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Abstract—Shared information is a measure of mutual depen-
dence among m ≥ 2 jointly distributed discrete random variables.
We show that the shared information of a Markov random field
in which the underlying graph has at least one cut vertex, is
the same as the minimum shared information of its blocks (also
called biconnected components). This generalizes prior results on
shared information of Markov random fields to a much wider
class of nontree graphs.

Index Terms—Shared information, cut vertex, biconnected
component.

I. INTRODUCTION

Let X1, . . . , Xm, m ≥ 2, be random variables (rvs) with
finite alphabets. Their shared information SI(X1, . . . , Xm) is
a measure of their mutual dependence. Shared information
characterizes the largest rate of shared secret key that can be
generated by a set of m terminals, with terminal i only having
access to independent and identically distributed repetitions
Xn

i of the rv Xi, but each terminal being able to interactively
communicate with the others over a public, noiseless broadcast
channel [11], [6]. Shared information subtracted from the joint
entropy H(X1, . . . , Xm) is also the minimum communication
rate necessary for each of the m terminals to achieve omni-
science, that is, to learn the information (Xn

1 , . . . , X
n
m) jointly

available to all the terminals, with the same noiseless interactive
broadcast communication as before [11], [6].

Shared information (SI) along with its expression in terms of
divergence were introduced as an upper bound for the largest
rate of shared secret key in [11]. The connection to omniscience
was also elucidated therein. Tightness of the bound was shown
for the case m = 2 and 3 in [11], as was the particularization to
Shannon’s mutual information for m = 2. The latter motivated
the suggestion of SI as a measure of mutual dependence among
multiple rvs (see also [15]).

In a significant advance, tightness for arbitrary m was
later established in [3], [5], [9]. A comprehensive study of
the properties of shared information, including an axiomatic
approach to information measures for multiple rvs and a data
processing inequality for SI, can be found in [6].

Myriad other operational interpretations of shared informa-
tion in disparate areas of information theory include: maximal
packing of edge-disjoint spanning trees in a mutigraph ([18],
[17], see also [4], [10], [6]); optimum querying exponent
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for resolving common randomness [19]; strong converse for
multiterminal secret key capacity [19], [20]; and also undirected
network coding [5], and data clustering [8].

Using submodularity of entropy, an efficient algorithm to
compute shared information when the underlying pmf is
fully known was proposed in [6], with improvements in [12].
However, when the underlying pmf is only partially known or
unknown, computing shared information becomes difficult since
the definition involves an optimization over all partitions of a set
of size m. Therefore, structural properties of shared information
in specific contexts that can simplify the optimization problem
are of interest. Such properties enable efficient estimation of
shared information when the underlying pmf is unknown (see,
for example, [2]). Even when the underlying pmf is known,
they also yield avenues for efficiently achieving successive
omniscience [7] wherein some subset of terminals achieves
omniscience first before extending to all terminals.

Special models that allow explicit characterizations of shared
information include the PIN model [17], [18]. Closer to
our current work, explicit and simple formulae for SI for
a Markov chain and a Markov chain on a tree were found
in [11]. Materially different proofs that shed light on the
structure of the SI-achieving partitions were obtained in [2],
and yet another proof approach was introduced in [8]. The first
similar characterization for nontree graphical models, using
the approach of [2], was for the cliqueylon graph in [1].

Main contributions

Our main result provides structural insight into the shared
information of a general graphical model, that holds whenever
the graphical model has at least a single cut vertex. Since all of
the models for which such explicit characterizations are known
(Markov chain, Markov chain on a tree and the cliqueylon
graph) have cutsets consisting of a single vertex, it generalizes
all previously known results regarding SI in graphical models.

Our main result is that the shared information of a graph
is the minimum of the shared information of its blocks (also
known as biconnected components), which are its maximal
2-connected subgraphs. It is easy to see that cut vertices
separate the graph into blocks. When the blocks are small,
our characterization leads to significant efficiency gains in
computing shared information. We also show that an SI-
achieving partition of the graph can be easily obtained from
the SI-achieving partition of the component achieving the
minimum.

Graphs with cut vertices or blocks can be useful in statis-
tically modeling joint distributions in multiple contexts. For
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example, in mobile networks, when a single antenna services a
geographical area, that antenna serves as a cut vertex between
mobile phones in that area and all nodes in the rest of the
network. When secure communication is necessary, each node
in the network may wish to share a secret key, and shared
information characterizes the maximum rate of such a secret
key. Similarly, in a swarm of robots, a group of robots may
have limited communication capabilities and interact with other
robots in the swarm via a special robot. A graphical model
with the special robot forming a cut vertex would be a good
probabilistic model of the swarm. The robots may wish to
share a map of their environment based on their collective
sensing capabilities, which becomes a problem of omniscience.
The minimum amount of communication necessary for such
omniscience is then given by the shared information of the
knowledge of each robot subtracted from the joint entropy.

Other examples of graphical models in which cut vertices
are useful include biological neural networks in the brain, in
which a small group of neurons form the connection between
two much larger groups of neurons that form a lobe, and power
grids, with a substation separating the downstream network
from the upstream one.

Section II presents the preliminaries, the statements of the
main theorem and a key technical proposition. A complete
proof of the proposition is in Section III. Section IV contains
closing remarks.

II. PRELIMINARIES AND MAIN RESULTS

Let X1, . . . , Xm, m ≥ 2, be rvs with finite alphabets
X1, . . . ,Xm, respectively, and joint pmf PX1···Xm . For A ⊆
M = {1, . . . ,m}, let XA ≜ (Xi, i ∈ A). Let π =
(π1, . . . , πk) denote a k-partition of M, 2 ≤ k ≤ m, with
atoms πi, 1 ≤ i ≤ k. Let Π(M) be the set of all nontrivial
partitions of M, i.e., with k ≥ 2 atoms. Hereafter we will
consider only nontrivial partitions of M.

Definition 1 (Shared information [16]). The shared information
of X1, . . . , Xm is defined as

SI(XM) = min
π∈Π(M)

1

|π| − 1
D(PXM ∥

|π|∏
u=1

PXπu
). (1)

Given a partition π ∈ Π(M), we denote

Iπ(XM) =
1

|π| − 1
D(PXM ∥

|π|∏
u=1

PXπu
),

so that SI(XM) = minπ∈Π(M) Iπ(XM).
Remark 1. A useful way to write Iπ(XM) in terms of mutual
information is

Iπ(XM) =
1

|π| − 1

k∑
i=2

I(Xπi ∧Xπ1 , . . . , Xπi−1).

In the setting of a Markov random field (MRF), the rvs
X1, . . . , Xm are associated with the vertices of a graph and
exhibit Markov properties based on the structure of the graph.
The Markov properties rely on the notion of separation. Given

a graph G = (M, E) with vertex set M = {1, . . . ,m} and
edge set E , let A, B and S be (pairwise) disjoint, nonempty
subsets of M. Then S separates A and B if for every a ∈ A,
b ∈ B, any path that connects A to B has at least one vertex
s = s(a, b) in S.

Definition 2 (Global Markov property [14]). Given a graph
G = (M, E), assign rv Xi to vertex i, i ∈ M. The pmf
PXM = PX1···Xm

satisfies the global Markov property with
respect G if for every triple of disjoint, nonempty subsets A,
B, S of M such that S separates A and B, the following
Markov condition holds:

XA −◦−XS −◦−XB .

Hereafter, the global Markov property will be termed simply
the Markov property.

In this paper we only consider connected graphs; by
convention, disconnected graphs correspond to independent
sets of rvs which have SI = 0.

To precisely state our main result, we need the notion of
blocks in graphs. For a general introduction to graph theory,
see [13].

Definition 3 (Induced subgraph, cut vertex, block [13]). Given
a subset A ⊊ M of vertices, the subgraph of G induced by A,
denoted by GA, is the graph with vertex set A and edge set
EA = {(i, j) ∈ E : i, j ∈ A}.

A cut vertex is any vertex v ∈ M such that there exist
nonempty subsets A,B ⊊ M with A∩B = {v} and A∪B =
M such that v separates A \ {v} from B \ {v}. Equivalently,
v ∈ M is a cut vertex if the subgraph GM\{v} is a disconnected
graph.

A block, or a biconnected component, is a maximal subgraph
G′ ⊆ G that cannot be separated into nontrivial disconnected
components by erasing any single vertex in G′.

Remark 2. A block of size 2 consists of two vertices connected
by an edge. Any pair of vertices in a block of size ≥ 3 must
have two vertex-disjoint paths between them.

Remark 3. Every vertex v ∈ M belongs to some block. Further,
blocks and cut vertices are intimately connected. In particular,
the intersection of two blocks is either empty or a single
vertex that is a cut vertex of G. This is easy to see since if the
intersection had more than one vertex, for every pair of vertices
with one vertex from each block, there would be at least two
vertex-disjoint paths between them, contradicting maximality.
See Figure 1.

Example 1. A complete graph is itself a block. If G is a
tree, then every adjacent pair of vertices form a block. The
cliqueylon graph (introduced in [1]) contains a central clique
(complete graph) with each vertex in the clique being the root
of a tree. The central clique is a block, and every adjacent pair
of vertices in the trees is a block. □

Let B(G) be the set of blocks in G. The following is our
main result.
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Figure 1. Let B1 and B2 be blocks such that they intersect at two vertices v1
and v2. For any u1 ∈ B1 and u2 ∈ B2, there are two vertex-disjoint paths
between them.

Theorem 1. The SI of XM is equal to the minimum SI among
all blocks in the graph.

SI(XM) = min
B∈B(G)

SI(XB). (2)

Example 2. Consider a graph consisting of two cliques with
exactly one vertex in common. See Figure 2. Theorem 1 shows
that the SI of all the rvs equals the minimum of the SIs of the
rvs in the two cliques. □

Clique 1 Clique 2

Figure 2. Example with two cliques sharing a common vertex

Remark 4. If the underlying graph is a path graph or a tree,
the resulting MRF is called a Markov chain or a Markov chain
on a tree. Both are graphs with no cycles, and the SI in both
cases is given by SI(XM) = min(i,j)∈E I(Xi, Xj) [2], [11].
Among nontree graphical models, the SI for the cliqueylon
graph was shown in [1] to be the minimum of the SI of the
clique rvs and the minimum mutual information across any
tree-edge. In light of Example 1, Theorem 1 generalizes all of
these results to any nontree graphical model that is not itself a

block. Notice that the graph in Example 2 is neither a tree nor
a cliqueylon.

The main ingredient of the proof of Theorem 1 is the
following technical result.

Proposition 2. Let XM = XA ∪ {Z} ∪XB such that XA −
◦− Z −◦−XB . Then,

SI(XM) = min {SI(XA, Z), SI(XB , Z)} . (3)

Further, if SI(XM) = SI(XA, Z) and π∗ = (π1, . . . , πk)
achieves SI for (XA, Z), then

π′
k =

{
πk ∪B, if Z ∈ πk

πk, otherwise

is an SI-achieving partition for M.

Remark 5. In Proposition 2, Z = Xv for some v ∈ M.
The proof of Proposition 2 is given in the next section.

Theorem 1 follows from Proposition 2.

Proof of Theorem 1. We prove Theorem 1 by applying induc-
tion on the size of B(G).

If |B(G)| = 2, there are 2 blocks in G which we call P1 and
P2. Since G is connected, this implies that the intersection of
these blocks has to be a cut vertex which we call p. Since p is
a cut vertex, the Markov property implies XP1\{p} −◦−Xp −
◦− XP2\{p} and applying Proposition 2 with A = P1 \ {p},
B = P2 \ {p} and Z = Xp, we prove the base case.

Now assume that the statement is true for all values of
|B(G)| up to some integer m. If |B(G)| = m+1, because G is
connected, each block contains at least one cut vertex. Choose
one such cut vertex p. Let P1 and P2 be the sets of vertices
separated by p. Again applying Proposition 2,

SI(XM) = min
{
SI(XP1∪{p}), SI(XP2∪{p})

}
.

Since |B(GP1∪{p})| ≤ m and |B(GP2∪{p})| ≤ m, by the
induction hypothesis,

SI(XM)

= min
{
SI(XP1∪{p}), SI(XP2∪{p})

}
= min

{
min

B1∈B(GP1∪{p})
SI(XB1

), min
B2∈B(GP2∪{p})

SI(XB2
)

}
= min

B∈B(G)
SI(XB),

concluding the proof.

A direct implication of the second part of Proposition 2
is the following corollary which constructs an SI-achieving
partition for XM using an SI-achieving partition of the optimal
block.

Corollary 3. Let B∗ ∈ B(G) such that SI(XM) = SI(XB∗).
Let π∗(B∗) = (π1, . . . , πk) be an SI-achieving partition of
XB∗ . Define the sets ρi ⊆ M\B∗, i = 1, . . . , k, such that

ρi = {v ∈ M \B∗ : ∃ a path P between v and x ∈ πi

such that P ∩ πj = ∅ for i ̸= j} .
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Then the partition π∗(M) = (π′
1, . . . , π

′
k) of XM constructed

as follows is an SI-achieving partition of XM:

π′
i = πi ∪ ρi.

Corollary 3 shows that an SI-achieving partition for XM can
be obtained by picking an SI-achieving partition of the block
B∗ that achieves the minimum on the right side of (2) and for
each cut-vertex in that block, adding to the atom containing
the cut-vertex the vertices of M\ B∗ that are connected to
B∗ via the cut-vertex. See Figure 3.

Remark 6. The intersections of the sets ρi and B∗ partition
the set of cut vertices of G that lie in B∗.

B∗

π1 π2 π3 · · · πk

ρ3

ρk

ρ1

Figure 3. Constructing an optimal partition for XM using the optimal partition
for the block with minimum SI.

III. PROOF OF PROPOSITION 2

The first part of Proposition 2 is a consequence of the
following two lemmas, proved separately.

Lemma 4. Let XM = XA ∪ {Z} ∪XB . Then,

SI(XM) ≥ min {SI(XA, Z), SI(XB , Z)} . (4)

A more general result for nonsingleton Z was shown in
[6, Corollary 5.1] using submodular optimization. Our proof
for singleton Z is elementary and provides some structural
interpretation via an auxiliary rv.

Lemma 5. Let XM = XA ∪ {Z} ∪XB such that XA −◦−
Z −◦−XB . Then,

SI(XM) ≤ min {SI(XA, Z), SI(XB , Z)} . (5)

Remark 7. Note that Lemma 4 does not assume any structure
on the XM.

Proof of Lemma 4. Let Z ′ = Z be an auxiliary rv. We first
show that given an SI-achieving partition π∗ = (π1, . . . , πk)
of XM = (XA, Z,XB), we can construct a partition π′ of
X ′

M = (XA, Z, Z
′, XB) such that

SI(XM) = Iπ′(X ′
M). (6)

Without loss of generality, let Z ∈ π1. It is easily seen that
the partition π′ = (π′

1, . . . , π
′
k) = (π1 ∪ {Z ′} , π2, . . . , πk) has

the required property, since Z ′ = Z implies H(Z ′ |Xπ1
) =

H(Z ′ |XM) = 0 and therefore

Iπ′(X ′
M)

=
1

k − 1

[
H(Xπ1 , Z

′) +
k∑

i=2

H(Xπi)−H(XM, Z ′)

]

=
1

k − 1

[
k∑

i=1

H(Xπi
)−H(XM)

]
= SI(XM).

We now claim that

Iπ′(X ′
M) ≥ min {SI(XA, Z), SI(XB , Z

′)} , (7)

which proves Lemma 4 in light of (6).

To prove the claim, let YA = (XA, Z) and YB = (XB , Z
′).

We group the atoms of π′ into three sets TA, TB and TAB such
that TA (resp. TB) consists of atoms of π′ that only contain
rvs from YA (resp. YB) while the atoms in TAB consists of
elements from both YA and YB .

TA = {π′
i : π

′
i ∩ YB = ∅, i = 1, . . . , k} ,

TB = {π′
i : π

′
i ∩ YA = ∅, i = 1, . . . , k} ,

TAB = π′ \ (TA ∪ TB).

Let |TAB | = p, |TA| = q and |TB | = r. Note that p+q+r = k
and also that p ≥ 1, since π′

1 contains both Z and Z ′ and
therefore intersects both YA and YB .

In what follows, we require p+ q ≥ 2. If p = 1 and q = 0,
we must have r ≥ 1 since k ≥ 2. In this case, we henceforth
interchange the roles of A and B.

Assume without loss of generality that

TAB = {π′
i, i = 1, . . . , p} ,

TA = {π′
i, i = p+ 1, . . . , p+ q} ,

TB = {π′
i, i = p+ q + 1, . . . , k} .

Further, for each i = 1, . . . , p, let π′
i = π′

i,A⊔(π′
i\π′

i,A) where
π′
i,A = π′

i ∩ YA. Letting π′
i,A = π′

i for i = p + 1, . . . , p + q,
we get the nontrivial partition of YA given by π′

A = {π′
i,A, i =

1, . . . , p+ q}.

Case 1 (r > 0): Let π′
0,B = ∪p

i=1(π
′
i \ π′

i,A) and π′
i,B =

π′
i+p+q for i = 1, . . . , r. The sets π′

B = {π′
i,B , i = 0, . . . , r}
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are a (nontrivial) partition of YB . Then, (see Remark 1)

Iπ′(X ′
M)

=
1

k − 1

k∑
i=2

I(Xπ′
i
∧Xπ′

1
, . . . , Xπ′

i−1
)

=
1

k − 1

p+q∑
i=2

I(Xπ′
i
∧Xπ′

1
, . . . , Xπ′

i−1
)

+
1

k − 1

k∑
i=p+q+1

I(Xπ′
i
∧Xπ′

1
, . . . , Xπ′

i−1
)

≥ 1

k − 1

p+q∑
i=2

I(Xπ′
i,A

∧Xπ′
1,A

, . . . , Xπ′
i−1,A

)

+
1

k − 1

r∑
i=1

I(Xπ′
i,B

∧Xπ′
0,B

, . . . , Xπ′
i−1,B

)

=
p+ q − 1

k − 1
Iπ′

A
(YA) +

r

k − 1
Iπ′

B
(YB)

≥ p+ q − 1

k − 1
SI(YA) +

(
1− p+ q − 1

k − 1

)
SI(YB)

≥ min {SI(YA), SI(YB)} .

where the first inequality follows because π′
i,A ⊆ π′

i, i =

1, . . . , p+ q, and π′
0,B ⊆ ∪p+q

i=1 π
′
i−1.

Case 2 (r = 0): In this case, p+ q = k and the calculation
above yields Iπ′(X ′

M) ≥ SI(YA), which implies (7).

Proof of Lemma 5. Without loss of generality, it is sufficient
to prove that SI(XM) ≤ SI(XA, Z). Let π∗ = (π1, . . . , πk)
be an SI-achieving partition for (XA, Z), that is, a partition
that achieves the minimum on the right side of (1). Assume
that Z ∈ π1. Then, π = (π1 ∪XB , π2, . . . , πk) is a nontrivial
partition of XM and we get

SI(XM)

≤ Iπ(XM)

=
1

k − 1

[
k∑

i=1

H(Xπi)−H(XM)

]

=
1

k − 1

[
H(Xπ1

, XB) +
k∑

i=2

H(Xπi
)−H(XA, Z,XB)

]
=

1

k − 1
[H(Xπ1) + H(XB |Z)

+
k∑

i=2

H(Xπi
)−H(XA, Z)−H(XB |Z)

]
(8)

= SI(XA, Z),

where (8) is a consequence of the Markov chains XA−◦−Z−
◦−XB (notice that π1 ⊆ A).

The second part of Proposition 2 also follows from the proof
of Lemma 5 above.

IV. CLOSING REMARKS

A pertinent follow-up to Theorem 1 would be to identify
general classes of graphs in which blocks are small on average,
the setting in which our result leads to the most significant
savings.

A generalization of Theorem 1 to graphical models without
a cut vertex remains an open problem. Our proofs rely on there
being a single cut vertex which then belongs to a single atom
of the relevant partition. Particularly, in the proof of Lemma 5,
we needed XA and XB to be conditionally independent given
a single Z, and we could then find an atom of the SI-achieving
partition that contained Z. This is no longer the case for a
cutset with more than one vertex, which may then be spread
out among multiple atoms of an SI-achieving partition.
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