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ABSTRACT

We consider a system of two balance laws of Keyfitz–Kranzer type with varying generalized Chaplygin gas, which exhibits negative pressure
and is a product of a function of time and the inverse of a power of the density. The Chaplygin gas is a fluid designed to accommodate
measurements for the early universe and late-time universal expansion while obeying the pressure–density–time relation. We produce an
explanation and description of the non-self-similar Riemann solutions, including the non-classical singular solutions. We also find that due
to a direct dependence on time, a change in the regions allowing for combinations of classical and non-classical singular solutions occurs;
therefore, a Riemann solution can have different solutions over several time intervals. Our findings are confirmed numerically using the
Local Lax–Friedrichs scheme.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0231413

I. INTRODUCTION

It is well accepted that dark energy plays a critical role in the cur-
rent expansion of the universe, in particular, the shift from deceleration
to acceleration in the current epoch. Connections between dark energy
and dark matter are still debated in the physics community; the
Chaplygin gas models are possible candidates for such connections,
exhibiting early behavior akin to dark matter and later behavior akin to
a cosmological constant. All Chaplygin gas models are unified in
describing dark energy through scalar fields with a negative pressure
and inverse relation density of the form p ¼ A=q, where A< 0. Of par-
ticular interest are the varying and generalized Chaplygin gas models.1,2

The former is characterized by the equation of state p ¼ BðtÞ=q.
Recently, Khurshudyan proposed the idea of setting BðtÞ ¼ Aegt , where
g and A< 0 are constants. He showed that this form describes the

quasi-exponential phase of the universe. Li3 built upon this work by
analyzing the system of balance laws formed from amathematical view-
point. The generalized Chaplygin gas is characterized by the equation
of state P ¼ Aqc, with c < 0.4 To the best of our knowledge, there has
been little research on a combination of both the varying and general-
ized model, denoted by the varying generalized Chaplygin gas (VGCG)
model.

This paper aims to study the solutions to the Riemann problem,
an initial value problem that consists of data containing two constant
states separated by a discontinuity at the origin, to a non-symmetric
Keyfitz–Kranzer type system:

qt þ ðqðu� pðqÞÞÞx ¼ kq;

ðquÞt þ ðquðu� pðqÞÞÞx ¼ gquþ bq;

(

(1.1)
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where A < 0; k; g; and b are non-zero physical constants. The inde-
pendent variables are time t 2 Rþ and position x 2 R; and the
dependent variables are density q and fluid velocity u. We restrict
attention to pðqÞ ¼ Aqcegt; with c < 0; (c 6¼ �1) and qðx; tÞ > 0.
We refer the reader to Li3 for the special case c ¼ �1. In particular, we
focus on the existence of singular solutions (delta or singular shocks),
which denote the mass’ concentration process and may be interpreted
as galaxies in the universe. The non-autonomous system of balance
laws (1.1) is of great interest mathematically and physically, as the sol-
utions are non-self-similar, and the shock and rarefaction-type curves
change over time. To the best of our knowledge, direct time depen-
dence resulting in changes in the areas where classical and non-
classical singular solutions exist has not been analyzed and confirmed
numerically before.

The singular solutions involve the so-called delta or singular
shocks, a more compressive generalization of the ordinary shock wave,
where at least one state variable develops an extreme concentration in
the form of a weighted Dirac delta function. They were initially discov-
ered by Keyfitz and Kranzer5–7 and later studied in greater depth by
Sever.8 Keyfitz and Kranzer5 worked with a strictly hyperbolic, genu-
inely nonlinear system derived from a one-dimensional model for iso-
thermal gas dynamics and observed that there is a large region where
the Riemann problem cannot be solved using shocks and rarefactions.
They produced approximate unbounded solutions that do not satisfy
the equation in the classical weak-solution sense. They also showed
that only the first component of the Rankine–Hugoniot relation is sat-
isfied, giving a unique speed r for which any given two states can be
joined. Later on, Schecter9 used ideas and methods associated with
dynamical systems with geometric flavor (blowing-up approach to
geometric singular perturbation problems that lack normal hyperbolic-
ity; see Fenichel10 and Jones11) to prove the existence of a self-similar
viscous solution. See also Hsu,12 Kalisch et al.,13 Keyfitz et al.,14–17

Levine et al.,18Mavromoustaki et al.,19 and references therein for other
solutions involving singular solutions.

The investigation of singular solutions was mainly focused on
when only one state variable develops the Dirac delta function, and the
others are functions with a bounded variation. We have other physi-
cally important systems with delta functions in more than one state
variable. For example, Mazzotti et al.20–22 numerically studied a model
with important applications in modern industry, which exhibits singu-
lar solutions arising in two-component chromatography, and both
components of the Rankine–Hugoniot relation are not satisfied.
Tsikkou23 considered this chromatography system, which exhibits a
change of type (hyperbolic and elliptic), performed linear changes in
the conserved quantities to obtain a simpler system, and gave a coher-
ent explanation and description of the unbounded solutions.

It is natural to then ask whether it is possible to predict singular
solutions to a system, find a physical interpretation of their significance,
explain the sense in which they satisfy the equation, find a better defini-
tion that will describe some broader collection of examples, and check
for connections between singular solutions, genuinely nonlinear sys-
tems, and change of type (conservation laws which are not everywhere
hyperbolic). The model under consideration serves this purpose in addi-
tion to the aforementioned physical reasons. From a mathematical
point of view, we aim to gain a broader perspective for solving Riemann
and Cauchy problems with large data globally using singular solutions
as additional building blocks (in possibly generalized schemes).

The system (1.1) is a special case of

qt þ ðqUðq; uÞÞx ¼ Fðq; uÞ;

ðquÞt þ ðquUðq; uÞÞx ¼ Gðq; uÞ;

(

(1.2)

where Uðq; uÞ ¼ f ðuÞ � pðqÞ is a nonlinear function and has various
applications depending on U; F; and, G. For example, the pressureless
Euler system and the macroscopic model for traffic flow by Aw and
Rascle24 correspond to F ¼ G ¼ 0; Uðq; uÞ ¼ u; and F ¼ G ¼ 0;
f ðuÞ ¼ u. The literature25,26 shows that the Riemann problem with
pressure laws depending only on the density and F¼ 0 has been well
studied. Motivated by Li3 and references therein, we consider system
(1.1) with initial data

ðq; uÞðx; 0Þ ¼
ðqL; uLÞ; if x < 0;

ðqR; uRÞ; if x > 0:

(

(1.3)

The paper is organized as follows: In Sec. II, we use the following
substitution:

q ¼ vekt; u ¼ wþ bt; (1.4)

q ¼ vekt ; u ¼ wþ
b

g� k

� �

eðg�kÞt �
b

g� k
; (1.5)

for g ¼ k and g 6¼ k, respectively, to transform (1.1) to a system of
conservation laws and present the numerical method used to verify
our analytical results. Section III gives a formal description of the clas-
sical Riemann solutions to the system of conservation laws. We use the
Rankine–Hugoniot relations to derive the shock curves through a left
state and the method of characteristics to get information about the
rarefaction-type curves. All the curves depend on time; therefore, vari-
ous regions where classical Riemann solutions (using one-shock, two-
contact discontinuity, and two-rarefaction) exist evolve in time. On the
other hand, the Riemann solution with the right state in region V con-
sists of delta-shocks. In Sec. IV, we prove that the singular solution sat-
isfies (1.1) in the sense of distributions and we discuss the region time
evolution. In Sec. V, we construct the singular solution to the Riemann
problem for the original system (1.1), and finally, in Sec. VI, we present
the conclusion.

II. PRELIMINARIES

A. Analysis preliminaries

The problem is best split into two cases: g 6¼ k and g ¼ k. For the
g 6¼ k case, the change of variables in (1.5) with the restriction v> 0 is
used. With this, we rewrite (1.1) into the resulting conservative system

vt þ veðg�kÞt wþ
b

g� k

� �

� v

b

g� k
�AðvektÞcþ1eðg�kÞt

� �

x

¼ 0;

v wþ
b

g� k

� �� �

t

þ

"

v wþ
b

g� k

� �2

eðg�kÞt

� wþ
b

g� k

� �

eðg�kÞtAðvektÞcþ1�
b

g� k
wþ

b

g� k

� �

v

#

x

¼ 0:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(2.1)

For the other case, g ¼ k, the transformations in (1.4) with restriction
v> 0 are used. This results in
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vt þ vðwþ btÞ � AðvektÞcþ1
� �

x ¼ 0;

ðvwÞt þ vðwþ btÞw� AðvegtÞcþ1w
� �

x ¼ 0:

(

(2.2)

Due to (1.3), the initial conditions for both systems are

ðv;wÞðx; 0Þ ¼ ðq; uÞðx; 0Þ ¼
ðvL;wLÞ; if x < 0;

ðvR;wRÞ; if x > 0;

(

¼
ðqL; uLÞ; if x < 0;

ðqR; uRÞ; if x > 0:

(

(2.3)

B. Numerical preliminaries

The Local Lax–Friedrichs (LLF) scheme was utilized for its sim-
plicity and non-oscillatory behavior. Following the scheme, the spatial
and temporal domains were discretized. Neumann boundary condi-
tions were imposed to preserve the left and right states of the solution
at the end points. In particular, the ðnþ 1Þth temporal solutions were
calculated from the neighboring nth solutions and fluxes following
from the equation:

Unþ1
j ¼

1

2
ðUn

j�1 þ Un
jþ1Þ þ

CFL

2k
ðFn

jþ1 � Fn
j�1Þ; (2.4)

where CFL represents a numerical stability condition for the LLF
scheme given by the inequality

Dt

Dx
k �

1

2
(2.5)

in which k represents the maximum wave speed given by the system
eigenvalues. By construction Dt ¼ CFL

k
, thus automatically satisfying

the CFL condition with Dx ¼ 1. Also note satisfying the CFL condi-
tions guarantees that the LLF scheme converges to the physically cor-
rect weak solution satisfying entropy conditions.27 Additionally, our
selection of parameters optimized our simulation by increasing preci-
sion and eliminating potentially oscillatory and unstable behavior. In
particular, we imposed the following conditions:

• jAj � 10 as the magnitude of A can be shown to be directly
related to the size of the regions. Note that for large magnitudes
of A, some regions become difficult to access. Alternatively, too
small of a magnitude for case 1 results in regions that are too
small to be insightful. It was imperative to examine the behavior
of the regions graphically beforehand to ensure selected points
tested the desired behaviors.

• jkj ¼ 0:01 or jkj ¼ 0:6 due to the term ekt present in C2 and R2.
The parameter k controls the rate at which the curves change in

time and, therefore, the regions. The former leads to curves that
undergo minimal change in time, allowing insight into the initial
combinations to enter regions. The latter approximates long-
term behavior in time, modeling regional collapse. Note that even
for jkj ¼ 0:6, regional collapse happens within the numerical
temporal domain.

• While g alone does not have a strong effect on region behavior,
we require g� k > 0 due to the factor of eðn�kÞt in k1 and k2. If
g� k < 0; limt!1 eðn�kÞt ¼ 0, causing k1 ¼ k2 as t ! 1. We
thus lose hyperbolicity of our regions, resulting in the breakdown
of our implementation to unexpected behavior.

Note that we only discuss A; g, and k here, as b has minimal effect on
qualitative numerical results.

To further prevent numerical instability, the change of variables
y ¼ vwþ v

b
g�k

was utilized in our implementation. Thus, the vector
of conserved quantities is H ¼ ½v y�T and the flux is written directly
in terms of y. We then converted y back to w with each iteration.

Note that for all numerical figures, UL ¼ ½vL wL�
T and

UR ¼ ½vR wR�
T . See also LeVeque et al.28,29 for additional details on

the LLF scheme.

III. CONTACT DISCONTINUITY, SHOCK, AND
RAREFACTION

This section is broken into two cases: g 6¼ k and g ¼ k. Each case
begins by finding the Hugoniot locus, using the Rankine–Hugoniot
condition to find the set of points in state space that may be joined to a
fixed left state by a shock satisfying the Lax shock admissibility crite-
rion or contact discontinuity. In addition, using the method of charac-
teristics, we show that one-rarefactions cannot exist and derive
information about the two-rarefactions. Next, numerical evidence of
the latter is presented and analyzed. Finally, the Hugoniot locus and
rarefaction-type curve are plotted together, splitting the (v, w) state
space into regions depending on c and k. Note that numerical evidence
is only presented for the g 6¼ k case due to the regions being identical
in both cases.

A. g 6¼ k case

1. Hyperbolicity, linear degeneracy, and genuine

nonlinearity

(2.1) is rewritten as

Ht þ Gx ¼ 0; (3.1)

where

H ¼

v

vwþ v

b

g� k

2

4

3

5;

G ¼

veðg�kÞt wþ
b

g� k

� �

� v

b

g� k
� AðvektÞcþ1eðg�kÞt

v wþ
b

g� k

� �2

eðg�kÞt � wþ
b

g� k

� �

eðg�kÞtAðvektÞcþ1 �
b

g� k
wþ

b

g� k

� �

v

2

6

6

6

6

4

3

7

7

7

7

5

:

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

(3.2)
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To check whether our system is hyperbolic, we need

DH ¼
1 0

wþ
b

g� k
v

2

4

3

5;

DG ¼

eðg�kÞt wþ
b

g� k

� �

�
b

g� k
� AðvektÞceðg�kÞtðcþ 1Þ veðg�kÞt

wþ
b

g� k

� �2

eðg�kÞt �
b

g� k
wþ

b

g� k

� �

�Aðcþ 1ÞðvektÞc wþ
b

g� k

� �

eðg�kÞt �eðg�kÞtAðvektÞcþ1 �
bv

g� k

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

;

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(3.3)

where D denotes the differential ½@=@v; @=@w�. Solving detðDG
�kDHÞ ¼ 0 to obtain the eigenvalues of the system yields

k1 ¼
�b

g� k
þ wþ

b

g� k
�
A

v

ðvektÞcþ1ðcþ 1Þ

� �

eðg�kÞt ;

k2 ¼
�b

g� k
þ wþ

b

g� k
�
A

v

ðvektÞcþ1

� �

eðg�kÞt :

8

>

>

>

<

>

>

>

:

(3.4)

The corresponding eigenvectors are

r1 ¼
1

0

" #

;

r2 ¼
1

Ac

v
2
ðvektÞcþ1

2

4

3

5:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(3.5)

Here we note that A< 0 and c < 0 gives k1 < k2. Furthermore,
observe that

Dk1 � r1 ¼
A

v
2
ðcþ 1ÞðvektÞcegtð�vcÞ 6¼ 0;

Dk2 � r2 ¼
A

v
2
ðvektÞcegtð�vcÞ þ eðg�kÞt Ac

v
2
ðvektÞcþ1 ¼ 0:

8

>

>

>

<

>

>

>

:

(3.6)

Hence, the one- and two-characteristic families are genuinely nonlin-
ear and linearly degenerate, respectively.

2. Hugoniot locus through a left state (v2;x2): The Lax

shock admissibility criterion

Let rðtÞ ¼ x0ðtÞ be the propagation speed. Using the Rankine–
Hugoniot jump conditions,

�rðtÞ v½ �jumpþ veðg�kÞt wþ b
g�k

� 	

� v
b

g�k�AðvektÞcþ1eðg�kÞt
h i

jump
¼ 0;

�rðtÞ vwþ vb
g�k

h i

jump
þ

�

v wþ b
g�k

� 	2

eðg�kÞt

� wþ b
g�k

� 	

eðg�kÞtAðvektÞcþ1� b
g�k wþ b

g�k

� 	

v

�

jump

¼ 0;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(3.7)

where ½��jump denotes the jump across the shock, we conclude that the
states that can be connected to ðv�;w�Þ by a one-shock or a two-
contact discontinuity lie on the curves

S1ðv�;w�Þ : w ¼ w� (3.8)

or

C2ðv�;w�Þ : w ¼ w� �
A

v�
ðv�e

ktÞcþ1 þ
A

v

ðvektÞcþ1; (3.9)

respectively. These two curves intersect at ðv�;w�Þ. By (3.7), we get

r1ðtÞ ¼ w� þ
b

g� k

� �

eðg�kÞt �
b

g� k

�Aeðg�kÞtekðcþ1Þt v
cþ1� v

cþ1
�

v� v�
;

r2ðtÞ ¼ k2ðv;wÞ ¼ k2ðv�;w�Þ:

(3.10)

For the one-shock to satisfy the Lax shock admissibility criterion, we
require

k1ðv�;w�Þ > r1 > k1ðv;wÞ: (3.11)

Let h1ðvÞ ¼ v
cþ1 þ cvcþ1

� � ðcþ 1Þvvc� and h2ðvÞ ¼ �cvcþ1

�v
cþ1
� þ ðcþ 1Þvcv�; then (3.11) is equivalent to

h1ðvÞ < 0; h2ðvÞ > 0 when v > v�;

h1ðvÞ > 0; h2ðvÞ < 0 when v < v�;

(

(3.12)

which hold when

�1 < c < 0; c < �1;

respectively. This can be easily checked by studying the first and sec-
ond derivatives of h1 and h2. Therefore, the admissible parts of the
one-shock curve consist of points with v > v� when �1 < c < 0 and
points with v < v� when c < �1.

3. One-rarefaction-type curve through a left state

(v2;x2)

Recall Eqs. (3.4) and (2.1). Differentiating (2.1) and then simplify-
ing with (3.4) yield

wt þ k2wx ¼ 0;

vt þ k1vx þ vwxe
ðg�kÞt ¼ 0:

(3.13)
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We rewrite these equations in matrix form to get

vt

wt

" #

þ
k1 veðg�kÞt

0 k2

" #

vx

wx

" #

¼ 0: (3.14)

Note that the eigenvalues and eigenvectors of the matrix A

¼
k1 ve g�kð Þt

0 k2

� �

are the same as (3.4) and (3.5).

The matrix A is diagonalized in the form PDP�1 where

D ¼
k1 0

0 k2

" #

; (3.15)

P ¼
1 v

2

0 cA vektð Þcþ1

" #

; (3.16)

and

P�1 ¼

1
�v

2

cAðvektÞcþ1

0
1

cAðvektÞcþ1

2

6

6

6

4

3

7

7

7

5

: (3.17)

These matrices are now used to transform Eq. (3.14) into

P�1 vt

wt

" #

þ DP�1 vx

wx

" #

¼ 0; (3.18)

which yields

wt þ k2wx ¼ 0;

vt þ k1vx �
v
2

cAðvektÞcþ1 ðwt þ k1wxÞ ¼ 0:
(3.19)

This implies that dw
dt
¼ 0 along two-characteristics, that is dx

dt
¼ k2; and

thus w is constant. On the other hand, along one-characteristics where
dx
dt
¼ k1; we get

dw

dt
¼ Acvc�1ektðcþ1Þ dv

dt
: (3.20)

As discussed above, when we consider a one-rarefaction-type wave
connecting the constant left state ðv�;w�Þ with another state (see
Fig. 1 as an illustrative example), w would be constant and equal to
w� in directions given by dx

dt
¼ k2:

Therefore, w would stay constant throughout this wave and by
(3.20) v would also stay constant since dw

dt
¼ 0 implies dv

dt
¼ 0. By the

method of characteristics, we thus conclude that a one-rarefaction
does not exist.

4. Two-rarefaction-type curve through a left state

(v2;x2)

We note that for numerical figures the left column displays all 20
iterations, each taking 1000 steps, while the right column displays the
latest iteration. Data were renormalized every 100 steps within an error
bound of 10�7 to remove illusory points. Later iterations have a thicker
line width. The figures are provided to justify the existence of two-rare-
faction-type waves numerically. Sections IIIA 5, IIIA 6, and III B will
discuss the regions and cases mentioned in the figure captions.

From testing various points, it was found that R2 lies tightly along
C2. Numerically, we observed strictly R2C2 (the Riemann solution con-
sists of a two-rarefaction followed by a two-contact discontinuity)
when R2 is present for all points tested, but cannot confirm this analyt-
ically. Note that the change in w during R2 is extremely small, appear-
ing zero graphically.

With numerical assurance for a R2 rarefaction, we proceed to
analyze its behavior. From (3.20), we can measure the rate of change of
w with respect to t on the curve. Since the system is non-autonomous,
it is difficult to find the two-rarefaction-type curve explicitly. First, we
note that a two-rarefaction R2ðv�;w�Þ lies above C2ðv�;w�Þ; to con-
nect a left state ðv�;w�Þ with another state (v, w) without crossing
characteristics, we require k2ðv�;w�Þ < k2ðv;wÞ, ensuring diverging
characteristics, as is expected for a rarefaction. To pinpoint the location
of R2, we differentiate (3.9) along

dx
dt
¼ k1 to get

dw

dt










acrossC2

¼ Acvc�1ektðcþ1Þ dv

dt
þ Akðcþ 1Þektðcþ1Þðvc � v

c
�Þ:

(3.21)

Note that since a rarefaction-type wave R2 is a smooth solution, we can
use (3.20)

dw

dt










acrossR2

¼ Acvc�1ektðcþ1Þ dv

dt
(3.22)

to study the behavior along one-characteristics. Consequently,

dw

dt










acrossC2

< Acvc�1ektðcþ1Þ dv

dt
when kðcþ 1Þ > 0;

v < v� or kðcþ 1Þ < 0; v > v�;

dw

dt










acrossC2

> Acvc�1ektðcþ1Þ dv

dt
when kðcþ 1Þ > 0;

v > v� or kðcþ 1Þ < 0; v < v�:

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

(3.23)

FIG. 1. An illustration of the characteristics for a hypothetical one-rarefaction-type
wave.
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Upon comparing the rates of change of w with respect to t (note that
the rates are positive or negative when v < v� or v > v�, respectively)
on the two-waves we conclude that when kðcþ 1Þ < 0 the two-
rarefaction-type curve R2 lies above the two-contact discontinuity C2

when v < v�. On the other hand, when kðcþ 1Þ > 0, the two-
rarefaction-type curve R2 lies above C2 when v > v�:

Finally, with the assumption that the R2 curve would follow
closely above the C2 curve, integration of (3.20) will give a non-explicit
equation for R2 as

w ¼ w� þ Avcektðcþ1Þ � Avc�e
kt0ðcþ1Þ �

ðt

t0

v
cAkðcþ 1Þektðcþ1Þdt;

(3.24)

which is in line with the numerical analysis (see Figs. 2 and 3).
These together yield a rough outline of where the R2 curve is

located, given by the dotted line in Figs. 4–7. This is based off the simi-
larity of (3.24) to the equation for C2, as well as the necessary high
proximity to C2 to observe R2C2 instead of S1R2 numerically. A full
derivation of this equation is a topic of future work.

All results and analysis of the R2 are expected to hold true for the
g ¼ k case, due to the inequalities found for the g 6¼ k case reappear-
ing in the former.

5. Regions for the solution of the Riemann problem

The curves of our one-shock S1 and two-contact discontinuity C2

are given by (3.8) and (3.9).
The regions are defined further by

Sd: w ¼ wL þ
A

v

ðvektÞcþ1; (3.25)

representing the limit of the second curve (3.9) as vL ! 1.
Additionally, we have

So: w ¼ wL þ
A

v

ðvektÞcþ1 �
A

vL
ðcþ 1ÞðvLe

ktÞcþ1; (3.26)

representing the max bound of the overcompressive region, which is
explained in more detail in Sec. IVA1. R2 and all other unknown
curves are represented by dotted lines in the (v, w) plane.

We distinguish four cases:

• Case 1, when c < �1; k > 0; given by Fig. 4,
• Case 2, when �1 < c < 0; k < 0, given by Fig. 5,
• Case 3, when c < �1 and k< 0 given by Fig. 6,
• Case 4, when �1 < c < 0 and k> 0, given by Fig. 7.

For each case, various regions exist that lead to classical and non-
classical solutions to the Riemann problem. Specifically, we have:

• A one-shock followed by a two-contact discontinuity. The for-
mer, given by x ¼ x1ðtÞ; connects ðvL;wLÞ and a middle state
ðvM ;wMÞ; and the latter, given by x ¼ x2ðtÞ; connects the middle
state with the right state ðvR;wRÞ. The middle state can be found
explicitly by using (3.8) and (3.9):

wM ¼ wL; vMðtÞ ¼ vRe
ktðcþ1Þ þ

wL � wR

A

� �1=c

e�ktðcþ1Þ=c:

In addition, by (3.10), we can find the wave speeds

FIG. 2. Region VII in Fig. 4. S1R2.
Parameters: c ¼ �2; A ¼ �10; g ¼ 3;
k ¼ 0:01;b ¼ 10.
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dx1

dt
¼ wL þ

b

g� k

� �

eðg�kÞt �
b

g� k

�Aeðg�kÞtektðcþ1Þ vMðtÞ
cþ1 � v

cþ1
L

vMðtÞ � vL
;

dx2

dt
¼

�b

g� k
þ wR þ

b

g� k
�

A

vR
ðvRe

ktÞcþ1

� �

eðg�kÞt :

(3.27)

This solution is possible when the right state is in region VI
(case 1), given by Fig. 8, or region VII (case 3), given by Fig. 9,
and region III or IV (cases 2 and 4) (see Figs. 10–13). The regions

are bounded by S1ðvL;wLÞ and C2ðvL;wLÞ or Sd and C2ðvL;wLÞ,
respectively.

• A one-shock followed by a two-rarefaction. The solution is possi-
ble when the right state is in region VII (case 1), given by Fig. 14,
or region VI (case 3), given by Fig. 15. The regions are bounded
by S1ðvL;wLÞ and R2ðvL;wLÞ.

• A two-rarefaction followed by a two-contact discontinuity, which
is possible when the right state is in region I (cases 2 and 4),
given, for example, by Figs. 16 and 17. The region is bounded by
C2ðvL;wLÞ and R2ðvL;wLÞ.

FIG. 3. Region VIII in Fig. 4. R2C2.
Parameters: c ¼ �7; A ¼ �500; g ¼ 3;
k ¼ 0:01;b ¼ 10.

FIG. 4. Regions for c < �1 and k> 0. FIG. 5. Regions for �1 < c < 0 and k< 0.
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• A two-rarefaction followed by a two-contact discontinuity or vice
versa. The region is bounded by C2ðvL;wLÞ and R2ðvL;wLÞ. This
is possible when the right state is in region VIII (case 1 and
case 3) or region II (case 2 and case 4). Numerically, we find that
the two-rarefaction comes first in region VIII in Fig. 4 and expect
the same for region VIII in Fig. 6. However, due to the growth of
C2 into a vertical line during the region shift discussed later, pick-
ing a point adequately close to C2 to observe behavior causes the
point to almost immediately leave the region, making it impossi-
ble to verify. Further work needs to be done to tell if the two-
rarefaction or the two-contact discontinuity occurs first.

• A delta-shock that is overcompressible and possible when the right
state is in the overcompressive subset of region V (cases 1–4).
The region is bounded by either Sd (cases 2 and 4) or So (cases 1
and 3). Overcompressibility will be discussed in Sec. IVA1.

• Either a delta-shock followed by a two-wave or a two-contact dis-
continuity followed by a delta-shock. This is possible in region IX
(cases 1 and 3), which is bounded by C2ðvL;wLÞ and So, and in the
non-overcompressive subset of region V in cases 1–4. More detailed
analysis of regions where we expect a combination of a delta-shock
and classical solutions will be the subject of future work.

6. Numerical evidence on the various regions

Certain additional restrictions were placed on the numerical con-
stants for the LLF method. We discuss only A; g, and k here, as b has
minimal effect on qualitative behavior.

The magnitude of A is directly related to the size of the regions.
We chose jAj � 10. Note that for large values of A, some regions
become difficult to access numerically. Due to the ekt term present in
C2 and R2, the parameter k controls the rate at which the curves change
in time and therefore the regions. In this work, we chose jkj ¼ 0:01 or
jkj � 0:6. The former leads to curves that undergo minimal change in
time, allowing insight into the initial combinations to enter regions.
The latter approximates long-term behavior in time, modeling regional
shift over time. While g alone does not have a strong effect on region
behavior, we require g� k > 0 due to the factor of eðg�kÞt in k1 and
k2. If g� k < 0; limt!1 eðg�kÞt ¼ 0, causing k1 ¼ k2 in infinite time.
We would then lose strict hyperbolicity of our regions, which is incom-
patible with our implementation and leads to unexpected results. Here,
we present the numerical evidence for how the Riemann problem is
solved for four cases involving a given left state and a right state in var-
ious regions. For case 1, region VIII, refer back to Fig. 3. We do not
show region VIII (cases 1 and 3) and region II (cases 2 and 4) here,
which is reached by R2C2, since picking an appropriate point is diffi-
cult due to the difference between R2 and C2 being extremely small.
We identify S1 by its steep slope and lack of movement in w. R2 is clas-
sified by a more gradual slope in combination with a “fanning” effect
over all iterations. C2 has some characteristics of both, often displaying
a more gradual slope but with a consistent lack of fanning.

B. g5k case

1. Hyperbolicity, linear degeneracy, and genuine

nonlinearity

Equation (2.2) can be rewritten as

Ht þ Gx ¼ 0; (3.28)

where G andH are taken to be

H ¼
v

vw

" #

;

G ¼
vðwþ btÞ � AðvektÞcþ1

vwðwþ btÞ � AwðvektÞcþ1

" #

:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(3.29)

To check, once again, whether our system is hyperbolic, detðDG
�kDHÞ ¼ 0 is solved, to find the eigenvalues

k1 ¼ ðwþ btÞ � Aðcþ 1Þvcektðcþ1Þ;

k2 ¼ ðwþ btÞ � Avcektðcþ1Þ;

(

(3.30)

with the corresponding eigenvectors

FIG. 6. Regions for c < �1 and k< 0.

FIG. 7. Regions for �1 < c < 0 and k> 0.
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r1 ¼
1
0

� �

;

r2 ¼
1

Acvc�1ektðcþ1Þ

� �

:

8

>

>

>

<

>

>

>

:

(3.31)

Additionally,

Dk1 � r1 ¼ �Acðcþ 1Þvc�1ektðcþ1Þ 6¼ 0;

Dk2 � r2 ¼ �Acvcektðcþ1Þ þ Acvc�1ektðcþ1Þ ¼ 0:

(

(3.32)

FIG. 8. Region VI of case 1, S1C2.
Parameters: c ¼ �2; A ¼ �10; g ¼ 3;
k ¼ 0:01;b ¼ 10.

FIG. 9. Region VII of case 3, S1C2.
Parameters: c ¼ �2; A ¼ �10; g ¼ 3;
k ¼ �0:01;b ¼ 10.
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FIG. 10. Region III of case 2, S1C2.
Parameters: c ¼ �0:5; A ¼ �10; g ¼ 3;
k ¼ �0:01; b ¼ 10.

FIG. 11. Region IV of case 2, S1C2.
Parameters: c ¼ �0:5; A ¼ �10; g ¼ 3;
k ¼ �0:01; b ¼ 10.
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FIG. 12. Region III of case 4, S1C2.
Parameters: c ¼ �0:5; A ¼ �10; g ¼ 3;
k ¼ 0:01;b ¼ 10.

FIG. 13. Region IV of case 4, S1C2.
Parameters: c ¼ �0:5; A ¼ �10; g ¼ 3;
k ¼ 0:01;b ¼ 10.
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FIG. 14. Region VII of case 1, S1R2.
Parameters: c ¼ �2; A ¼ �10; g ¼ 3;
k ¼ 0:01;b ¼ 10.

FIG. 15. Region VI of case 3, S1R2.
Parameters: c ¼ �2; A ¼ �10; g ¼ 3;
k ¼ �0:01;b ¼ 10.
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FIG. 16. Region I of case 2, R2C2.
Parameters: c ¼ �0:5; A ¼ �10; g ¼ 3;
k ¼ �0:01; b ¼ 10.

FIG. 17. Region I of case 4, R2C2.
Parameters: c ¼ �0:5; A ¼ �10; g ¼ 3;
k ¼ 0:01;b ¼ 10.
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Similar to the g 6¼ k case, the one- and two-characteristic families are
genuinely nonlinear and linearly degenerate, respectively.

2. Hugoniot locus through a left state ðv2;x2Þ: The Lax

shock admissibility criterion

Once again, the Rankine–Hugoniot jump conditions (3.7) are
checked and get

�rðtÞ v½ �jump þ vðwþ btÞ � AðvektÞcþ1
� �

jump ¼ 0;

�rðtÞ vw½ �jump þ vwðwþ btÞ � AwðvektÞcþ1
� �

jump ¼ 0;

8

<

:

(3.33)

resulting in

S1ðv�;w�Þ : w ¼ w�;

C2ðv�;w�Þ : w ¼ w� �
A

v�
ðv�e

ktÞcþ1 þ
A

v

ðvektÞcþ1:

8

>

>

>

<

>

>

>

:

(3.34)

Therefore, the states that can be connected to ðv�;w�Þ by a one-shock
or a two-contact discontinuity lie on the curves (3.34). By (3.33),

r1ðtÞ ¼ w� þ bt � Aektðcþ1Þ v
cþ1 � v

cþ1
�

v� v�
; (3.35)

r2ðtÞ ¼ k2ðv;wÞ ¼ k2ðv�;w�Þ (3.36)

are obtained. Again, (3.11) is checked to ensure that the Lax shock
admissibility criterion is satisfied. The first and second inequalities give

v
c
�ðcþ 1Þ >

v
cþ1 � v

cþ1
�

v� v�
(3.37)

and

v
cðcþ 1Þ <

v
cþ1 � v

cþ1
�

v� v�
; (3.38)

respectively. Both are equivalent to the corresponding inequalities for
the case g 6¼ k. Thus, S1 exists for v > v� if �1 < c < 0 and for
v < v� if c < �1. The rest of the analysis (non-existence of one-
rarefactions, existence and location of two-rarefactions, regions, etc.) is
identical to the n 6¼ k case and will be omitted for brevity.

IV. DELTA-SHOCKS

In the overcompressibe subset of region V, there is no solution
that is piecewise smooth, and bounded. Therefore, in order to establish
existence in a space of measures from a mathematical perspective, a
solution containing a weighted d-measure (or d-shock) supported on a
curve needs to be constructed (see Refs. 30 and 31). For these singular
solutions, we need to consider physical constraints. If w becomes
unbounded, the system’s velocity must approach infinity. However,
this scenario is not physically possible, as we know that the speed of
light bounds the velocity of all particles in the universe. Furthermore,
it is also not physically feasible for both v and w to be unbounded, as it
implies a finite amount of mass suddenly becoming infinite and then
returning to a finite value. Therefore, the only possible case is for v to
be unbounded. Assuming infinite density in situations where the fluid
volume is nearly infinitesimal is physically reasonable. We have also

observed numerically the presence of the Dirac delta measure in v
only.

A. g 6¼ k case

We define a two-dimensional weighted d-measure xðsÞdS sup-
ported on a smooth curve S ¼ fðxðsÞ; tðsÞÞ: c � s � dg by

hxð�ÞdS;wð�; �Þi ¼

ðb

a

xðtðsÞÞwðxðsÞ; tðsÞÞ ds

for all w 2 C1
0 ðR�RþÞ:

Following the above reasoning, the definition of solutions in the
sense of distributions is as follows.

Definition: A pair (v, w) are known as a delta-shock type solu-
tion to the system with Riemann data in the sense of distributions
if there exists a smooth curve S ¼ fðxðtÞ; t: 0 � t < 1g and a
weight x1 2 C1ðSÞ such that v and w are represented in the follow-
ing way

ðv;wÞðx; tÞ ¼ ðv0ðx; tÞ þ x1ðtÞdS;w0ðx; tÞÞ;

¼

ðvL;wLÞ; x < xðtÞ;

ðvdðtÞ þ x1ðtÞdðx � xðtÞÞ;wdðtÞÞ; x ¼ xðtÞ;

ðvR;wRÞ; x > xðtÞ;

8

>

>

>

<

>

>

>

:

(4.1)

where dð�Þ is the standard Dirac measure (therefore w is v-measurable,

and for example, v wþ b
g�k

� 	

can be understood as a Radon measure)

and satisfy (2.1) in the sense of distributions:

hv;/tiþ v wþ
b

g�k

� �

eðg�kÞt �
vb

g�k
�AðvektÞcþ1eðg�kÞt ;/x

� �

¼ 0;

(4.2)

v wþ
b

g� k

� �

;/t

� �

þ v wþ
b

g� k

� �2

eðg�kÞt

*

� wþ
b

g� k

� �

eðg�kÞtAðvektÞcþ1 �
b

g� k
wþ

b

g� k

� �

v;/x

�

¼ 0;

(4.3)

for every / 2 C1
0 ðR�RþÞ; where

v;wh i ¼

ð1

0

ð1

�1

v0w dx dt þ x1ðtÞdS;wh i;

v wþ
b

g� k

� �

;w

� �

¼

ð1

0

ð1

�1

v0 w0 þ
b

g� k

� �

w dx dt

þ x1ðtÞ wd tð Þ þ
b

g� k

� �

dS;w

� �

;

AðvektÞcþ1eðg�kÞt ;w

 �

¼

ð1

0

ð1

�1

Aðv0e
ktÞcþ1eðg�kÞtw dx dt;

since c < 0. The remaining integrals in (4.2) and (4.3) are similar.
Therefore, (4.2) and (4.3) give

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 096132 (2024); doi: 10.1063/5.0231413 36, 096132-14

Published under an exclusive license by AIP Publishing

 2
6
 S

e
p
te

m
b
e
r 2

0
2
4
 1

4
:3

7
:3

5



ð1

0

ðx tð Þ

�1

vL/t þ vL wL þ
b

g� k

� �

e g�kð Þt � vL
b

g� k
� Av

cþ1
L ek cþ1ð Þte g�kð Þt

� �

/x

� �

dxdt

þ

ð1

0

ð1

x tð Þ
vR/t þ vR wR þ

b

g� k

� �

e g�kð Þt � vR
b

g� k
� Avcþ1

R ek cþ1ð Þte g�kð Þt

� �

/x

� �

dxdt

þ

ð1

0

x1/t þ x1 wd þ
b

g� k

� �

e g�kð Þt � x1
b

g� k

� �

/x

� �

dt ¼ 0 (4.4)

and

ð1

0

ðx tð Þ

�1

vL wLþ
b

g� k

� �

/t þ vL wLþ
b

g� k

� �2

e g�kð Þt �
b

g� k
vL wL þ

b

g� k

� �

�Av
cþ1
L ek cþ1ð Þt wLþ

b

g� k

� �

e g�kð Þt

 !

/x

 !

dxdt

þ

ð1

0

ð1

x tð Þ
vR wRþ

b

g� k

� �

/t þ vR wRþ
b

g� k

� �2

e g�kð Þt �
b

g� k
vR wRþ

b

g� k

� �

�Avcþ1
R ek cþ1ð Þt wRþ

b

g� k

� �

e g�kð Þt

 !

/x

 !

dxdt

þ

ð1

0

x1 wd þ
b

g� k

� �

/t þ x1 wd þ
b

g� k

� �2

e g�kð Þt �
b

g� k
x1 wd þ

b

g� k

� �� �

 !

/x

!

dt ¼ 0;

0

@ (4.5)

respectively. To be able to integrate along x ¼ xðtÞ, we require

dxðtÞ

dt
¼ rðtÞ ¼ xd tð Þ þ

b

g� k

� �

e g�kð Þt �
b

g� k
: (4.6)

We apply Green’s Theorem, to write (4.4) and (4.5) as

ð1

0

� v½ �jumprþ v wþ
b

g� k

� �

e g�kð Þt �
vb

g� k
� A vektð Þcþ1

e g�kð Þt

� �

jump

�
dx1

dt

 !

/dt ¼ 0 (4.7)

and

ð1

0

� v wþ
b

g� k

� �� �

jump

rþ wþ
b

g� k

� �2

ve g�kð Þt � wþ
b

g� k

� �

e g�kð ÞtA vektð Þcþ1
�

b

g� k
wþ

b

g� k

� �

v

" #

jump

 

�
d

dt
x1 xd þ

b

g� k

� �� �

!

/dt ¼ 0; (4.8)

where ½ � �jump ¼ �L � �R. Thus, if we also require

dx1

dt
¼ � v½ �jumprþ v wþ

b

g� k

� �

e g�kð Þt �
vb

g� k
� A vektð Þcþ1

e g�kð Þt

� �

jump

(4.9)

d

dt
x1 xd þ

b

g� k

� �� �

¼� v wþ
b

g� k

� �� �

jump

rþ wþ
b

g� k

� �2

ve g�kð Þt � wþ
b

g� k

� �

e g�kð ÞtA vektð Þcþ1
�

b

g� k
wþ

b

g� k

� �

v

" #

jump;

(4.10)

then (v, w) satisfies the system in the sense of distributions, that is (4.2) and (4.3) hold for every test function /. It should be noted that there is a
Rankine–Hugoniot deficit in both components due to (4.9) and (4.10), just like in the chromatography model by Mazzotti et al.20–22 To get more
information about x1;wd and x tð Þ [with x 0ð Þ ¼ 0; x1 0ð Þ ¼ 0], we return to the original variables qL ¼ vLð Þ; qR ¼ vRð Þ; uL ¼ wLð Þ; uR ¼ wRð Þ;
and substitute (4.6) into (4.9) to get

dx1

dt
¼ �wde

g�kð Þt q½ �jump
þ e g�kð Þt qu½ �jump

� A v
cþ1½ �jumpe

g�kð Þtekt cþ1ð Þ: (4.11)

We then substitute (4.11) into (4.10) to obtain

d

dt
x1xdð Þ ¼ �wde

g�kð Þt qu½ �jump
þ e g�kð Þt qu2

� �

jump � A uvcþ1½ �jumpe
g�kð Þtekt cþ1ð Þ: (4.12)

Integration of (4.11) and (4.12) yields
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x1 tð Þ ¼ � q½ �jump

ðt

0

wd sð Þe g�kð Þs dsþ qu½ �jump

ðt

0

e g�kð Þs ds� A v
cþ1½ �jump

ðt

0

e g�kð Þseks cþ1ð Þ ds;

x1xd ¼ � qu½ �jump

ðt

0

wd sð Þe g�kð Þs dsþ qu2
� �

jump

ðt

0

e g�kð Þs ds� A uvcþ1½ �jump

ðt

0

e g�kð Þseks cþ1ð Þ ds:

8

>

>

>

>

<

>

>

>

>

:

(4.13)

We multiply the first equation with wd; subtract it from the second, and let g tð Þ ¼
Ð t

0 wd sð Þe g�kð Þs ds to determine

qL � qRð Þg 0 tð Þg tð Þ þ g 0 tð Þ A q
cþ1
L � q

cþ1
R

� 	

e k cþ1ð Þþg�kð Þt � 1

k cþ 1ð Þ þ g� k

 !

� qLuL � qRuRð Þ
e g�kð Þt � 1

g� k

 !

0

@

1

A� g tð Þ qLuL � qRuRð Þe g�kð Þt

þ e g�kð Þt qLu
2
L � qRu

2
R

� � e g�kð Þt � 1

g� k

 !

� AuLq
cþ1
L � AuRq

cþ1
R

� 	

e k cþ1ð Þþg�kð Þt � 1

k cþ 1ð Þ þ g� k

 !

0

@

1

A ¼ 0; when g 6¼ �kc;

qL � qRð Þg
0 tð Þg tð Þ þ g 0 tð Þ A q

cþ1
L � q

cþ1
R

� 	

t � qLuL � qRuRð Þ
e g�kð Þt � 1

g� k

 ! !

� g tð Þ qLuL � qRuRð Þe
g�kð Þt

þ e g�kð Þt qLu
2
L � qRu

2
R

� � e g�kð Þt � 1

g� k

 !

� AuLq
cþ1
L � AuRq

cþ1
R

� 	

t

 !

¼ 0; when g ¼ �kc:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(4.14)

• When g 6¼ �ck; c 6¼ �1, and qL ¼ qR, the solution of the first ODE in (4.14) is

xd ¼
�2Aq

c
L k� gð Þet cþ2ð Þk�gð Þ þ kcþ gð Þ uL þ uRð Þe2 k�gð Þt � 2 uL þ uRð Þe k�gð Þt þ

1

2
uL þ uRð Þ

2 e k�gð Þt � 1ð Þ2

þ
�2A k� gð Þ2qcLe

2 k�gð Þt þ A k� gð ÞqcLe
kt cþ1ð Þ

2 c� 1ð Þkþ 2gð Þ e g�kð Þt � 1ð Þ2
: (4.15)

• When g ¼ �ck; c 6¼ �1, and qL ¼ qR, the solution of the second ODE in (4.14) is

xd ¼
1

e k�gð Þt � 1ð Þ2
1þ g� kð Þtð ÞAqcL � uL � uR

� �

e�2 g�kð Þt � AqcL þ uL þ uR
� �

e k�gð Þt þ uL þ uR

� 	

: (4.16)

We note that when qL 6¼ qR, the ODEs cannot be solved explic-
itly. Figure 18 is an example obtained numerically when g ¼ �kc with
parameters A ¼ �10; c ¼ �4; k ¼ 1; g ¼ 4; b ¼ 2; qL ¼ 2; uL ¼ 3;
uR ¼ 2; qR ¼ 4. A similar graph (although it might be flipped across
the t-axis) is obtained for other parameters as well as for when
g 6¼ �kc:

1. Overcompressible region

We seek delta-shocks connecting a given left state v�;wþð Þ with
a right state (v, w) that are overcompressive, meaning that all charac-
teristic curves run into the delta-shock curve from both sides.
Therefore, we require the following inequality:

k1 v;wð Þ < k2 v;wð Þ �
dx tð Þ

dt
� k1 v�;w�ð Þ < k2 v�;w�ð Þ: (4.17)

The outer inequalities always hold. Note, xd generally cannot be
solved explicitly. Thus, we consider k2 v;wð Þ < k1 v�;w�ð Þ to locate
the region that would contain the right states that result in a strictly
overcompressive delta-shock. This inequality indicates an upper
border

J: w ¼ w� � A cþ 1ð Þvc�e
kt cþ1ð Þ þ Avcekt cþ1ð Þ: (4.18)

After some simplification, this curve is the same in the g ¼ k case.
Hence, it yields the same region. J is above Sd; given by (3.25), when
�1 < c < 0 and below when c < �1. As mentioned above, Dirac
delta functions are observed numerically only in v, as shown in Fig. 19.

2. Region shift for k c1 1ð Þ<0

In this case, as t ! 1, the C2 and R2 curves converge to w¼wL

with C2 maintaining an asymptote at v¼ 0. This allows for a point in a
given region to shift to another as time progresses. The behavior of
regions is found to progress as shown in Figs. 20 and 21. In addition,
as time approaches infinity, (3.25) and (4.18) will approach w¼wL.
Therefore, the set of overcompressible points will be a subset of region
V in Fig. 20. The solutions to the Riemann problem will consist of

• A one-shock followed by a two-contact discontinuity when the
right state is in region VI (see Fig. 22)

• A one-shock followed by a two-rarefaction when the right state is
in region VII

• An overcompressive delta-shock or a combination of a delta-shock
and a classical wave when the right state is in region V (see Fig. 23)

The limit will affect case 2 in a similar way: However, we now
expect that
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• A two-rarefaction followed by a two-contact discontinuity when
the right state is in region I (see Fig. 24)

• An overcompressive delta-shock or a combination of a delta-
shock and a classical wave when the right state is in region V

An example of how a solution changes as time progresses when a
right state is initially in region II of case 2 is given in Fig. 25.

3. Region shift for k c1 1ð Þ>0

As t ! 1, the shift of the regions will require more careful con-
sideration since

lim
t!1

w� þ
A

v

vektð Þcþ1
� �

¼ �1: (4.19)

FIG. 18. Numerical solution for xd when g ¼ �kc.

FIG. 19. Region V in Fig. 5. Dirac delta
function in region V. Parameters: c
¼ �0:5; A ¼ �10; g ¼ 3; k ¼ �0:01;
b ¼ 10.

FIG. 20. Limit behavior of the regions for c < �1 and k> 0.
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Therefore, Sd moves farther down in the plane (when c < �1 the
overcompressive region moves in the same spirit because it is located
below Sd). Next, we check the time behavior of C2. Since

lim
t!1

w� þ
A

v

vektð Þcþ1
�

A

v�
v�e

kt
� �cþ1

� �

¼ lim
t!1

w� þ A v
c � v

c
�

� �

ekt cþ1ð Þ
� 	

¼
�1 when v < v�;
þ1 when v > v�;

�

(4.20)

the regions will shift as shown in Figs. 26 and 27.
When �1 < c < 0, the solutions to the Riemann problem will

consist of

• A two-rarefaction followed by a two-contact discontinuity when
the right state is in region I (see Fig. 28)

• A one-shock followed by a two-contact discontinuity when the
right state is in regions III and IV (see Fig. 29)

The c < �1 case has a similar transformation as seen below. In
this final case, the solution will consist of

• A one-shock followed by a two-rarefaction when (vR, wR) is in
region VI (see Fig. 30). This means that R2 remains above C2

during the region shift.
• A one-shock followed by a two-contact discontinuity when
(vR, wR) is in region VII (see Fig. 31)

• Either a delta-shock followed by a two-wave or a two-contact dis-
continuity followed by a delta-shock when the right state is in
region IX. The set of overcompressible points will be a subset of
region V in Fig. 27.

4. Non-overcompressive regions

Before region shift, solutions with right states in region IX, case 1,
display combinations of a delta-shock and a classical solution. Between
Sd and So, a delta-shock is followed by a two-wave. This is supported
by Fig. 32, as the two-wave in w only occurs after the initial delta-
shock. Above Sd, we observe a two-contact discontinuity followed by a
delta-shock. Note that the diffusion in the first wave is likely due to the
cell averaging involved in the LLF method as the delta-shock grows.

FIG. 21. Limit behavior of the regions for �1 < c < 0 and k< 0.

FIG. 22. Region VI of Fig. 20. Region
shifts to S1C2. Parameters: c ¼ �2;
A ¼ �10; g ¼ 3; k ¼ 2;b ¼ 10.
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FIG. 23. Region V of Fig. 20. The region
shifts to a delta-shock over time in v.
Parameters: c ¼ �2; A ¼ �10; g ¼ 3;
k ¼ 0:6;b ¼ 10.

FIG. 24. Region I of Fig. 21. Region shifts
to R2C2. Parameters: c ¼ �0:5;
A ¼ �10; g ¼ 3; k ¼ �2;b ¼ 10.
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Further testing with other numerical methods is needed to confirm
this. We find that proximity to Sd shows increased delta-shock charac-
teristics numerically, while proximity to C2 muddles those characteris-
tics. We demonstrate this in Figs. 33 and 34. We propose this is due to
the curve needing to travel farther along C2 to a middle state, raising
the overcompressive region, and allowing for a delta-shock to be taken.
If this is the case, it would explain why numerically a proximity to the
C2 curve would cause an unclear delta characteristic as the curve must
travel incredibly far in order to raise the overcompressive region a suf-
ficient amount.

Note that in case 3, Sd and So approach the same limit. Case 1
shares the same short term behavior of non-overcompressive delta
regions, but it is lost upon region shift. This is shown in Figs. 35–38.
As shown in Fig. 37, as overcompressibility disappears during region
shift, the delta shock becomes much weaker.

B. g5k case

We follow the delta-shock definition as before; therefore, our
solution should satisfy the equations

FIG. 25. An example solution for a (VR, WR) originally in region II case 2.

FIG. 26. Limit behavior of the regions for �1 < c < 0 and k> 0.

FIG. 27. Limit behavior of the regions for c < �1 and k< 0.

v;/th i þ v wþ btð Þ � A vektð Þcþ1
;/x

D E

¼ 0;

vw;/th i þ v wþ btð Þw� A vektð Þcþ1
w;/x

D E

¼ 0;
(4.21)

for any / 2 C1
0 R�Rþð Þ. We use the properties of the Dirac delta function in a similar manner to the g 6¼ k case to observe that

v;/th i þ v wþ btð Þ � A vektð Þcþ1
;/x

D E

¼

ð1

0

ðx tð Þ

�1

vL/tdxdt þ

ð1

0

ðx tð Þ

�1

vL wL þ btð Þ/xdxdt þ

ð1

0

ð1

x tð Þ
vR wR þ btð Þ/xdxdt

þ

ð1

0

ð1

x tð Þ
vR/tdxdt þ

ð1

0

x1/t þ x1 wd þ btð Þ/xð Þdt �

ð1

0

ðx tð Þ

�1

A vLe
kt

� �cþ1
/xdxdt

�

ð1

0

ð1

x tð Þ
A vRe

kt
� �cþ1

/xdxdt (4.22)

and
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FIG. 28. Region I of Fig. 26. Region shifts
to R2C2 in time. Parameters: c ¼ �0:5;
A ¼ �10; g ¼ 3; k ¼ 2:5; b ¼ 10.

FIG. 29. Region III of Fig. 26. Region shifts
to S1C2 in time. Parameters: c ¼ �0:5;
A ¼ �10; g ¼ 3; k ¼ 0:1;b ¼ 10.
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FIG. 30. Region VI of Fig. 27. Region
shifts to S1R2. Parameters: c ¼ �2;
A ¼ �10; g ¼ 3; k ¼ �0:6;b ¼ 10.

FIG. 31. Region VII in Fig. 27. Region
shifts to S1C2. Parameters: c ¼ �2; A
¼ �10; g ¼ 3; k ¼ �0:6;b ¼ 10.
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FIG. 32. Region IX of Fig. 4, d2-wave,
between Sd and So. Parameters: c ¼ �2;
A ¼ �10; g ¼ 3; k ¼ 0:01;b ¼ 10.

FIG. 33. Region IX of Fig. 4, C2d, close
to and above Sd. Parameters: c ¼ �2;
A ¼ �10; g ¼ 3; k ¼ 0:01; b ¼ 10.
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FIG. 34. Region IX of Fig. 4, C2d, farther
from and above Sd. Parameters: c ¼ �2;
A ¼ �10; g ¼ 3; k ¼ 0:01;b ¼ 10.

FIG. 35. Region IX of Fig. 6, C2d, close to
C2 and above Sd. Parameters: c ¼ �2;
A ¼ �10; g ¼ 3; k ¼ �0:01; b ¼ 10.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 096132 (2024); doi: 10.1063/5.0231413 36, 096132-24

Published under an exclusive license by AIP Publishing

 2
6
 S

e
p
te

m
b
e
r 2

0
2
4
 1

4
:3

7
:3

5



FIG. 36. Region IX of Fig. 6, C2d, far from
C2 and above Sd. Parameters: c ¼ �2;
A ¼ �10; g ¼ 3; k ¼ �0:01; b ¼ 10.

FIG. 37. Region IX of Fig. 27, C2d, close
to C2 and above Sd. Parameters: c ¼ �2;
A ¼ �10; g ¼ 3; k ¼ �0:6; b ¼ 10.
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vw;/th i þ v wþ btð Þw� A vektð Þcþ1
w;/x

D E

¼

ð1

0

ðx tð Þ

�1

vLwL/tdxdt þ

ð1

0

ðx tð Þ

�1

vL wL þ btð ÞwL/xdxdt þ

ð1

0

ð1

x tð Þ
vR wR þ btð ÞwR/xdxdt

þ

ð1

0

ð1

x tð Þ
vRwR/tdxdt þ

ð1

0

x1wd/t þ x1 wd þ btð Þwd/xð Þdt

�

ð1

0

ðx tð Þ

�1

A vLe
kt

� �cþ1
wL/xdxdt �

ð1

0

ð1

x tð Þ
A vRe

kt
� �cþ1

wR/xdxdt: (4.23)

We require

dx tð Þ

dt
¼ r tð Þ ¼ xd tð Þ þ bt (4.24)

and use Green’s theorem to get

v;/th i þ v wþ btð Þ � A vektð Þcþ1
;/x

D E

¼ �

þ

vL/dx þ vL wL þ btð Þ � A vLe
kt

� �cþ1
� 	

/dt

�

þ

�vR/dx þ vR wR þ btð Þ � A vRe
kt

� �cþ1
� 	

/dt þ

ð1

0

x1d/ ¼ 0 (4.25)

and

vw;/th i þ v wþ btð Þw� A vektð Þcþ1
w;/x

D E

¼ �

þ

vLwL/dx þ vL wL þ btð ÞwL � A vLe
kt

� �cþ1
wL

� 	

/dt

�

þ

� vRwR/dx þ vR wR þ btð ÞwR � A vRe
kt

� �cþ1
wR

� 	

/dt þ

ð1

0

x1wdd/ ¼ 0 (4.26)

If we also require

FIG. 38. Region IX of Fig. 27, C2d, far from
C2 and above Sd. Parameters: c ¼ �2;
A ¼ �10; g ¼ 3; k ¼ �0:6; b ¼ 10.
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dx1

dt
¼ v wþ btð Þ � A vektð Þcþ1
h i

jump
� v½ �jumpr tð Þ;

d

dt
x1xdð Þ ¼ vw wþ btð Þ � Aw vektð Þcþ1

h i

jump
� vw½ �jumpr tð Þ;

8

>

>

>

>

<

>

>

>

>

:

(4.27)

then (v, w) satisfies the system in the sense of distributions. Similar to the g 6¼ k case, we return to the original variables qL, qR, uL, and uR; integrate
the equations, subtract one from the product of the other, and let g tð Þ ¼

Ð t

0
xd sð Þ ds to form the ODE:

� qL � qRð Þg
0 tð Þg tð Þ þ g 0 tð Þ qLuL � qRuRð Þt � A

ek cþ1ð Þt � 1

k cþ 1ð Þ

 !

q
cþ1
L � q

cþ1
R

� 	

 !

þ qLuL � qRuRð Þg tð Þ � qLu
2
L � qRu

2
R

� �

t þ A
ek cþ1ð Þt � 1

k cþ 1ð Þ

 !

q
cþ1
L uL � q

cþ1
R uR

� 	

¼ 0: (4.28)

When qL ¼ qR, this equation can be solved explicitly:

xd ¼
1

2
uL þ uRð Þ �

kt cþ 1ð Þq
c
LAe

k cþ1ð Þt � q
c
LAe

k cþ1ð Þt þ AqcL
t2k2 cþ 1ð Þ2

: (4.29)

When c 6¼ �1 and qL 6¼ qR, the equation is solved numerically to be similar to Fig. 18. Furthermore, the overcompressible regions are based on a
simplified version of (4.17), so they match with the g 6¼ k case. They also shift identically since the regions are identical to the g 6¼ k case.

V. SINGULAR SOLUTION IN THE ORIGINAL VARIABLES

Now that the cases have been generally solved for, we ensure consistency with the original balance equations.

A. Case g 6¼ k

When we return to the original variables, the delta-shock solution is represented in the following way:

q; uð Þ x; tð Þ ¼

qLe
kt ; uL þ

b

g� k

� �

e g�kð Þt �
b

g� k

� �

; x < x tð Þ;

�x tð Þd x � x tð Þð Þ; ud tð Þð Þ; x ¼ x tð Þ;

qRe
kt ; uR þ

b

g� k

� �

e g�kð Þt �
b

g� k

� �

; x > x tð Þ;

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

(5.1)

where �x tð Þ ¼ x1 tð Þekt . Converting (4.6), (4.9), and (4.10), we get

dx1

dt
¼ e�kt d�x

dt
� �xke�kt

¼ � qL � qRð Þud tð Þ þ qL uL þ
b

g� k

� �

e g�kð Þt �
qLb

g� k
� A qLe

kt
� �cþ1

e g�kð Þt

� qR uR þ
b

g� k

� �

e g�kð Þt þ
qRb

g� k
� A qRe

kt
� �cþ1

e g�kð Þt ; (5.2)

d

dt
x1 xd þ

b

g� k

� �� �

¼
d

dt
�xe�kt ud þ

b

g� k

� �

e� g�kð Þt

� �

¼� qL uLþ
b

g� k

� �

�qR uRþ
b

g� k

� �� �

ud tð Þþ uL þ
b

g� k

� �2

qLe
g�kð Þt � uLþ

b

g� k

� �

e g�kð ÞtA vLe
kt

� �cþ1

 

�
b

g� k
uL þ

b

g� k

� �

qLþ
b

g� k
uRþ

b

g� k

� �

qR� uRþ
b

g� k

� �2

qRe
g�kð Þt þ uRþ

b

g� k

� �

e g�kð ÞtA vRe
kt

� �cþ1

!

;

(5.3)

producing
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dx

dt
¼ ud; (5.4)

d�x

dt
¼ k�x tð Þ � q½ �jump

ud tð Þ þ qu½ �jump
� A qcþ1

� �

jumpe
nt ; (5.5)

and

d

dt
�xudð Þ ¼ g�x tð Þud þ b�x tð Þ � qu½ �jump

ud þ qu2
� �

jump � A qcþ1u
� �

jumpe
gt : (5.6)

Substituting u and q into the delta-shock definition to verify that the solution satisfies the equations in the sense of distributions yields

q;/th i þ qu� Aqcþ1egt ;/xh i ¼ � kq;/h i;

qu;/th i þ qu2 � Auqcþ1egt ;/xh i ¼ � gqu;/h i � bq;/h i:

(

(5.7)

Only the proof of the second equality is presented. The first can be shown to hold by a similar argument. Let

Q ¼ qu;/th i þ qu2 � Auqcþ1egt;/xh i;

R ¼ � gqu;/h i � bq;/h i;

(

(5.8)

then

Q ¼

ð1

0

ðx tð Þ

�1

qLe
kt uL þ

b

g� k

� �

e g�kð Þt �
b

g� k

� �

/tdxdt þ

ð1

0

ð1

x tð Þ
qRe

kt uR þ
b

g� k

� �

e g�kð Þt �
b

g� k

� �

/tdxdt

þ

ð1

0

ðx tð Þ

�1

qLe
kt uL þ

b

g� k

� �

e g�kð Þt �
b

g� k

� �2

/xdxdt þ

ð1

0

ð1

x tð Þ
qRe

kt uR þ
b

g� k

� �

e g�kð Þt �
b

g� k

� �2

/xdxdt

� A

ð1

0

ðx tð Þ

�1

qLe
kt

� �

cþ1 uL þ
b

g� k
e g�kð Þt

� �

�
b

g� k

� �

egt/xdxdt � A

ð1

0

ðx tð Þ

�1

qRe
kt

� �

cþ1 uR þ
b

g� k

� �

e g�kð Þt �
b

g� k

� �

egt/xdxdt

þ

ð1

0

�xud /t þ ud/xð Þdt: (5.9)

If we assume that dx
dt
> 0 for t 2 Rþ (we employ a similar argument in the case dx

dt
< 0), then an inverse of x(t) exists. Thus,

Q ¼

ð1

0

ð1

t xð Þ

qLe
kt uL þ

b

g� k

� �

e g�kð Þt �
b

g� k

� �

/tdtdx þ

ð1

0

ðt xð Þ

0

qRe
kt uR þ

b

g� k

� �

e g�kð Þt �
b

g� k

� �

/tdtdx

þ

ð1

0

ðx tð Þ

�1

qLe
kt uL þ

b

g� k

� �

e g�kð Þt �
b

g� k

� �2

/xdxdt þ

ð1

0

ð1

x tð Þ
qRe

kt uR þ
b

g� k

� �

e g�kð Þt �
b

g� k

� �2

/xdxdt

� A

ð1

0

ðx tð Þ

�1

qLe
kt

� �

cþ1 uL þ
b

g� k
e g�kð Þt

� �

�
b

g� k

� �

egt/xdxdt

� A

ð1

0

ð1

x tð Þ
qRe

kt
� �

cþ1 uR þ
b

g� k

� �

e g�kð Þt �
b

g� k

� �

egt/xdxdt þ

ð1

0

�xudd/: (5.10)

After an integration by parts, we deduce

Q ¼ �g

ð1

0

ð1

t xð Þ

qLe
gt uL þ

b

g� k

� �

e g�kð Þt �
b

g� k

� �

/dtdx � b

ð1

0

ð1

t xð Þ

qLe
kt/dtdx

� b

ð1

0

ðt xð Þ

0

qRe
kt/dtdx � g

ð1

0

ðt xð Þ

0

qRe
kt uR þ

b

g� k

� �

e g�kð Þt �
b

g� k

� �

/dtdx þ

ð1

0

N tð Þ/ x tð Þ; tð Þdt; (5.11)

where
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N tð Þ ¼ qþe
kt uþ þ

b

g� k

� �

e g�kð Þt �
b

g� k

� �

� q�e
kt u� þ

b

g� k

� �

e g�kð Þt �
b

g� k

� �� �

ud

þ q�e
kt u� þ

b

g� k

� �

e g�kð Þt �
b

g� k

� �2

� Aegt q�e
kt

� �cþ1
u� þ

b

g� k

� �

e g�kð Þt �
b

g� k

� �

� qþe
kt uþ þ

b

g� k

� �

e g�kð Þt �
b

g� k

� �2

þ Aegt qþe
kt

� 	cþ1

uþ þ
b

g� k

� �

e g�kð Þt �
b

g� k

� �

�
d

dt
�x tð Þudð Þ

¼ � qu½ �jump
ud þ qu2 � Aegtqcþ1u

� �

jump �
d

dt
�x tð Þudð Þ ¼

by V:6ð Þ
�g�xud � b�x tð Þ: (5.12)

We can easily conclude that Q¼R as desired, so the equations are satisfied in the sense of distributions. Now consider the case given in Fig. 39. If
x ¼ x tð Þ is a curve, as shown in Fig. 39, the earlier proof needs to be modified. If there are more points at which x0 tð Þ ¼ 0; the proof is similar. The
proof can be modified by breaking up Q as follows:

Q¼

ð0

�1

ðt xð Þ

0

qLe
kt uLþ

b

g�k

� �

e g�kð Þt�
b

g�k

� �

/tdtdxþ

ð0

�1

ð1

t2 xð Þ

qRe
kt uRþ

b

g�k

� �

e g�kð Þt �
b

g�k

� �

/tdtdx

þ

ðx0

0

ðt1 xð Þ

0

qRe
kt uRþ

b

g�k

� �

e g�kð Þt �
b

g�k

� �

/tdtdxþ

ðx0

0

ðt2 xð Þ

t1 xð Þ

qLe
kt uLþ

b

g�k

� �

e g�kð Þt�
b

g�k

� �

/tdtdx

þ

ðx0

0

ð1

t2 xð Þ

qRe
kt uRþ

b

g�k

� �

e g�kð Þt �
b

g�k

� �

/tdtdxþ

ð1

x0

ð1

0

qRe
kt uRþ

b

g�k

� �

e g�kð Þt�
b

g�k

� �

/tdtdx

þ

ð1

0

ðx tð Þ

�1

qLe
kt uLþ

b

g�k

� �

e g�kð Þt �
b

g�k

� �2

/xdxdtþ

ð1

0

ð1

x tð Þ
qRe

kt uRþ
b

g�k

� �

e g�kð Þt �
b

g�k

� �2

/xdxdt

�A

ð1

0

ðx tð Þ

�1

qLe
kt

� �

cþ1 uLþ
b

g�k

� �

e g�kð Þt �
b

g�k

� �2

/xdxdt�A

ð1

0

ð1

x tð Þ
qRe

kt
� �

cþ1 uRþ
b

g�k

� �

e g�kð Þt �
b

g�k

� �2

/xdxdtþ

ð1

0

�xudd/

(5.13)

After an integration by parts and change of variables by using (5.4), we once again conclude that Q ¼ R. For a strictly overcompressive delta-
shock solution connecting a left state qL; uLð Þ and a right state qR; uRð Þ, we require

uR � AqcRe
gt < ud < uL � AqcLe

gt cþ 1ð Þ: (5.14)

B. Case g5k

In this case, the delta-shock solution is represented in the following way:

q; uð Þ x; tð Þ ¼

qLe
kt ; uL þ bt

� �

; x < x tð Þ;

�x tð Þd x � x tð Þð Þ; ud tð Þð Þ; x ¼ x tð Þ;

qRe
kt; uR þ bt

� �

; x > x tð Þ;

8

>

>

>

>

>

<

>

>

>

>

>

:

(5.15)

where �x tð Þ ¼ x1 tð Þekt . From (4.24) and (4.27), we get

dx

dt
¼ r tð Þ ¼ ud (5.16)

and

dx1

dt
¼ e�kt d�x

dt
� �xke�kt ¼ � vL � vRð Þr tð Þ þ qL wL þ btð Þ � A qLe

kt
� �cþ1

� qR wR þ btð Þ þ A qRe
kt

� �cþ1

)
d�x

dt
¼ k�x tð Þ � q½ �jump

þ qu� Aqcþ1ekt
� �

jump;

d

dt
�xe�kt ud � btð Þ
� �

¼ � vLwL � vRwRð Þud þ vL wL þ btð ÞwL � Avcþ1
L ekt cþ1ð ÞwL � vR wR þ btð ÞwR þ Avcþ1

R ekt cþ1ð ÞwR

)
d

dt
�xudð Þ ¼ k�x tð Þud � qu½ �jump

ud þ qu2 � Aqcþ1ektu
� �

jump þ �xb;

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

(5.17)
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respectively. All remaining proofs for g ¼ k follow precisely the g 6¼ k
case, including those for the definitions of delta-shocks and overcom-
pressive regions.

VI. CONCLUSION

In this work, we studied the Riemann problem of a non-symmetric
Keyfitz–Kranzer type system with varying generalized Chaplygin gas.
While there is a substantial body of literature on the Chaplygin gas and,
more recently, on the varying Chaplygin gas (see Ref. 3), our study takes
a unique approach and combines various models. We address the open
question of whether classical and non-classical (delta-shocks) solutions
are possible in the presence of a power c in the density.

We provide an affirmative answer by deriving various regions in
four cases [depending on the sign of k cþ 1ð Þ and whether c is less or
greater than –1], where the Riemann problem can be solved classically
(by using a one-shock, two-rarefaction, two-contact discontinuity) or
non-classically (by using a combination of classical waves and a delta-
shock, or solely a delta-shock). We observe that these regions shift in
time. Therefore, a Riemann problem with a given left and right state
can have different solutions over several time intervals. We also prove
that the singular solution (which involves a delta-shock) satisfies our
system in the sense of distributions. More generally, the results high-
light the challenge of solving the Riemann problem for a non-
autonomous system of balance laws (presence of source terms) due to
the lack of self-similarity and direct dependence on the time of the
wave curves, which causes region shifts.

Finally, our robust numerical evidence indicates the existence of
regions where the solution consists of a two-rarefaction followed by a
two-contact discontinuity (in that specific order), which we have not
verified analytically, and regions where the solutions consist of a com-
bination of a classical wave and a delta-shock. We verified the feasibil-
ity of the Local Lax–Friedrichs method for time-dependent solutions
by manipulating key parameters to study changes in time. Future work
will pursue these and other questions, such as uniqueness (see Refs.
32–35) and how these Riemann solutions can be used as building
blocks in solving general Cauchy problems.
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