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ABSTRACT

We consider a system of two balance laws of Keyfitz—Kranzer type with varying generalized Chaplygin gas, which exhibits negative pressure
and is a product of a function of time and the inverse of a power of the density. The Chaplygin gas is a fluid designed to accommodate
measurements for the early universe and late-time universal expansion while obeying the pressure—-density-time relation. We produce an
explanation and description of the non-self-similar Riemann solutions, including the non-classical singular solutions. We also find that due
to a direct dependence on time, a change in the regions allowing for combinations of classical and non-classical singular solutions occurs;
therefore, a Riemann solution can have different solutions over several time intervals. Our findings are confirmed numerically using the
Local Lax-Friedrichs scheme.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0231413

I. INTRODUCTION quasi-exponential phase of the universe. Li" built upon this work by
analyzing the system of balance laws formed from a mathematical view-
point. The generalized Chaplygin gas is characterized by the equation
of state P = Ap’, with 7 < 0." To the best of our knowledge, there has
been little research on a combination of both the varying and general-
ized model, denoted by the varying generalized Chaplygin gas (VGCG)
model.

This paper aims to study the solutions to the Riemann problem,
an initial value problem that consists of data containing two constant

It is well accepted that dark energy plays a critical role in the cur-
rent expansion of the universe, in particular, the shift from deceleration
to acceleration in the current epoch. Connections between dark energy
and dark matter are still debated in the physics community; the
Chaplygin gas models are possible candidates for such connections,
exhibiting early behavior akin to dark matter and later behavior akin to
a cosmological constant. All Chaplygin gas models are unified in
describing dark energy through scalar fields with a negative pressure ) con ¢ i
and inverse relation density of the form p = A/p, where A < 0. Of par- states separated by a discontinuity at the origin, to a non-symmetric
ticular interest are the varying and generalized Chaplygin gas models."” Keyfitz-Kranzer type system:

The former is characterized by the equation of state p = B(t)/p. {Pr + (p(u—p(p))), = kp,

Recently, Khurshudyan proposed the idea of setting B(t) = Ae'’, where (1.1)

n and A <0 are constants. He showed that this form describes the (pu), + (pu(u — p(p))), = npu + pp,
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where A < 0,k,#, and f§ are non-zero physical constants. The inde-
pendent variables are time t € R* and position x € R, and the
dependent variables are density p and fluid velocity u. We restrict
attention to p(p) = Ap’e", with y <0, (y # —1) and p(x,t) > 0.
We refer the reader to Li” for the special case y = —1. In particular, we
focus on the existence of singular solutions (delta or singular shocks),
which denote the mass’ concentration process and may be interpreted
as galaxies in the universe. The non-autonomous system of balance
laws (1.1) is of great interest mathematically and physically, as the sol-
utions are non-self-similar, and the shock and rarefaction-type curves
change over time. To the best of our knowledge, direct time depen-
dence resulting in changes in the areas where classical and non-
classical singular solutions exist has not been analyzed and confirmed
numerically before.

The singular solutions involve the so-called delta or singular
shocks, a more compressive generalization of the ordinary shock wave,
where at least one state variable develops an extreme concentration in
the form of a weighted Dirac delta function. They were initially discov-
ered by Keyfitz and Kranzer’ " and later studied in greater depth by
Sever.” Keyfitz and Kranzer’ worked with a strictly hyperbolic, genu-
inely nonlinear system derived from a one-dimensional model for iso-
thermal gas dynamics and observed that there is a large region where
the Riemann problem cannot be solved using shocks and rarefactions.
They produced approximate unbounded solutions that do not satisfy
the equation in the classical weak-solution sense. They also showed
that only the first component of the Rankine-Hugoniot relation is sat-
isfied, giving a unique speed ¢ for which any given two states can be
joined. Later on, Schecter” used ideas and methods associated with
dynamical systems with geometric flavor (blowing-up approach to
geometric singular perturbation problems that lack normal hyperbolic-
ity; see Fenichel'” and Jones'!) to prove the existence of a self-similar
viscous solution. See also Hsu,'” Kalisch et al,"’ Keyfitz et al,'o v
Levine et al,'"® Mavromoustaki et al,'” and references therein for other
solutions involving singular solutions.

The investigation of singular solutions was mainly focused on
when only one state variable develops the Dirac delta function, and the
others are functions with a bounded variation. We have other physi-
cally important systems with delta functions in more than one state
variable. For example, Mazzotti et al.”’** numerically studied a model
with important applications in modern industry, which exhibits singu-
lar solutions arising in two-component chromatography, and both
components of the Rankine-Hugoniot relation are not satisfied.
Tsikkou™ considered this chromatography system, which exhibits a
change of type (hyperbolic and elliptic), performed linear changes in
the conserved quantities to obtain a simpler system, and gave a coher-
ent explanation and description of the unbounded solutions.

It is natural to then ask whether it is possible to predict singular
solutions to a system, find a physical interpretation of their significance,
explain the sense in which they satisfy the equation, find a better defini-
tion that will describe some broader collection of examples, and check
for connections between singular solutions, genuinely nonlinear sys-
tems, and change of type (conservation laws which are not everywhere
hyperbolic). The model under consideration serves this purpose in addi-
tion to the aforementioned physical reasons. From a mathematical
point of view, we aim to gain a broader perspective for solving Riemann
and Cauchy problems with large data globally using singular solutions
as additional building blocks (in possibly generalized schemes).

ARTICLE pubs.aip.org/aip/pof

The system (1.1) is a special case of

pe+ (p®(p,u)), = Fp, u),
(pu); + (pu®@(p, u)), = G(p,u),

where ®(p, u) = f(u) — p(p) is a nonlinear function and has various
applications depending on @, F, and, G. For example, the pressureless
Euler system and the macroscopic model for traffic flow by Aw and
Rascle” correspond to F=G =0, ®(p,u) =u, and F=G =0,
f(u) = u. The literature””® shows that the Riemann problem with
pressure laws depending only on the density and F=0 has been well
studied. Motivated by Li’ and references therein, we consider system
(1.1) with initial data

) (ppyw), ifx <0,
(p,u)(x,o){(pmw)’ P (1.3)

(1.2)

The paper is organized as follows: In Sec. II, we use the following
substitution:

p=0vé" u=w+pt, (1.4)

p=ve, u= (w+ b )e“‘k)‘ — i, (1.5)
—k n—k

for n = k and n # k, respectively, to transform (1.1) to a system of
conservation laws and present the numerical method used to verify
our analytical results. Section III gives a formal description of the clas-
sical Riemann solutions to the system of conservation laws. We use the
Rankine-Hugoniot relations to derive the shock curves through a left
state and the method of characteristics to get information about the
rarefaction-type curves. All the curves depend on time; therefore, vari-
ous regions where classical Riemann solutions (using one-shock, two-
contact discontinuity, and two-rarefaction) exist evolve in time. On the
other hand, the Riemann solution with the right state in region V con-
sists of delta-shocks. In Sec. IV, we prove that the singular solution sat-
isfies (1.1) in the sense of distributions and we discuss the region time
evolution. In Sec. V, we construct the singular solution to the Riemann
problem for the original system (1.1), and finally, in Sec. VI, we present
the conclusion.

Il. PRELIMINARIES
A. Analysis preliminaries

The problem is best split into two cases: 7 # k and 1 = k. For the
n # k case, the change of variables in (1.5) with the restriction v > 0 is
used. With this, we rewrite (1.1) into the resulting conservative system

v+ {ve("‘” (w+i) ot

k

'7
(it Lt
(orgtaer =il ozt

(2.1)

A(Uekt)3/+le(rl—k)t:| =0,

X

e

For the other case, 7 = k, the transformations in (1.4) with restriction
v > 0 are used. This results in
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{v’ + o+ ) = A1), =0, 2
(ow), + [v(w + Bt)w — A(ve) ' w] = 0. .
Due to (1.3), the initial conditions for both systems are
vp,wr), if x <O,
(0,)(5,0) = (p,1)(x,0) = { e Y
_ { (pp,u), ifx<0, (2.3)
(pg,ur), if x>0

B. Numerical preliminaries

The Local Lax-Friedrichs (LLF) scheme was utilized for its sim-
plicity and non-oscillatory behavior. Following the scheme, the spatial
and temporal domains were discretized. Neumann boundary condi-
tions were imposed to preserve the left and right states of the solution
at the end points. In particular, the (n + 1)th temporal solutions were
calculated from the neighboring nth solutions and fluxes following
from the equation:

1 CFL

g =t ) S EL R, e
where CFL represents a numerical stability condition for the LLF
scheme given by the inequality

Ay 1 25)

Ax" 72 '
in which Z represents the maximum wave speed given by the system
eigenvalues. By construction Ar = <L, thus automatically satisfying
the CFL condition with Ax = 1. Also note satisfying the CFL condi-
tions guarantees that the LLF scheme converges to the physically cor-
rect weak solution satisfying entropy conditions.”” Additionally, our
selection of parameters optimized our simulation by increasing preci-
sion and eliminating potentially oscillatory and unstable behavior. In
particular, we imposed the following conditions:

* |A| > 10 as the magnitude of A can be shown to be directly
related to the size of the regions. Note that for large magnitudes
of A, some regions become difficult to access. Alternatively, too
small of a magnitude for case 1 results in regions that are too
small to be insightful. It was imperative to examine the behavior
of the regions graphically beforehand to ensure selected points
tested the desired behaviors.

* |k| = 0.01 or |k| = 0.6 due to the term ¢ present in C, and R,.
The parameter k controls the rate at which the curves change in

H= vw+ v b1
n—k

n—k

vl =kt <w + b ) - Uik — A(ve)H eln=ht
n—

B\ (Kt BN\ =iyt afhiytt B B\
v(ern_k e W+’7—k e A(ve™) Py w+ v

pubs.aip.org/aip/pof

time and, therefore, the regions. The former leads to curves that
undergo minimal change in time, allowing insight into the initial
combinations to enter regions. The latter approximates long-
term behavior in time, modeling regional collapse. Note that even
for |k| = 0.6, regional collapse happens within the numerical
temporal domain.

* While # alone does not have a strong effect on region behavior,
we require 7 — k > 0 due to the factor of "Rt in 1, and A,. If
n—k <0, lim,_ ekt =0, causing 4, = 4, as t — oco. We
thus lose hyperbolicity of our regions, resulting in the breakdown
of our implementation to unexpected behavior.

Note that we only discuss A, 77, and k here, as # has minimal effect on
qualitative numerical results.

To further prevent numerical instability, the change of variables
y=uw+ u% was utilized in our irr%plementation. Thus, the vector
of conserved quantities is H = [v y|" and the flux is written directly
in terms of y. We then converted y back to w with each iteration.

Note that for all numerical figures, U, = [y WL]T and

Ur = [vr  wg]". See also LeVeque et al.”**’ for additional details on
the LLF scheme.

I1l. CONTACT DISCONTINUITY, SHOCK, AND
RAREFACTION

This section is broken into two cases: 17 # k and 1 = k. Each case
begins by finding the Hugoniot locus, using the Rankine-Hugoniot
condition to find the set of points in state space that may be joined to a
fixed left state by a shock satisfying the Lax shock admissibility crite-
rion or contact discontinuity. In addition, using the method of charac-
teristics, we show that one-rarefactions cannot exist and derive
information about the two-rarefactions. Next, numerical evidence of
the latter is presented and analyzed. Finally, the Hugoniot locus and
rarefaction-type curve are plotted together, splitting the (v, w) state
space into regions depending on y and k. Note that numerical evidence
is only presented for the i # k case due to the regions being identical
in both cases.

A. n # k case

1. Hyperbolicity, linear degeneracy, and genuine
nonlinearity

(2.1) is rewritten as
H; + G, =0, (3.1)

where

(3.2)
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To check whether our system is hyperbolic, we need
1 0
DH = w4+ —ﬂ v’
n—k
eln=k)t (W-Fi) _L_A(Uekt)ve(n—k)t(v_‘_ 1) veln—ht
n—k/ n—k (33)
2
DG = B (n—k)t _ ,B ﬁ )
(W+—n—k>e _W—k W+’7—k
A( kt\7 B (n—k)t _eln=kyt kty7+1 __ﬁu
i A(y + 1) (ve') (W+n—k)e e A(ve') =k

where D denotes the differential [0/0v,d/dw]. Solving det(DG
—ADH) = 0 to obtain the eigenvalues of the system yields

- A y
= b + {WwLi——(vek’)’“(er 1)} el
n—k n—k v (3.4)
— A N .
Jo = 117—‘%{ + {w + nifk - (vek’)’“} =kt
The corresponding eigenvectors are
1
rn = ,
"o
(3.5)
1
r Ay .
2 = (Uekt)ﬂrl

Here we note that A<0 and y <0 gives 4; < A,. Furthermore,
observe that
) _A KNy nt
D7y -1 —Uz(y+1)(ve ) (—uvy) # 0,
(3.6)
A . Ay ,
Diy -1, = U—z(vek‘)’e'“(—vy) + e<’7’k)‘v—2/(vek‘)”1 =0.

Hence, the one- and two-characteristic families are genuinely nonlin-
ear and linearly degenerate, respectively.

2. Hugoniot locus through a left state (v_,»_): The Lax
shock admissibility criterion

Let o(t) = x/(t) be the propagation speed. Using the Rankine-
Hugoniot jump conditions,

where [, denotes the jump across the shock, we conclude that the
states that can be connected to (v_,w_) by a one-shock or a two-
contact discontinuity lie on the curves

Si(v_yw_) :w=w_ (3.8)
or
A , A ,
Colv_,w_) i w=w_ —— (v_e")"™ 4= vy, (3.9)
v v

respectively. These two curves intersect at (v_, w_). By (3.7), we get

— p (n—k)t _ 7ﬁ
a1(t) (W_ n—k ¢ n—k
Il — it (3.10)

AR 1)t
U—U_

O'z(t) :/,{Z(U7W) :j.z(U,,W,).

For the one-shock to satisfy the Lax shock admissibility criterion, we
require

A(o_,w_) > a1 > 21(v,w). (3.11)
Let  h(v) =0+ —(p+Dw’  and  hy(v) = —pu't!
— 0"+ (y 4+ 1)v7v_, then (3.11) is equivalent to
hi(v) <0, hy(v) >0 when v>uv_,
(3.12)
hi(v) >0, hy(v) <0 when v<uv_,

which hold when

-1 <y<0, 7y<-1,
respectively. This can be easily checked by studying the first and sec-
ond derivatives of h; and h,. Therefore, the admissible parts of the

one-shock curve consist of points with v > v_ when —1 < y < 0 and
points with v < v_ wheny < —1.

: K X ke\ 7L -k _ ,
=0 (8)[0]jmp + [UE(" )[ (W +%> — vl — A(ve)" el )[]jump =0, 3. One-rarefaction-type curve through a left state
, Nt (v-,0-)

—o(t)[ow+; o) el N -

a(t) [UW+ ”’k] jump + {U<W k) ¢ Recall Egs. (3.4) and (2.1). Differentiating (2.1) and then simplify-
} ing with (3.4) yield
(o)At ()] o

jump Wy + Jawy, = 0, (3.13)

(3.7) U+ A0 + vweelRE =0, '
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We rewrite these equations in matrix form to get

v ) (n—k)t v
S “| =o. (3.14)
Wy 0 )uz Wy
Note that the eigenvalues and eigenvectors of the matrix A
] o(n—k)t
= [/(L)l ve ; } are the same as (3.4) and (3.5).
2
The matrix A is diagonalized in the form PDP~! where
A0
D= { ) ] , (3.15)
0 A2
p—|! v (3.16)
o yA(vek’)7+1 ’ '
and
_2
1 AA(Uekr)"/H
pl= 4 1 (3.17)
VA (vekt)"!
These matrices are now used to transform Eq. (3.14) into
v v
P | +DP |t } =0, (3.18)
Wi Wy
which yields
Wy + j.sz = O,
1 (3.19)
vy + )»ll?x — W (Wt + )»1wx) =0.

This implies that 2 = 0 along two-characteristics, that is £ = /,, and
thus w is constant. On the other hand, along one-characteristics where
% = /1, we get
c;_v: = Ayl % (3.20)
As discussed above, when we consider a one-rarefaction-type wave
connecting the constant left state (v_,w_) with another state (see
Fig. 1 as an illustrative example), w would be constant and equal to
w_ in directions given by % = /.

Therefore, w would stay constant throughout this wave and by
(3.20) v would also stay constant since % = 0 implies 4 = 0. By the
method of characteristics, we thus conclude that a one-rarefaction

does not exist.

4. Two-rarefaction-type curve through a left state
(v-,0-)

We note that for numerical figures the left column displays all 20
iterations, each taking 1000 steps, while the right column displays the
latest iteration. Data were renormalized every 100 steps within an error
bound of 1077 to remove illusory points. Later iterations have a thicker
line width. The figures are provided to justify the existence of two-rare-
faction-type waves numerically. Sections IIT A 5, IIT A 6, and 11 B will
discuss the regions and cases mentioned in the figure captions.

ARTICLE pubs.aip.org/aip/pof
* x L4 4 ‘ 4
. ¢\t e ’ 4 ’
. 4 V4 ’ ¢ ’
% ’ ’ ’ ’
‘e 4 4 4 ¢ ¢
% ’ ¢ ’ ¢ ’
*4 4 4 V4 V4 ¢
., 4 ’ . ¢ .
. ’ ’ ’ .
. 4 4 V4 ¢ ’
% 4 ¢ ¢ ¢ ¢
4 ’ ¢ ¢ ’
R . ¢ ¢ ¢
1 r, 0 4 4 ’
¢ 0 ’ ’ ’
4 v, ¢ ¢
4 4.0 ¢ ’
LAY ’ ’ Lowdr A
4 4 4., ¢ dt 1
4 4 9 .0 ,
’ ’ % ¢ — -4 = /\2
. 4 ’ ¢° \s dt
’ ¢ ’ °,
’ ’ ’ ’ .,
4 4 4 4 TANNG e
[4 v i V3 2 2

FIG. 1. An illustration of the characteristics for a hypothetical one-rarefaction-type
wave.

From testing various points, it was found that R, lies tightly along
C,. Numerically, we observed strictly R, C, (the Riemann solution con-
sists of a two-rarefaction followed by a two-contact discontinuity)
when R, is present for all points tested, but cannot confirm this analyt-
ically. Note that the change in w during R, is extremely small, appear-
ing zero graphically.

With numerical assurance for a R, rarefaction, we proceed to
analyze its behavior. From (3.20), we can measure the rate of change of
w with respect to ¢ on the curve. Since the system is non-autonomous,
it is difficult to find the two-rarefaction-type curve explicitly. First, we
note that a two-rarefaction Ry (v_, w_) lies above C;(v_, w_); to con-
nect a left state (v_, w_) with another state (v, w) without crossing
characteristics, we require 4, (v_, w_) < 4(v, w), ensuring diverging
characteristics, as is expected for a rarefaction. To pinpoint the location
of R,, we differentiate (3.9) along % =/ to get

dw dv
=z — Ay’ MO 20 Ak DM (7 — 7).
dt lacross G, e dt + (V + )e (U U,)

(3.21)

Note that since a rarefaction-type wave R, is a smooth solution, we can
use (3.20)

Phys. Fluids 36, 096132 (2024); doi: 10.1063/5.0231413
Published under an exclusive license by AIP Publishing

dw dv
i — Ayt LR+ 22 322
dt across Ry 7Y ¢ dt ( )
to study the behavior along one-characteristics. Consequently,
dw dv
— < Apo" 10D == when k(y +1) > 0,
dt across Cy 7Y ¢ dt when ()) + )
v<v_ or k(y+1)<0,v>0v_,
(3.23)
dw dv
— > Ay’ 1D T2 when k(y +1) > 0
dt across C, v ¢ dt when (V * ) ’
v>v_ or k(y+1)<0,v<uv_.
36, 096132-5
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Upon comparing the rates of change of w with respect to ¢ (note that
the rates are positive or negative when v < v_ or v > v_, respectively)
on the two-waves we conclude that when k(y+1) <0 the two-
rarefaction-type curve R, lies above the two-contact discontinuity C,
when v < v_. On the other hand, when k(y + 1) > 0, the two-
rarefaction-type curve R, lies above C, when v > v_.

Finally, with the assumption that the R, curve would follow
closely above the C, curve, integration of (3.20) will give a non-explicit
equation for R, as

t
w=w_ 4+ Av’HUTD _ Ay7 ko0+D) _ [ v Ak(y + 1)0 gy,
Ji,

(3.24)

which is in line with the numerical analysis (see Figs. 2 and 3).

These together yield a rough outline of where the R, curve is
located, given by the dotted line in Figs. 4-7. This is based off the simi-
larity of (3.24) to the equation for C,, as well as the necessary high
proximity to C, to observe R,C, instead of $;R, numerically. A full
derivation of this equation is a topic of future work.

All results and analysis of the R, are expected to hold true for the
1 = k case, due to the inequalities found for the 1 # k case reappear-
ing in the former.

5. Regions for the solution of the Riemann problem

The curves of our one-shock §; and two-contact discontinuity C,
are given by (3.8) and (3.9).
The regions are defined further by

pubs.aip.org/aip/pof

A N
Ss:w = wy + — (vek")", (3.25)
v
representing the limit of the second curve (3.9) as vy — oo.
Additionally, we have
A . A ;
Sor w = wp + = (ve) T — = (p 4 1) (v ), (3.26)
v v,
representing the max bound of the overcompressive region, which is
explained in more detail in Sec. IV A 1. R, and all other unknown

curves are represented by dotted lines in the (v, w) plane.
We distinguish four cases:

* Case 1, wheny < —1, k > 0, given by Fig. 4,

* Case 2, when —1 < y < 0,k < 0, given by Fig. 5,

* Case 3, when y < —1 and k < 0 given by Fig. 6,

* Case 4, when —1 < y < 0 and k >0, given by Fig. 7.

For each case, various regions exist that lead to classical and non-
classical solutions to the Riemann problem. Specifically, we have:

* A one-shock followed by a two-contact discontinuity. The for-
mer, given by x = x;(¢), connects (vy,w;) and a middle state
(vam, wa ), and the latter, given by x = x,(t), connects the middle
state with the right state (vg, wg). The middle state can be found
explicitly by using (3.8) and (3.9):

1/y
wy = wr, um(t) = (URekt(7+l) + ML WR ; WR> 'efkt(k"“)/h".

In addition, by (3.10), we can find the wave speeds

Case 1: v =-2 States v, w: 2(3)000 Steps, t = 2.7796

2.8 2.8
2.6 26
S 24 S 24
2.2 2.2
2 2
18 18 ‘ ' : :
0 1000 2000 3000 4000 1500 2000 2500 3000 3500 4000
x/t x/t FIG. 2. Region VIl in Fig. 4. SiR,.
Parameters: y= -2, A= —10,n =3,
2.2 2.2 k=10.01, 5 =10.
2 2
18 18
S 16 S 16
14 14
12 12
1 1 ‘ ‘ ' '
0 1000 2000 3000 4000 1500 2000 2500 3000 3500 4000

x/t; Data UL = (3,2), UR =(1.8,1) x/t; Data UL =(3,2), UR =(1.8,1)
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(%asse 1: v =-7 States v, w: 520000 Steps, t=1.772
0 200 400 600
xt
k=0.01, = 10.
-20 —— 20
200 O 200 400 600 200 0 200 400 600

x/t; Data U, =(3,2), Uy, = (1.5397,-19.405)

éfL::(M@_%_li_)ew—Mt___ﬁ_

dt n—k n—k
7L
_pn-rguren D)~ v (3.27)
UM(t) — UL
dx2 _ —ﬁ ﬁ A kt\y+1 | (n—k)t
dtfn—kJr{WRJrn—k UR(URe) o

This solution is possible when the right state is in region VI
(case 1), given by Fig. 8, or region VII (case 3), given by Fig. 9,
and region III or IV (cases 2 and 4) (see Figs. 10-13). The regions

FIG. 4. Regions for y < —1and k> 0.

x/t; Data U, =(3,2), Uy, = (1.5397.-19.405)

are bounded by S, (vz, w) and Cy(vr, wr) or S5 and Cy(vr, wy),
respectively.

* A one-shock followed by a two-rarefaction. The solution is possi-
ble when the right state is in region VII (case 1), given by Fig. 14,
or region VI (case 3), given by Fig. 15. The regions are bounded
by Sy (vg, wr) and Ry (vr, wy).

* A two-rarefaction followed by a two-contact discontinuity, which
is possible when the right state is in region I (cases 2 and 4),
given, for example, by Figs. 16 and 17. The region is bounded by
Cz(UL, WL) and Rz(l/‘L, WL).

Ca
111 St

(vr,wr)

FIG. 5. Regions for —1 < y < 0 and k< 0.
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VIH --------------

bVl = Cz

S s
L (ve,wr) IX S,
VII \%
S -
FIG. 6. Regions for y < —1and k< 0.

I R S G

(v, wr) 111 S1
3 Y

FIG. 7. Regions for —1 < y < 0 and k> 0.

* A two-rarefaction followed by a two-contact discontinuity or vice
versa. The region is bounded by C,(v., w.) and Ry(vr, wy). This
is possible when the right state is in region VIII (case 1 and
case 3) or region II (case 2 and case 4). Numerically, we find that
the two-rarefaction comes first in region VIII in Fig. 4 and expect
the same for region VIII in Fig. 6. However, due to the growth of
C, into a vertical line during the region shift discussed later, pick-
ing a point adequately close to C, to observe behavior causes the
point to almost immediately leave the region, making it impossi-
ble to verify. Further work needs to be done to tell if the two-
rarefaction or the two-contact discontinuity occurs first.

ARTICLE pubs.aip.org/aip/pof

* Either a delta-shock followed by a two-wave or a two-contact dis-
continuity followed by a delta-shock. This is possible in region IX
(cases 1 and 3), which is bounded by C,(vr, wr) and S, and in the
non-overcompressive subset of region V in cases 1-4. More detailed
analysis of regions where we expect a combination of a delta-shock
and classical solutions will be the subject of future work.

6. Numerical evidence on the various regions

Certain additional restrictions were placed on the numerical con-
stants for the LLF method. We discuss only A, 7, and k here, as f§ has
minimal effect on qualitative behavior.

The magnitude of A is directly related to the size of the regions.
We chose |A| > 10. Note that for large values of A, some regions
become difficult to access numerically. Due to the ¢ term present in
C, and R,, the parameter k controls the rate at which the curves change
in time and therefore the regions. In this work, we chose |k| = 0.01 or
|k| > 0.6. The former leads to curves that undergo minimal change in
time, allowing insight into the initial combinations to enter regions.
The latter approximates long-term behavior in time, modeling regional
shift over time. While 1 alone does not have a strong effect on region
behavior, we require  — k > 0 due to the factor of el1=ht in A and
I If — k <0, lim,_,o e/70! =0, causing A; = 4, in infinite time.
We would then lose strict hyperbolicity of our regions, which is incom-
patible with our implementation and leads to unexpected results. Here,
we present the numerical evidence for how the Riemann problem is
solved for four cases involving a given left state and a right state in var-
ious regions. For case 1, region VIII, refer back to Fig. 3. We do not
show region VIII (cases 1 and 3) and region II (cases 2 and 4) here,
which is reached by R,C,, since picking an appropriate point is diffi-
cult due to the difference between R, and C, being extremely small.
We identify S, by its steep slope and lack of movement in w. R, is clas-
sified by a more gradual slope in combination with a “fanning” effect
over all iterations. C, has some characteristics of both, often displaying
a more gradual slope but with a consistent lack of fanning.

B. y = k case

1. Hyperbolicity, linear degeneracy, and genuine
nonlinearity

Equation (2.2) can be rewritten as
H; + G, = 0, (328)

where G and H are taken to be

G v(w + Bt) — A(ve)"!
| ow(w + BE) — Aw(vekt)' !

(3.29)

To check, once again, whether our system is hyperbolic, det(DG
—ADH) = 0 is solved, to find the eigenvalues

e A delt.a-s.hock that is overcom})ressible and pos§ible when the right Jy = (w+ Bt) — A(y + 1)v7 k0D,
state is in the overcompressive subset of region V (cases 1-4). , Ayl D) (3.30)
The region is bounded by either S5 (cases 2 and 4) or S, (cases 1 Al = (w+ ft) — Av'e )
and 3). Overcompressibility will be discussed in Sec. IV A 1. with the corresponding eigenvectors
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Casse 1: vy =-2 States v, w: 230000 Steps, t = 2.7204
I

2 iy J

: 1.5
0 1000 2000 3000 4000 1000 2000 3000 4000

x/t x/t
3 ( 3
=25 =25
2 J
0 1000 2000 3000 4000 1000 2000 3000 4000
x/t; Data U, =(3,2), U, =(2.3) x/t; Data U, =(3,2), U, =(2.3)

Casse 3: 0 =-2 States v, w: 230000 Steps, t = 2.7855

pubs.aip.org/aip/pof

FIG. 8. Region VI of case 1, $;C,.
Parameters: y = —2,A= —10,5n =3,
k= 0.01, 8 = 10.

> 25 > 25
0 1000 2000 3000 4000 2000 2500 3000 3500 4000
FIG. 9. Region VII of case 3, $;C,.
X/t X/t Parameters: y=—-2,A=—10,n =3,
k = —0.01, = 10.
2 \ \ 2
= 15 =15
1 t 1
0 1000 2000 3000 4000 2000 2500 3000 3500 4000
x/t; Data U, =(3,2), U, = (21) x/t; Data U, =(3,2), Uy, = (21)
{ 1 } Additionally,
n = 0 )
) (3.31) DAy -1 = —Ap(y + Do~ 10+ £ o, (3.32)
ry = {A,,/Uy—lekt(wl) } Diy -1y = —Ayp? R0+ o Appi =1kt 0H1) — 0, '
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Case8 2: v=-0.5 States v, w: 820000 Steps, t = 2.6289
6 6
> >
4 f j 4
2 2
0 1000 2000 3000 4000 2500 3000 3500
x/t x/t
3 : L 3
= 25 = 25
2
0 1000 2000 3000 4000 2500 3000 3500
xt; Data U, =(3.2), Uy, = (8,3) xt; Data U, =(3,2), U, = (83)

Case 2: v =-0.5 States v, w: 20000 Steps, t = 2.6289
15 15}
10 \ 10} k
> > f

U °

5
0 0
0 1000 2000 3000 2400 2600 2800 3000
x/t x/t
2 2
=15 S 15}
1 1
0 1000 2000 3000 2400 2600 2800 3000
x/t; Data U, =(3,2), U, =(8,1) x/t; Data U, =(3.2), U, =(8,1)

pubs.aip.org/aip/pof

FIG. 10. Region Il of case 2, SiC,.
Parameters: y = —0.5,A = —10,5 =3,
k =—0.01, 5 = 10.

FIG. 11. Region IV of case 2, $;C;,.
Parameters: y = —0.5,A = —10,5 = 3,
k = —0.01, p = 10.
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Casg =-0.5 States vV, W: 720000 Steps, t = 2.6396

4: v
6
> 5 > 5
4 4
3 3

»

0 1000 2000 3000 4000 2500 3000 3500
FIG. 12. Region Il of case 4, SiC,.
X/t X/t Parameters: y = —0.5,A = —10,7 = 3,
k= 0.01, g = 10.
3r ¢ ; 7 3
= 25 [ [ =25
2 2
0 1000 2000 3000 4000 2500 3000 3500
x/t; Data U, =(3,2), U, =(7.3) x/t; Data U, =(3,2), U =(7.3)
Cas1e 4: v=-0.5 States v, w: 120000 Steps, t = 2.6396
5 5
10 10
. .
\
5 5¢
0 1000 2000 3000 2400 2600 2800 3000
FIG. 13. Region IV of case 4, S;C,.
X/t X/t Parameters: y = —0.5,A = —10, =3,
k =0.01, g = 10.
2 ey 2
=15 =15
0 1000 2000 3000 2400 2600 2800 3000
x/t; Data U, =(32), U, =(7,1) x/t; Data U, =(3,2), U, =(7,1)
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Casse 1”: Y =-2 States v, w: 230000 Steps, t = 2.7241

2.5 2.5
o >
2 2
1.5 LA 5 A\
0 1000 2000 3000 4000 1000 2000 3000 4000
FIG. 14. Region VIl of case 1, SiR,.
X/t X/t Parameters: 7= -2, A= —10,n =3,
k=0.01,8=10.
=15 =15
0 1000 2000 3000 4000 1000 2000 3000 4000
x/t; Data U, =(3,2), U, =(1.5,1) x/t; Data U, =(3,2), U =(1.5,1)
Casse 3: yv=-2 States v, w: 230000 Steps, t=2.7008
2.5 2.5
> >
L A/ /
1.5 1.5
0 1000 2000 3000 4000 1000 2000 3000 4000
FIG. 15. Region VI of case 3, SiR,.
X/t X/t Parameters: y= -2 A= —10,n =3,
k= —0.01, 8 = 10.
3 [ r' 3
=25 = 25
2 J 2
0 1000 2000 3000 4000 1000 2000 3000 4000
x/t; Data U, =(3,2), U, = (2,3) x/t; Data U, =(3,2), Uy, = (2,3)
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Casg 2‘: ¥ #-0.5 States v, w: 320000 Steps, t = 2.5664

25
S
2 /
. 1.5
0 1000 2000 3000 4000 2000 2500 3000 3500 4000
x/t x/t
3 3
=25 =25
2
0 1000 2000 3000 4000 2000 2500 3000 3500 4000

x/t; Data U, =(32), U, = (2,3) x/t; Data U, =(3,2), Uy, =(2,3)

Casg 4: v=-0.5 States v, w: 320000 Steps, t = 2.5105

1 Ve
0 1000 2000 3000 4000 2000 2500 3000 3500 4000

x/t x/t

3 : 3

=2

=25

[4)]

2000 2500 3000 3500 4000
x/t; Data U, =(3,2), Up = (1,3)

0 1000 2000 3000 4000
x/t; Data U, =(3,2), U, = (1,3)

pubs.aip.org/aip/pof

FIG. 16. Region | of case 2, R,C,.
Parameters: y = —0.5,A = —10,7 =3,
k= —0.01, 8 =10.

FIG. 17. Region | of case 4, R;C,.
Parameters: y = —0.5,A = —10,57 =3,
k =0.01, = 10.
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Similar to the 1 # k case, the one- and two-characteristic families are
genuinely nonlinear and linearly degenerate, respectively.

2. Hugoniot locus through a left state (v_,w_): The Lax
shock admissibility criterion

Once again, the Rankine-Hugoniot jump conditions (3.7) are
checked and get

=0 (1) [V]jymp + L0(W + Bt) — A(vek) ]

jump

: (3.33)
=0 () [oW]jymp + [ow(w + pt) — Aw(vek’)’“}jump =0,
resulting in
Si(o_,w_) :w=w_,
(3.34)

A N A ,
Co(v_,w_) :w=w_ —— (v_e")"*" 4= (veM) ",
v v

Therefore, the states that can be connected to (v_, w_) by a one-shock
or a two-contact discontinuity lie on the curves (3.34). By (3.33),

PVl vl
oi(t) = w_ + pt — AU — (3.35)
Gz(t) = /lz(l], W) = /12(07, W,) (336)

are obtained. Again, (3.11) is checked to ensure that the Lax shock
admissibility criterion is satisfied. The first and second inequalities give

R /Tl vt
V(1) > — (3.37)
v—u_
and
X vv+1 _ U',Hrl
V41 < ———, (3.38)
v—v_

respectively. Both are equivalent to the corresponding inequalities for
the case 1 # k. Thus, S, exists for v > v_ if —1 <y < 0 and for
v <v_ if y < —1. The rest of the analysis (non-existence of one-
rarefactions, existence and location of two-rarefactions, regions, etc.) is
identical to the n # k case and will be omitted for brevity.

IV. DELTA-SHOCKS

In the overcompressibe subset of region V, there is no solution
that is piecewise smooth, and bounded. Therefore, in order to establish
existence in a space of measures from a mathematical perspective, a
solution containing a weighted -measure (or J-shock) supported on a
curve needs to be constructed (see Refs. 30 and 31). For these singular
solutions, we need to consider physical constraints. If w becomes
unbounded, the system’s velocity must approach infinity. However,
this scenario is not physically possible, as we know that the speed of
light bounds the velocity of all particles in the universe. Furthermore,
it is also not physically feasible for both v and w to be unbounded, as it
implies a finite amount of mass suddenly becoming infinite and then
returning to a finite value. Therefore, the only possible case is for v to
be unbounded. Assuming infinite density in situations where the fluid
volume is nearly infinitesimal is physically reasonable. We have also

pubs.aip.org/aip/pof

observed numerically the presence of the Dirac delta measure in v
only.

A. 5 # k case

We define a two-dimensional weighted J-measure w(s)ds sup-
ported on a smooth curve § = {(x(s), £(s)): ¢ < s < d} by

b
(@(-)0s,¥(:,)) = J @(t(s))Y(x(s), £(s)) ds
forall y € C°(R x R™).

Following the above reasoning, the definition of solutions in the
sense of distributions is as follows.

Definition: A pair (v, w) are known as a delta-shock type solu-
tion to the system with Riemann data in the sense of distributions
if there exists a smooth curve S = {(x(¢),:0 <t < oo} and a
weight w; € C'(S) such that v and w are represented in the follow-
ing way

(v, w)(x,£) = (vo(x,t) + w1 (t)ds, wo(x, 1)),

(v, wr), x < x(t),

= q (vs(t) + o1 (1)0(x — x(1)),ws (1)), x = x(2),

(vr, wr), x> x(t),
(4.1)

where 0(+) is the standard Dirac measure (therefore w is v-measurable,

B
n—k

and satisfy (2.1) in the sense of distributions:

(v,¢) + <v (w+%) el1=ht fnv—_ﬁk — A(vef) =Rt ¢x> =0,

(4.2)
2
<v (W + %) , ¢t> + <v<w + nifk) L=t

- (w + . f k> el R A (vt ) — ﬂ—fk (W + %) v, ¢x> =0,

(4.3)

and for example, v <w + ) can be understood as a Radon measure)

for every ¢ € C°(R x R™), where

(0, ) = JOO JOC voyr dx dt + (w1 (t)ds, ),

0 J-oo

(et [ oot
+(on) (st 42 oy ),

<A(Dekt)"/+le(;7—k)t7 W) = J J Al ) ey dx i,

0 J—o0
since y < 0. The remaining integrals in (4.2) and (4.3) are similar.
Therefore, (4.2) and (4.3) give
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oo x(t)
J J (quS, + (UL <WL + nik) =Rt g, , b P Av{“ek(”/'Jrl)’e(”_k)t) d)x> dxdt
0 J-x - -
[ B\ oo p P+ k(1) (Rt
+ vre, + WR+'1 p e van kaUR e ¢, |dxdt
0 Jx(t) -

+ L (wl(pt + (wl (Wo‘ + %) eln=ht w; p f k) q&x) dt=0 (4.4)
and

oo x(t) 2
L Lm <UL (wL +%> b+ ( (WL + fk> pln=k)t 7%” (WL *r&) 7sz+1ek(v+1)t< . nfk) e(nk)r) ¢x> dxdt
00 (00 2
+ JO J;Cm <UR (WR + ﬁ ) (pt ( (WR + %k) e(’?*k)t _ n—kaR (WR + }/]—fk) AU}/;rlek( 1t ( R ; f k) e(ﬂk)t) ¢x> dxdt
> B BN e B B _
+J0 ( (W5+n )(/)t <w1 (W() +H> e 1 _H (col (W§ +ﬂ)))¢x) dtfo, (4.5)

respectively. To be able to integrate along x = x(t), we require

d’;(:) =oa(t) = (wé(t) +5 i )ew”‘)‘ o (4.6)

We apply Green’s Theorem, to write (4.4) and (4.5) as

JOO < [0]5mp + [ (w + 4 k> =k}t _ nlfgk - A(vekt)wle(”_k)t} - d;;) ¢dt =0 (4.7)

0

jump
and
OC B )} ( B )2 (n—k)t ( B ) (n—k ke )71 B B
—|vlw+—— o+ | (w+ ") vl [ B )R A (k)T — W+ ——)0|jum
L( {( N=k) | jump n—k n—k n—k n—k) |
d
% (w1 <w,5 + o f k))) ¢dt = 0, (4.8)
where [ - |;,,., = 1 — ‘r- Thus, if we also require
doy B (n—k)t v k)L =kt
7 [Vjump® + |:U(W+ — k)e Py Alve)™ e . (4.9)
d B B BN BN\ —nt g (pheytt B B
dt(an(wg-i- k)) { (w+ k)}jumpa-i- (W+;17k ve W+;17k e Alvek) n—k W+;77k 0| jumps
(4.10)

then (v, w) satisfies the system in the sense of distributions, that is (4.2) and (4.3) hold for every test function ¢. It should be noted that there is a
Rankine-Hugoniot deficit in both components due to (4.9) and (4.10), just like in the chromatography model by Mazzotti et al.”’ ** To get more
information about ey, ws and x(t) [with x(0) = 0, @;(0) = 0], we return to the original variables p; (= v.), pg(= &), ur(= wr), ug(= wg),
and substitute (4.6) into (4.9) to get

G€1/€7L ¥20z Joquialdas 9z

dw _ _ ., _ :
g = Py € ] = AL el (1)
We then substitute (4.11) into (4.10) to obtain
d ) _ .
E(C{)l(l)é) = —wzell [pu})ump + 7Rt 2 Lump —A[uv'“}jumpew k)t gt (r+1) (4.12)
Integration of (4.11) and (4.12) yields
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t

wl(t) = _[p]jumpJ

0

pubs.aip.org/aip/pof

t

t
we(s)e 0 ds + (. J 7R ds — Alo" ] mp J elRsgksr+1) gg.
0 0

. . . (4.13)
w5 = f[pu}jump J W (s)e("_k)S ds + [puz] J k) gg A[uv7'+1]jump J el1R)s ghs(r+1) g
0 0 0
We multiply the first equation with w, subtract it from the second, and let g(¢) = fot w;(s)elK)* ds to determine
(k(r+1)+n-k)t _ =kt _q
71 1) [ € € n—k
(pr — pr)g (t)g(t) +g'(t) A(PL — PR ) (m) — (PLUL — PRUR) <ﬁ> —g(t)(prur — PRMR)e(7 )t
=kt _ ek +n=k)t _ 1
(n—k)t SIS A e (A Mg ) LA I IS h —k
te (pLuL pRuR) ( n— k > uLpr, URp k(“/ T 1) - k ) when 7 7é )
(4.14)
=kt _ 1
. e B
(pr — pr)g (t)g(t) +g'(t) (A <P'L+l - Piz“)t — (Pl — PRUR) <ﬁ>> —g(t)(pru — PR“R)e(" Kt
eln=kt _ 1 o
+ el R (ppui — prug) =k ) <AMLP}+ — Augp )t =0,  when n=—ky.
* When 5 # —yk,y # —1, and p; = py, the solution of the first ODE in (4.14) is
) 1
—24p;, (k — n)e 0D 4 (ky + i) (ug, + ug)e*Mt — 2(uy + ug)e®=t + 5 (v + ur)
ws =
0 z(e(k—n)t _ 1)2
L Z2A(k =)’ + Ak — )ppetY w1s)
2((y — Dk + 2)(eli—0r — 1) '
* When n = —yk,y # —1, and p; = py, the solution of the second ODE in (4.14) is
1 .
ws = ppT— (((1 + (= k)t)Ap} — up — ug)e 21O — (Ap] + up + ug) e 4up + uR>. (4.16)
eli=mt — 1

We note that when p; # pg, the ODEs cannot be solved explic-
itly. Figure 18 is an example obtained numerically when # = —ky with
parameters A = —10,y = —4,k=1,n=4,=2,p, =2,u, =3,
ug = 2, pg = 4. A similar graph (although it might be flipped across
the t-axis) is obtained for other parameters as well as for when

n# —ky.

1. Overcompressible region

We seek delta-shocks connecting a given left state (v, w ) with
a right state (v, w) that are overcompressive, meaning that all charac-
teristic curves run into the delta-shock curve from both sides.
Therefore, we require the following inequality:

(v, w) < Ja(v,w) < dj;—(tt) < (v, wo) < (v, wo). (4.17)
The outer inequalities always hold. Note, ws; generally cannot be
solved explicitly. Thus, we consider /,(v, w) < 41 (v—,w_) to locate
the region that would contain the right states that result in a strictly
overcompressive delta-shock. This inequality indicates an upper
border

Jow=w_ — A(y + 1)o7 0D 4 Ay 0T, (4.18)

After some simplification, this curve is the same in the # = k case.
Hence, it yields the same region. ] is above S5, given by (3.25), when
—1 <y <0 and below when y < —1. As mentioned above, Dirac
delta functions are observed numerically only in v, as shown in Fig. 19.

2. Region shift fork(y+1)<0

In this case, as t — 00, the C, and R, curves converge to w=w,
with C, maintaining an asymptote at v= 0. This allows for a point in a
given region to shift to another as time progresses. The behavior of
regions is found to progress as shown in Figs. 20 and 21. In addition,
as time approaches infinity, (3.25) and (4.18) will approach w=w;.
Therefore, the set of overcompressible points will be a subset of region
V in Fig. 20. The solutions to the Riemann problem will consist of

* A one-shock followed by a two-contact discontinuity when the
right state is in region VI (see Fig. 22)

* A one-shock followed by a two-rarefaction when the right state is
in region VII

* An overcompressive delta-shock or a combination of a delta-shock
and a classical wave when the right state is in region V (see Fig. 23)

The limit will affect case 2 in a similar way: However, we now
expect that
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FIG. 18. Numerical solution for s when n = —ky.

* A two-rarefaction followed by a two-contact discontinuity when
the right state is in region I (see Fig. 24)

ARTICLE pubs.aip.org/aip/pof
VI
N

w

FIG. 20. Limit behavior of the regions for y < —1and k> 0.

An example of how a solution changes as time progresses when a
right state is initially in region II of case 2 is given in Fig. 25.
3. Region shift fork(y+1)>0

As t — 00, the shift of the regions will require more careful con-
sideration since

* An overcompressive delta-shock or a combination of a delta- lim (w +é (vekt)wl - (4.19)
shock and a classical wave when the right state is in region V t—oo\ D - ’ '
Case 2: v =-0.5 States y, w: 5%0000 Steps, t = 2.6289
200 200
150 150
> >
100 100
50 L 50
0 J\‘ P 1 0 i R L
0 500 1000 1500 2000 1650 1700 1750 1800 1850 1900 .
FIG. 19. Region V in Fig. 5. Dirac delta
x/t X/t function in region V. Parameters: y
= —05A= —10,5=3,k= —0.01,
2 2 B = 10.
1 1
2 o0 2o
-1 -1
-2 A 2 A G i
0 500 1000 1500 2000 1650 1700 1750 1800 1850 1900

x/t; Data U = (3,2), UR =(10,-2) x/t; Data U =

(3,2), U, =(10,-2)
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FIG. 21. Limit behavior of the regions for —1 < y < 0 and k <O0.

Therefore, S5 moves farther down in the plane (when y < —1 the
overcompressive region moves in the same spirit because it is located
below S;). Next, we check the time behavior of C,. Since

A y A y
lim (w, + > (vekt) ™ - 2 (v_e) H)

t—00 U_
o S kt(y+1)> _ J —oo when v <uv_,
tlirglo(ML +A(v vf)e { 400 when v>v_,
(4.20)

pubs.aip.org/aip/pof

the regions will shift as shown in Figs. 26 and 27.
When —1 < 7 < 0, the solutions to the Riemann problem will
consist of

* A two-rarefaction followed by a two-contact discontinuity when
the right state is in region I (see Fig. 28)

* A one-shock followed by a two-contact discontinuity when the
right state is in regions IIl and IV (see Fig. 29)

The y < —1 case has a similar transformation as seen below. In
this final case, the solution will consist of

* A one-shock followed by a two-rarefaction when (vz, wg) is in
region VI (see Fig. 30). This means that R, remains above C,
during the region shift.

* A one-shock followed by a two-contact discontinuity when
(vr, wg) is in region VII (see Fig. 31)

* Either a delta-shock followed by a two-wave or a two-contact dis-
continuity followed by a delta-shock when the right state is in
region IX. The set of overcompressible points will be a subset of
region V in Fig. 27.

4. Non-overcompressive regions

Before region shift, solutions with right states in region IX, case 1,
display combinations of a delta-shock and a classical solution. Between
Ss and S,, a delta-shock is followed by a two-wave. This is supported
by Fig. 32, as the two-wave in w only occurs after the initial delta-
shock. Above S5, we observe a two-contact discontinuity followed by a
delta-shock. Note that the diffusion in the first wave is likely due to the
cell averaging involved in the LLF method as the delta-shock grows.

Cas{.ﬂe 1: y=-2 States v, w:

ZSOOOO'Steps, t=6.5794

1400 1500 1600
X, /t FIG. 22. Region VI of Fig. 20. Region

shifts to S1C,. Parameters: y = —2,
A=—-10,n=3k=2=10.

6
S 4
2
0

0 500 1000 1500 1200 1300

x/t

4 o - 4
35| 35
* 3 S 3
25| 25
2 . 2

0 500 1000 1500 1200 1300

x/t; Data U, =(3,2), Uy, = (8.4)

1400 1500 1600

x4t; Data U, =(3,2), Uy, = (8,4)
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S 1]
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x/t; Data U, =(3,2), U, = (5,1.5) x/t; Data U, = (3,2), U, = (5,1.5)

Case 2: v=-0.5 States v, w: 20000 Steps, t=1.7824

k \J

0

0 2000 4000 6000 3000 4000 5000 6000

x/t x/t

4 : 4
35 3.5
= 3 S 3
25 25
2 2

0 2000 4000 6000 3000 4000 5000 6000

x/t; Data U, =(3,2), U, =(8,4) x/t; Data U, =(3,2), U, =(8,4)
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FIG. 23. Region V of Fig. 20. The region
shifts to a delta-shock over time in v.
Parameters: 7= -2, A= —10,n =3,
k=0.6,p=10

FIG. 24. Region | of Fig. 21. Region shifts
to R,C,. Parameters: 7= —0.5,
A=-10,n=8k=-2,=10
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delta-shock
S TR LT LT LT T T U U PP

VI

IX

1-shock VII

-contact discontinuity
£ berees Mo

2-contact discontinuity

s FTTTUTTT

xT

) - : ) FIG. 27. Limit behavior of the regions for y < —1 and k < 0.
FIG. 25. An example solution for a (Vr, Wg) originally in region Il case 2.

Further testing with other numerical methods is needed to confirm
this. We find that proximity to S5 shows increased delta-shock charac-
111 teristics numerically, while proximity to C, muddles those characteris-
tics. We demonstrate this in Figs. 33 and 34. We propose this is due to
the curve needing to travel farther along C, to a middle state, raising
the overcompressive region, and allowing for a delta-shock to be taken.
If this is the case, it would explain why numerically a proximity to the
v C, curve would cause an unclear delta characteristic as the curve must
v travel incredibly far in order to raise the overcompressive region a suf-
' ficient amount.

Note that in case 3, S5 and S, approach the same limit. Case 1
shares the same short term behavior of non-overcompressive delta
regions, but it is lost upon region shift. This is shown in Figs. 35-38.
As shown in Fig. 37, as overcompressibility disappears during region

shift, the delta shock becomes much weaker.

B. y=k case

We follow the delta-shock definition as before; therefore, our
solution should satisfy the equations

FIG. 26. Limit behavior of the regions for —1 < 7 < 0 and k> 0.

(v, ;) + <U(W + pt) — A(vekf)wl7 ¢x> =0

. (421)
(vw, d,) + <v(w + ptyw — Alvek) ™ w, d)x> =0,
for any ¢ € C° (R x R*"). We use the properties of the Dirac delta function in a similar manner to the 5 # k case to observe that
PRVaET oo x(t) oo x(t) 50 (00
(v, ¢;) + <v(w+ pt) — Alvek) ,¢x> = J J vpp,dxdt + J J v (wy + ﬁt)(/)xdxdt—l—J J vr(wr + )¢ dxdt
0o J- —00 x(1)
oo px(t) 41
J I vrepdxdt + [ (010, + 1 (ws + Bt)p,)dt — J J Alve)" p dxdt
x(t) 0 J—oco
‘ J Avpe)"™ ¢ dxdt (4.22)
0
and
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Csase 4: v =-0.5 Statesy, w: 20000 Steps, t = 4.24
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x/t FIG. 28. Region | of Fig. 26. Region shifts
to R,C, in time. Parameters: y = —0.5,
A=-10,n=3,k=25,=10.
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Cage 4: v =-0.5 Statesv, w: 6200()0 Stveps,v t= 2.6885

5.5 p p N P 55
5 5
> 45 { > 45
4 { CU AU sL L 4
35 3.5
L) :
0 1000 2000 3000 4000 2400 2600 2800 3000 3200 3400
FIG. 29. Region Ill of Fig. 26. Region shifts
x/t X/t to S$1C, in time. Parameters: y = —0.5,
5 ’ A=-10,n=3,k=0.1,5=10.
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C§se 3: y=-2 States v, w: 230000 Steps, t = 2.1821
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Case 1: v =-2 States v, w: 20000 Steps, t = 2.824
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FIG. 32. Region IX of Fig. 4, 62-wave,
x/t X/t between Ss and S,. Parameters: y = —2,
A=-10,7=23,k=0.01,5 =10.
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to and above S;. Parameters: y = —2,
A= —-10,n=3,k=0.01,5=10.
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b oo px(t) oo x(t) 50 00
(ow, ) + <v(w + ptyw — Alpert)™ w, d)x> = J vpwr ¢, dxdt + J J v (wr + Bt)wipddxdt + J J vr(wr + Bt)wrep, dxdt

0 J-x 0 Jx(t)

+ J.Oo ro VRWRQ,dxdt + Joo(uhw(sﬁbt + w1 (ws + pt)wse,)dt
0

oo (x(t) Yyl 00 00 41
— J J A(vLekt)' wy ¢, dxdt — J J " A(URekt) Wre, dxdt. (4.23)
0 J-oo 0 Jx(t
We require
dx(t
% =o(t) = ws(t) + Pt (4.24)

and use Green’s theorem to get
(v, d,) + <v(w + pt) — A(vek’)v“, </>x> =— {)qubdx + (vL(wL + pt) — A(vLek‘)vH)(/)dt

_ ﬂ;_uRd)dx + (uR(wR +Bt) — A(uRek‘)°’“> ddt + r odp =0 (4.25)
0

and

(ow, d,) + <v(w + pryw — A(vekt)"’%lw7 ¢x> =- f{;vaLq,’)dx + (vL(wL + ptywp — A(vLekt)waL)d)dt

00

_ {) — vrWrpdx + <UR(WR + Bt)wg — A(vRek’)erle) odt + J oywsdp =0 (4.26)
0

If we also require
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dwy

> [v(w + Bt) — A(vek’)wl]

[]jump (1),

jump

(4.27)

d (0105) = [vw(w + Bt) — Aw(vekt)yﬂ}

7 [vw]jumpa(t)7

jump

then (v, w) satisfies the system in the sense of distributions. Similar to the # # k case, we return to the original variables p;, pr, 41, and ug, integrate
the equations, subtract one from the product of the other, and let g(¢) = J}; ;(s) ds to form the ODE:

K1)t
—(pr — pr)g ()g(t) +¢'(1) ((PL“L — prur)t — A (%) (P}Lurl - p?—l))

ek(v+1)t -1 N N
+(prur — prur)g(t) — (prui — prud)t +A(k(y+l) <p’L+1uL - p;;rlug) =0. (4.28)

When p; = p, this equation can be solved explicitly:

kt(V + 1)p“]/;Aek(y+l)t _ p”]r;Aek(y-%—l)t + A,Oz

PTE (4.29)

1
[OF) :E(VL+UR) -
When y # —1 and p; # py, the equation is solved numerically to be similar to Fig. 18. Furthermore, the overcompressible regions are based on a
simplified version of (4.17), so they match with the  # k case. They also shift identically since the regions are identical to the n # k case.
V. SINGULAR SOLUTION IN THE ORIGINAL VARIABLES

Now that the cases have been generally solved for, we ensure consistency with the original balance equations.

A.Casen # k
When we return to the original variables, the delta-shock solution is represented in the following way:

(PLekr7 <ML + i) eln=hr L>y x < x(t),

n—k n—k
(1) (x,t) = { (@()0(x — x(1)), us(t)), x = x(t), (5.1)
B . B
(pRekta (MR +m 6(7 kit _ m 3 X > X(t)v
where @ (t) = w, (t)e. Converting (4.6), (4.9), and (4.10), we get
dwl _—kt do — 7 —kt
7 =e E — Q)ke
ﬁ n— 14 ﬂ L (e
= (01— puld) + 1 (s + L) = P gy o
B\ wne ., PrB kYL (-t
— pr| ur +m e +m*A(PRe ) el (52)

producing
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dx
dr

k> (1) =[]yt (8) + [011] o — AL jumpe”™,

= u()7

do
dt

and

d _ _ _ .
a(wuﬁ) = nw(t)ué + ﬁw(t) - [:Du]jumpufS + [puz]jump - A[p’+1u]jumpem'

Substituting u and p into the delta-shock definition to verify that the solution satisfies the equations in the sense of distributions yields

(p, ds) + (pu— Ap'te @) = —(kp, d),
(pu, d,) + (pu? — Aup’™'e’ ) = —(npu, ¢) — (Bp, ¢).

Only the proof of the second equality is presented. The first can be shown to hold by a similar argument. Let

Q = <pu7 ¢t> + <pu2 - A”P7'+1€"': ¢x>7
—<'7lm7 ¢> - <ﬁp7 ¢>7

then

oo px(t) I B Rl p B
Q= J J e (<u + —) elr=hr _ —) dxdt + J J e ( <u + —) eln=hr _ —) dxdt
0 ) Pk n—k b 0 x(z)pR *Th—k n—k o

oo x(t) ﬁ ﬁ 00 (oo ﬁ /3
+ J J et < (u + ) 1Rt _ > dxdt + J J ekt ( (u + ) el1=hr _ ) dxdt
o ) L L n—k n—k ¢ <0 PR R — n—k ¢

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

_AJ~oo J~x(t) (p ekt)y+l y +ie(’77k)t _i ent¢ dth—AJOO J‘X(t) (p ekt)}'+l up + ﬂ e(ﬂ*k)t _ ﬁ e'ltqb dxdt
o ) LTk n—k)¢ %= o ) PR Tk n—k)

+ ro ous(¢, + usp,)dt

0

If we assume that 5 dx >0fort € RY (we employ a similar argument in the case & % < 0), then an inverse of x(t) exists. Thus,

00 (OO o0 t(x)
_ kt L (17—k)t_i) J Jt kt(( L) (177k)t_i)
= + dtdx + + dtd.
Q Jo Lx)pLe ((ML ﬂ—k)e n—k e o Jo PR\ T K¢ n—k ot
oo x(t) 2 00 00 2
N J J pLekt«uL b ) e P ) it + J J pRekt((uR LB ) (-t _ ﬁ ) .
0 )~ n—k (1) n—k

oo x(t) ﬁ ﬁ
_A kt)y+1 (n—k)t | _ 1t dxdt
[N R Rt B

—_A [ ot 7+1((u +L)e(rifk)tii>em xdxdthJm&md.
JO J )(PR ) A p—y ¢ . sd¢

x(t

After an integration by parts, we deduce

Q= —nf J pLe'“((uL + L) =k _ i) Pdtdx — ﬁj J pp e pdtdx
0 Jt(x) n—= k n—= k 0 Jt(x)

00 t(x) 00 pt(x) ﬁ B ﬁ 00
— kt _ kt =kt _ P
ﬁJO JO pre" pdtdx nJ J ore ((uR + - k)e 1 . k) odtdx + J N(t)p(x(t), t)dt,

0 Jo 0

where

(5.9)

(5.10)

(5.11)
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N = <p+ekt ((M * n f k> e = n é k) —p_e" (<u, + %) =Ryt _ ’
+ P_ekt<(u_ + . f k) eln=ht _ nifk) _ Ae'?f(p_ekt)"/'+ (( £ )
- P+ekt<<u+ + f k) 1=kt _ nifk) + Ae (p+e’“>H (( £ B k)

d by(V.6) _ _
jump dt( (t)ué) V= —Nwus *ﬂw(t).

= 7['0'”‘]jump’/“S + [pu2 - Aeﬂfp“/ﬂu}
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30%

(5.12)

We can easily conclude that Q = R as desired, so the equations are satisfied in the sense of distributions. Now consider the case given in Fig. 39. If
x = x(t) is a curve, as shown in Fig. 39, the earlier proof needs to be modified. If there are more points at which x’(¢) = 0, the proof is similar. The

proof can be modified by breaking up Q as follows:

o J~0 £(x) kt(( B ) (n—k)t B )¢dd JO J-oo kt<( B ) (n—k)t B )¢dd
= e up+—— e ——— tdx + e Up+—— )" " ———— tdx
I Pk n—k)" I Tk n—k)"

J0 Ju(x)

X0 (h(x) ﬁ ﬁ
kt (n—Fk)
+ Pre < (u + )
o Jo 8 : n—k n
+ pRekt < (uR + ﬁ > n—k)t _ ﬁ
X) n—
n—k)t ﬂ

0 Ju(
oo rx(t)
o Lo ((i5)

0 J—-oo

e
el
el

n—k

x(t)

00 x(t) . /)) B [)) 2 o0 OO /)) B
_ kt)y+1 P\ =kt _ P _ kt P (;7 k)t
I (O e L I I (R

. ¢dtdx+rojt2(x>p &t ( (4L ewwr__B_ b, dtdx
k)"t L L n—=k n—k)""

fk) ¢, dtdx + Jw J:C pre™ ( (uR + %) elr=ht n—fk) b, dtdx

2 00 oo B B \2
¢xdxdt+L J pRekt((uRqu)e("*k)tfm) ¢ dxdt

B

- k) ¢xdxdt+J ousdeg

(5.13)

After an integration by parts and change of variables by using (5.4), we once again conclude that Q = R. For a strictly overcompressive delta-

shock solution connecting a left state (p;, ur) and a right state (pg, ur), we require

ug — Appe" < us < up —Aple"(y +1). (5.14)
B. Case n=k
In this case, the delta-shock solution is represented in the following way:
(pLekta ug + ﬂt)v x < x(t)a
(psu)(x,t) = ¢ (@()o(x — x(t)),us5(t)),  x=x(t), (5.15)
(pRek[7uR+ﬁt)7 x> x(t)7
where @ (t) = w, (t)e¥. From (4.24) and (4.27), we get
d
d_’t‘ = a(t) = ug (5.16)
and
do _ do 7+1 41
d—tl =e k’E — ke = —(vp — vr)o(t) + pp(wr + ) — A(pLe) T~ plwr + ) + Alpre")’
da
=22 — ko) - [l + lou— 49",
dt jump Jump (5.17)
p (@e ™ (us — Pt)) = —(vpwr — vrwr)us + v (wp + Bt)wy, — Av) 0T — vg(wr + Bt)wr + Avk 0wy
d _ ) _
= 5 (@us) = ko (t)us — [pu]j,, us + [pu? — Ap™ eMul 0 + B,
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FIG. 39. Graph of an example where x'(t;) = 0.

respectively. All remaining proofs for n = k follow precisely the n # k
case, including those for the definitions of delta-shocks and overcom-
pressive regions.

VI. CONCLUSION

In this work, we studied the Riemann problem of a non-symmetric
Keyfitz-Kranzer type system with varying generalized Chaplygin gas.
While there is a substantial body of literature on the Chaplygin gas and,
more recently, on the varying Chaplygin gas (see Ref. 3), our study takes
a unique approach and combines various models. We address the open
question of whether classical and non-classical (delta-shocks) solutions
are possible in the presence of a power y in the density.

We provide an affirmative answer by deriving various regions in
four cases [depending on the sign of k(7 + 1) and whether 7 is less or
greater than —1], where the Riemann problem can be solved classically
(by using a one-shock, two-rarefaction, two-contact discontinuity) or
non-classically (by using a combination of classical waves and a delta-
shock, or solely a delta-shock). We observe that these regions shift in
time. Therefore, a Riemann problem with a given left and right state
can have different solutions over several time intervals. We also prove
that the singular solution (which involves a delta-shock) satisfies our
system in the sense of distributions. More generally, the results high-
light the challenge of solving the Riemann problem for a non-
autonomous system of balance laws (presence of source terms) due to
the lack of self-similarity and direct dependence on the time of the
wave curves, which causes region shifts.

Finally, our robust numerical evidence indicates the existence of
regions where the solution consists of a two-rarefaction followed by a
two-contact discontinuity (in that specific order), which we have not
verified analytically, and regions where the solutions consist of a com-
bination of a classical wave and a delta-shock. We verified the feasibil-
ity of the Local Lax-Friedrichs method for time-dependent solutions
by manipulating key parameters to study changes in time. Future work
will pursue these and other questions, such as uniqueness (see Refs.
32-35) and how these Riemann solutions can be used as building
blocks in solving general Cauchy problems.
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