular and immune systems 

have also been incorporated into microfluidic organoid cultures (Figure 3c), such as cerebral 

[42] and hepatic organoids [43,44].  

Microphysiological systems containing multiple organ models have been established 

using microfluidics to study inter-organ communications and model multi-organ processes 

and systematic diseases [45-49]. Each organ model in the microphysiological system can be 

maintained in its own optimal condition, and interconnections between organ models are 

established based on their in vivo relationships [47-49] (Figure 3d).  

 

Microfluidics for scalable translational applications 

Microfluidics is intrinsically a scalable technology compatible with translational screens. As a 

potent high-throughput technology, droplet microfluidics, for example, has been used to 

generate embryoids and organoids with simplified procedures, great throughput, and low 

variability. So far, droplet microfluidics has been used for the developments of epiblast 

spheroids [50], liver organoids [51,52], lung organoids [51,53], kidney organoids [51], islet 

organoids [19,20], mesenchymal bodies [54], and tumor organoids [51,53,55] (Figure 4a). 

Some droplet microfluidics-based organoid tools have been utilized for large-scale drug 

screens [51,55]. In another example, an automated microfluidic culture was developed for 

pancreatic tumor organoids. This system was applied to test up to 20 regimens and 10 patient 

samples in parallel, offering a promising platform for individual, combinatorial, and 

sequential drug screens on pancreatic tumor organoids [56] (Figure 4b).  

Live imaging is commonly used for analyzing microfluidic organoid and embryoid 

cultures, given the controlled positioning and orientations of organoids and embryoids in 

microfluidic devices [3,21,34,56,57] (Figure 4c). In situ biochemical sensors can also be 

integrated with microfluidics, to continually monitor relevant culture signals in microfluidic 

organoid and embryoid cultures [58] (Figure 4d). These sensors include those for monitoring 
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extracellular microenvironment parameters such as pH, oxygen level and temperature. 

Additionally, electrochemical sensors can be utilized to measure soluble protein biomarkers 

in microfluidic organoid and embryoid cultures. Thus, integration of biosensing technologies 

with microfluidic organoid and embryoid cultures offer enhanced capabilities for continuous 

medium supply, automated sampling and real-time sensing, and precise controls of culture 

conditions including physiological and mechanical forces, for long-term culture of organoids 

and embryoids. 

 

Conclusions and future directions 

Over the last two decades, a vast array of microfluidic technologies has been developed, with 

some of them even targeting single-cell and single-molecule analyses [59]. For more detailed 

discussions on available microfluidic technologies for bio-related applications, readers are 

directed to some excellent recent reviews [60,61]. Microfluidic tools compatible with 

mammalian cell cultures are particularly attractive for the development of next-generation 

embryoid and organoid cultures. Since such efforts are still at exploratory stages in research 

laboratory settings, polydimethylsiloxane (PDMS)-based microfluidic technologies, such as 

those based on soft lithography, remain the most versatile and popular ones given the 

compatibility of PDMS with rapid prototype device fabrication, mammalian cell culture and 

live imaging. Nonetheless, changes in device material, surface coating, cell number per unit 

surface area or per unit medium volume may all affect the outcome of otherwise standard 

embryoid or organoid protocols that have been established using conventional culture tools. 

Spatial constraints in microfluidics might also present a physical limitation for long-term 

cultures of embryoids and organoids. Thus, it is important to fully characterize and optimize 

microfluidic embryoid and organoid development protocols. Future directions in this area 

include applying microfluidic innovations to obtain embryoid and organoid systems with 

enhanced maturity, functions, complexity, structural fidelity, and disease or development 

relevance. Microfluidics can provide a more in vivo-like environment through dynamic 

spatiotemporal controls of chemical signals, morphogen gradients, material transports, 

mechanical forces, and tissue topology and orientation. The other direction is to apply 

microfluidics to improve the efficiency, reproducibility, and scalability of embryoid and 
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organoid cultures, necessary for translational screens. A widely recognized challenge in 

embryoid and organoid cultures is the intra- and inter-batch variability. Microfluidics can 

reduce such variability through implementations of precisely controlled spatiotemporal 

signals to modulate embryoid and organoid developments. 
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Figure captions 

Figure 1. Morphogen gradient generation by microfluidics. 

a. Morphogen gradient generated by diffusion through ECM with cells embedded in ECM 

[23], with (Left) top view and (Right) zoom-in top view. Culture medium is added into 4 

reservoirs. Gel and cells are injected into middle channel. b. Gradient generation by splitting 

and mixing microfluidic flow [24], with (Left) top view and (Right) zoom-in top view. The 

flow is driver by syringe pump, and the medium flowing through the microfluidic chip is 

collected in a waste bottle. Flow 1 and flow 2 in microfluidics systems have different 

chemical concentrations, which allows for the creation of a concentration gradient within the 

device.  

 

Figure 2. Microfluidics controls material transport and physical environment. 

a. Microfluidic flow accelerates material transport for brain organoids [16]. The flow in the 

microfluidic system is driven by a rocker machine. b. Kidney organoids cultured under 

microfluidic shear flows [31], which is driven by peristaltic pump. c. Colon tumor organoids 

embedded in ECM experiencing cyclic pressures through the application of a microfluidic 

pressure channel [32], with (Upper) overall view and (Lower) zoom-in top view. The pressure 

in the system is regulated through the pressure channel, where the liquid is subjected to 

increased pressure using an air compressor and controller. The flow within the medium 

channel is propelled by a syringe pump. d. Lung tissue experiencing transmural pressure 

difference established using microfluidics [33]. The pressure difference (Δp) within the 

microfluidic system is established by the difference in heights of the culture medium. e. 

Microchannel scaffold to guide intestinal epithelial organization and differentiation [34]. In 

the microfluidic system used for intestinal studies, two independent flows are employed. One 

flow is responsible for delivering a medium supplemented with nutrients by passive diffusion, 

while the other flow driven by syringe pump is used for perfusion within the intestinal lumen. 

 

Figure 3. Microfluidics for tissue co-culture studies. 

a. Cells are seeded into two parallel channels separated by an ECM barrier to study cell 

migration and invasion [35], shown in (Upper) top view and (Lower) side view. b. Cells are 
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seeded at the opposite sides of a porous membrane to study cell-cell interaction by soluble 

molecules [40,41], shown in (Upper) top overall view and (Lower) zoom-in side view. c. 

Endothelial cells invading into a center channel containing ECM and organoids for 

vascularization of organoids [42,43], shown in (Upper) top overall view and (Lower) zoom-in 

top view. d. Microphysiological systems constructed with multiple organ models on the same 

chip. Interconnections between organ models are established through arteriovenous reservoir 

[47,49].  

 

Figure 4. Microfluidics for scalable productions of embryoids and organoids. 

a. Droplet microfluidics for embryoid and organoid generations [19,20]. b. An automated 

microfluidic system for patient sample screening [56]. The multiplexer is utilized to generate 

the medium containing various drugs and concentrations. c. Microfluidic chip incorporated 

with other equipment to be compatible with imaging. d. The microfluidic chip features an 

integrated sample culture chamber coupled with electrochemical biosensors and physical 

sensors for real-time monitoring [58]. The flow within the chip is driven by a peristaltic 

pump. 

 

 

 












