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Abstract

Background: New patient referrals are often processed by practice coordina-

tors with little-to-no medical background. Treatment delays due to incorrect

referral processing, however, have detrimental consequences. Identifying vari-

ables that are associated with a higher likelihood of surgical oncological re-

section may improve patient referral processing and expedite the time to

treatment. The study objective is to develop a supervised machine learning

(ML) platform that identifies relevant variables associated with head and neck

surgical resection.

Methods: A retrospective cohort study was conducted on 64 222 patient data-

points from the SEER database.

Results: The random forest ML model correctly classified patients who were

offered head and neck surgery with an 81% accuracy rate. The sensitivity and

specificity rates were 86% and 71%. The positive and negative predictive values

were 85% and 73%.

Conclusions: ML modeling accurately predicts head and neck cancer surgery

recommendations based on patient and cancer information from a large

population-based dataset. ML adjuncts for referral processing may decrease

the time to treatment for patients with cancer.
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1 | INTRODUCTION

Treatment delays are one of the most significant, yet
modifiable, variables affecting cancer patient morbidity
and mortality. The consequences of delayed treatment

are not benign. There is approximately a 1.2%–3.2% abso-
lute increased risk of mortality per week of delayed treat-
ment for cancers such as lung, kidney, and pancreas.1

Another study by Cone et al. reported higher all-cause 5-
and 10-year predicted mortality with delays in treatment
initiation across the most prevalent cancers in the
United States of America: breast, prostate, non-small cell
lung, and colon cancer.2

Unfortunately, institutional infrastructure and per-
sonnel failures to recognize and process urgent cancer
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patient referrals contribute to this delay. A study of over
100 000 scheduling attempts highlighted significant het-
erogeneity in the amount of time between the original
referral and the scheduled appointment date, ranging
from 8 to 73 days, with an average wait time of 22 days.3

The same study concluded that the longer the wait time,
the less likely an appointment was to be completed. For
individuals with critical conditions, 22 days is not an
acceptable wait time; these patients need to be seen as
soon as possible for physicians to make a proper clinical
diagnosis and management before the patient's condition
worsens. This is especially important for patients with
cancer, where days spent waiting for a referral to process
or being referred to the incorrect provider (i.e., the incor-
rect subspecialty clinic) may adversely affect the patient's
treatment options and prognosis.

Currently, the responsibility of processing and tria-
ging referrals often falls upon the shoulders of practice
coordinators, who may not be medical experts and
often have competing responsibilities. Practice coordi-
nators and even referring providers are unlikely to dis-
tinguish between benign versus potentially serious
findings, compared to an medical or radiation oncolo-
gist, or oncological surgeon. Even if a referral is flagged
as urgent by a referring provider, practice coordinators
often rely on internal nurse navigators or the special-
ists themselves to review referral documents and relay
how soon the patient should be seen. Processing bottle-
necks may be amplified by factors such as pandemic
backlogs, underfunding, understaffing, and supply
chain constraints.

Machine learning has played an increasingly impor-
tant role in science and medicine over the past decade.4

The adoption of data-intensive machine learning models
into clinical workflow has the potential to reduce opera-
tional inefficiencies and promote evidence-based
decision-making—even among non-medical personnel.
Decision tree algorithms offer classification (categorical
outcomes) and regression (continuous outcomes) model-
ing in a rich multidimensional clinical setting.5 We,
therefore, evaluated if a tree-based machine learning
model could predict whether a patient with cancer would
be recommended for head and neck surgery based on the
medical information provided at the time of a new
patient referral. In addition, we sought to determine
which patient variables carried the most weight in driv-
ing the decision for recommending surgery. Findings
from this study may inform operational directors and
practice coordinators about the best practices when it
comes to processing head and neck new patient
referrals—ultimately reducing inappropriate clinic visits
and freeing up specialists' time so that they can “operate
at the top their license.”

2 | MATERIALS AND METHODS

2.1 | Training and testing dataset

This study was reviewed and approved by an institutional
review board. The details of the machine learning model
development are outlined in Figure 1. We used the Sur-
veillance, Epidemiology, and End Results (SEER) dataset.
The SEER database is a cancer registry funded by the
National Institute of Health's (NIH) National Cancer
Institute and has been in existence since 1975. Each year,
the National Cancer Institute collects cancer incidence
information on approximately !800 000 new patients
from 16 different cancer registries nationwide. The SEER
database has been reported to represent approximately
47.9% of the United States patient population.6 We iso-
lated a subset population of 64 222 patients with head
and neck cancer from the SEER database and split this
dataset into a training and testing set, with 70% of data
points assigned to the former and 30% of data points
assigned to the latter (Table 1).

2.2 | Preprocessing

From the SEER dataset, we meticulously identified and
isolated 21 out of a total of 263 patient variables that
would be pertinent and plausibly available at the time of
a new patient referral. We also removed other proxies for
patient outcomes (i.e., survival months) to prevent the
algorithm from exploiting information it would not gen-
erally have in the real-world setting. The specific data
values utilized for this study are listed in Table S1, Sup-
porting Information.

We compressed the parameters for cancer TMN clas-
sifications from multiple American Joint Committee on
Cancer (AJCC) editions into one, as the discrepancies
between tumor (T), nodal (N), and metastasis (M) stages
between different AJCC cancer staging editions resulted
in sparse, low-fidelity data. We recognize that compres-
sing staging systems from multiple editions into one col-
umn could distort the actual morbidity attached to each
staging value so we kept these values separated during
the data analyses. Patients with metastatic disease were
kept within the testing and validation dataset because in
the real world, it is unlikely for a referring general practi-
tioner or non-medical practice coordinator to recognize
that patients with metastatic disease are unlikely to be
recommended curative surgery.

The isolated data underwent one-hot encoding,
wherein categorical variables were split into subcate-
gories that could only have values of one or zero, before
being inputted into the model (Table S1). This approach
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FIGURE 1 Overview schematic of the machine learning decision tree model development. SEER, Surveillance, Epidemiology, and End
Results Database. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Characteristics of overall
SEER data, training subset, and testing
subset.

Characteristic SEER overall SEER training SEER testing

Number of cases 63 553 44 487 19 066

Sex

Male 43 696 (69%) 30 414 (68%) 13 282 (70%)

Female 19 857 (31%) 14 073 (32%) 5784 (30%)

Primary site

Nasopharynx 3786 (6%) 2890 (6%) 896 (5%)

Oral cavity 24 984 (39%) 17 938 (40%) 7046 (37%)

Oropharynx 23 069 (36%) 15 381 (35%) 7688 (40%)

Hypopharynx 3467 (5%) 2587 (6%) 880 (5%)

Salivary gland 7148 (11%) 4999 (11%) 2149 (11%)

Other 1099 (2%) 692 (2%) 407 (2%)

Cancer grade

Grade I 8067 (13%) 5989 (13%) 2078 (11%)

Grade II 20 474 (32%) 14 320 (32%) 6154 (32%)

Grade III 14 193 (22%) 10 153 (23%) 4040 (21%)

Grade IV 2187 (3%) 1672 (4%) 515 (3%)

Grade unknown 18 632 (29%) 12 353 (28%) 6279 (33%)

AJCC stage

Stage I 6976 (11%) 4865 (11%) 2111 (11%)

Stage II 3857 (6%) 2745 (6%) 1112 (6%)

Stage III 4633 (7%) 3217 (7%) 1416 (7%)

Stage IV 13 988 (22%) 9225 (21%) 4763 (25%)

Unknown 34 099 (54%) 24 435 (55%) 9664 (51%)

Outcomes

Surgery recommended 41 242 (65%) 29 830 (67%) 11 412 (60%)

Not recommended 22 311 (35%) 14 657 (33%) 7654 (40%)

Abbreviations: AJCC, American Joint Committee on Cancer; SEER, Surveillance, Epidemiology, and End Results.
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helped convert non-numerical variables (i.e., sex, race,
cancer classification) into a form that could be inter-
preted by the machine learning model.

2.3 | Random forest model development

Our model predicted whether a patient was recom-
mended for head and neck surgery using a set of demo-
graphic and cancer variables that would be pertinent and
plausibly available at the time of a new patient referral.
SEER treatment outcomes were as either “Surgery
performed,” “Not recommended,” “Recommended,
unknown if performed,” “Recommended but not per-
formed, unknown reason,” “Recommended but not
performed, patient refused,” “Not recommended, contra-
indicated due to other conditions; autopsy only (1973–
2002),” “Unknown; death certificate; or autopsy only
(2003+),” or “Not performed, patient died prior to recom-
mended surgery.” We removed the last two of the afore-
mentioned outcomes from the dataset because they are
the equivalent of missing or unknown variables. In addi-
tion, the scope of this study does not extend to elucidat-
ing the reasons why a patient failed to follow through
with their treatment recommendation. Thus, we grouped
all “recommended” categories together and “not recom-
mended” categories together to transform our random
forest model into a binary classifier.

Our random forest model classifies patients on
whether they were recommended surgery, based on the
isolated 21 patient variables. The model utilizes an
ensemble of several decision trees trained independently,
and the outcomes of each of the decision trees are aggre-
gated to determine the final result. These “bagging”
methods improve the algorithm's generalizability and
accuracy when interfacing with different datasets.

The random forest model was sourced from existing
libraries in the “sklearn” Python library (Scikit-Learn;
https://scikit-learn.org). We performed hyperparameter
tuning via grid search to extensively search for possible
model configurations. These configurations are defined
by variances in the model's hyperparameters, which
define the learning process. The hyperparameters include
how the forest's decision trees determine the quality of
each split, how the forest distributes the trees, and how
many trees to train. One of the hyperparameters deter-
mined when an individual tree was randomly assigned a
subset of patient variables to train upon. It tweaked the
number of features each individual decision tree was
allowed to consider. Hyperparameters such as this one
determined the balance between the model's interpret-
ability versus overfitting. The full search space of specific
hyperparameter configurations and how we split the

configuration space are specified in Table S2. We tested a
total of 336 hyperparameter combinations and selected
the best-performing combination for the machine learn-
ing model.

To assess the model performance, we performed five-
fold cross-validation. The fivefold cross-validation
approach involves rotating training and testing data
points (i.e., during training, leaving out a fifth of the data-
set for testing). Rotating the training set reduced the like-
lihood of the model overfitting on any subsection of the
dataset. The results from the cross-validation process are
averaged to calculate the overall performance of the
model. In summary, all 336 hyperparameter configura-
tions were trained five different ways on the same train-
ing data and produced a total of 1680 fits.

A total of 63 553 adult patients with head and neck
cancer were included in the study; 41 242 of these
patients (64.9%) were recommended surgery and 22 311
(35.1%) were not recommended surgery. The decision
trees trained on 70% of the available data with fivefold
cross-validation. The remaining 30% of the dataset was
kept unseen during the entirety of the training process
and reserved as the test set. Our hyperparameter tuning
analyses determined the best-performing combination to
be when the maximum features were limited to two-
tenths of the full set of variables, when the minimum
samples threshold was increased to 50, when entropy
was used as the criterion for choosing a separator, and no
pruning was performed.

3 | RESULTS

The accuracy rate of this model on unseen test data was
81%. The sensitivity rate was 86% and the specificity rate
was 71% (Figure 2A). The positive predictive value was
85% and the negative predictive value was 73%. A receiv-
ing operator characteristic (ROC) curve was constructed
by plotting the algorithm's true positive rate (TPR)
against the false positive rate (FPR); the area under the
curve (AUC) was 0.88 (Figure 2B).

We also performed hyperparameter tuning based on
the size of the training set and the number of forests, and
we found diminishing returns on the number of decision
trees after 10 estimators. With that in mind, we decided
to use 100 estimators because there did not seem to be
any performance benefit when the number of decision
trees was greater than 100 (Figure 3A). Similarly, we
found that the training and cross-validation metric con-
verged as the number of training set samples increased,
with visible signs of non-decreasing variance (Figure 3B).
There was no benefit in raising the number of samples
within the training set beyond the 70–30 split.
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Sixty-seven percent of the decision splits (n = 47 571)
were based on information about the lesion and 33% of
the decision splits (n = 96 143) were made on the basis of
patient demographic variables. However, a variable's
number of splits within a random forest does not neces-
sarily reflect the importance of the variable due to the

structure of decision trees, where there are plenty more
nodes in the lower depths. Decisions made further down
the tree often translate to less important variables. Thus,
we ran two different analyses to interpret how the ran-
dom forest prioritizes these variables: mean minimal var-
iable depth and permutation importance.

FIGURE 2 Performance metrics for the random forest model. (A) The confusion matrix demonstrates an unseen test data prediction
accuracy of 81%. The “0” label refers to cases where the patient is recommended for surgery and “1” refers to cases when they are not.
(B) The receiver operating characteristic (ROC) curve of the decision tree model. The closer the area under the curve (AUC) is to one, the
better the algorithm is performing. The red line depicts the naive, baseline approach of randomly recommending patients regardless of their
characteristics. The further an estimator deviates from this line, the better it is. AUC, area under the curve; RFEstimator, random forest
estimator. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Model performance analysis: the impact of decision trees and training set size on the accuracy of the random forest model.
These two figures demonstrate the model's performance relative to the information provided or resources it was allowed to use. The
accuracy of the test set was plotted against (A) the number of decision trees in the ensemble of the random forest and (B) the number of
samples provided within the training set. The two curves in (B) illustrate the mean and standard deviation of performances across the
fivefold cross-validation runs. The ideal training set size is determined at the closest convergence point between the training and the cross-
validation scores while minimizing variance. Note, performance plateaus when the training set size exceeds 10 000. [Color figure can be
viewed at wileyonlinelibrary.com]
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We calculated the mean minimal depth for each vari-
able to determine its relative importance for the random
forest model. The minimal depth is the earliest point at
which a variable is considered in a decision tree. Vari-
ables with lower minimal depths (as opposed to larger
minimal depths) are considered to be more important for
the decision tree. We averaged the minimal variable
depth across all decision trees and then sorted the vari-
ables in descending order of mean minimal depth
(Figure 4A). Variables that were uninvolved in any given
tree were assigned the maximum depth for that tree. To
adjust for unknown values within the SEER dataset, we
created a secondary graph that selected the minimal

depth of the first node that did not use a threshold based
on an unknown value (Figure 4B). For example, we did
not count queries on whether the sex was “Unknown.”
Tumor site was the most important variable for the pre-
dictive algorithm; more than half of the trees queried
tumor site at the root of the tree (first decision made)
with an average minimum depth of 0.8 ± 0.81 (mean
± standard deviation). The order of variable importance
was preserved whether or not unknown or null thresh-
olds were excluded from the analysis.

We also calculated permutation feature importance to
measure the relative weight of each variable within the
random forest (Figure 5A).7 Permutation importance is

FIGURE 4 Minimal variable depths across all decision trees. The variables are sorted by mean minimal depth from smallest (most
important) to largest (least important). (A) illustrates the minimum depths for each of the variables. (B) Depicts the minimum depths for
each of the variables after accounting for unknown or null decisions. If the variable is not included within the model, the tree's maximum
depth is assigned by default. The green line within each box indicates the median value. The box covers the interquartile interval (Q1–Q3),
where 50% of the data is found. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Permutation feature importance of patient demographic and cancer characteristics. This figure illustrates how much the
model's accuracy score decreases when a particular variable was shuffled. In (A), all of the variables are included. In (B), the tumor site
variable is omitted to provide detailed visualization of the permutation importance for the other variables. The box illustrates the Q1–Q3
range. The green line within each box symbolizes the median. The whisker ends indicates the range of scores. [Color figure can be viewed at
wileyonlinelibrary.com]
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measured by shuffling the column of a dataset to create
synthetic data. The model is then tested on the synthetic
data with the expectation that the trained model's perfor-
mance will suffer. The decrease in accuracy corresponds
to the degree of importance for that particular variable.
Among all the variables, tumor site permutations (13.2%
decrease in the model's accuracy score) had the greatest
impact on the model's accuracy rate than any other vari-
able (<2% decrease in the model's accuracy score)
(Figure 5B). After tumor site, diagnostic confirmation,
histology, T stages, and N stage had the greatest effect on
the model's accuracy rate. These findings are relatively
consistent with the other study measure of variable
importance (minimum variable depth) (Figure 4).

4 | DISCUSSION

In this study, we evaluated the clinical use case of a
machine learning model for processing new patient refer-
rals. Specifically, we investigated how well a random forest
could predict how likely a patient with head and neck can-
cer would be recommended surgery at the time a new
patient referral is placed. Machine learning models within
this domain have the potential of assisting practice coordi-
nators with processing referrals more accurately and expe-
ditiously, thus improving patient outcomes.

Decision tree models are a form of non-parametric
supervised learning that uses classification and regression
questions to make predictions. These models are particu-
larly effective with multidimensional datasets, like the
SEER database. Limitations related to overfitting can be
partially mitigated by setting constraints on model
parameters and the use of pruning nodes. In addition,
ensemble learning methods are often employed to
address the trade-off between bias and variance. Random
forest is an ensemble learning technique with excellent
multi-dimensionality reduction capacity and within-
training-set internal validation.8

Black-box models are algorithms whose inner work-
ings are difficult to interpret. Although there are con-
cerns surrounding how random forest models do not
provide insight into their decision-making process (aka
black-box model), we applied several methods to under-
stand our final model's decision-making process. Specifi-
cally, we employed two different analyses to reveal the
overall importance the model assigns to each variable.
We also ran local interpretative model-agnostic explana-
tions (LIME) and Shapley additive explanations (SHAP)
techniques to provide a local, interpretable model to
explain each individual prediction.

Our results helped us understand which pieces of
medical information have the greatest valence in affect-
ing cancer treatment decisions. These findings may help

guide clinical practice and workflows at cancer centers,
particularly at the time of a new patient referral. This is
especially important because referrals are primarily han-
dled by practice coordinators with little-to-no clinical
background. Our supervised machine learning algorithm
was able to predict a head and neck cancer provider's
decision to recommend surgery to a patient with an 81%
accuracy rate.

The variable that could best predict a decision to offer
oncologic resection was tumor site. Our study findings
are consistent with the existing literature. Prior studies
suggested a potential relationship between tumor site
and treatment modality.9,10 Johnson and his team report
that surgery is frequently selected for oral cavity cancers,
whereas radiation is more commonly recommended to
patients with pharyngeal and laryngeal cancers.10 This is
not particularly surprising given the clinician's role in
weighing treatment efficacy rates against patient
morbidity and side effects. Interestingly, all of the cancer
characteristics and patient demographic variables were
more-or-less similar in its relative importance in deter-
mining whether or not a patient was likely to be recom-
mended surgery—with a less 2% or less effect on the
model's accuracy rate.

The implications of these findings could be signifi-
cant. Head and neck cancer practice coordinators may be
able to apply a supervised machine learning tool to deter-
mine whether the patient should be first seen by a head
and neck cancer surgeon as opposed to starting with a
medical oncologist or radiation oncologist. This has the
potential of saving patients weeks to months of treatment
delay as they are referred from one specialist to another.
The financial and time cost-savings are also significant.
Practice coordinators, nurse navigators, and physician
specialists could spend less time directly screening these
referrals on their off-time and improve surgical conver-
sion rates in the clinic.

There are important study limitations to note. One of
the study's strengths is the use of a large national cancer
database rather than a single-institutional cohort; this
approach improves the generalizability of the random
forest model and decreases the risk of overfitting on a
restricted population of patients. However, SEER does
not collect data on the entire U.S. population and there-
fore may not be representative of certain regions of the
United States. We also recognize that there are other vari-
ables affecting provider treatment recommendations that
may not be captured by the SEER database. These
include the physical exam, assessment of frailty, patient
body cues, and patient-centered discussions that occur on
the day of the visit. In addition, we combined the differ-
ent AJCC editions into one, which could have diluted the
relative importance of cancer staging on treatment rec-
ommendations. This variability was further compounded
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by the prevalence of unknown variables in the SEER
database and eliminated the training resources the model
had access to by half. As such, the individual importance
of non-tumor site variables (i.e., race compared to
M-stage) should be interpreted with caution.

5 | CONCLUSIONS

Using a supervised learning machine learning model, we
trained an ensemble classifier that could predict which
factors drive the decision to offer a head and neck cancer
patient surgery. The random forest model accuracy rate
was 81%. The most important variables were the tumor
site (by far the most influential variable), followed by
diagnostic confirmation, cancer histology, T stage, and N
stage. These results suggest that machine learning algo-
rithms could be a useful adjunct tool for screening new
patient referrals, especially since practice coordinators
have little-to-no medical background in subspecialty
oncology. Faster and more accurate referral processing
times could have a meaningful impact on institutional
expenditures, personnel costs, and patient outcomes.
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